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Abstract—We present a new approach to robustly solve the photometric stereo problem. We cast the problem of recovering surface
normals from images taken under multiple lighting conditions as a one of recovering a low-rank matrix from missing and corrupted
observations, which model many different non-Lambertian effects such as shadows and specularities. Unlike previous approaches that
use least-squares or heuristic robust techniques, our method uses an advanced convex optimization technique that is guaranteed to
find the correct low-rank matrix by simultaneously fixing its missing and erroneous entries. Extensive experimental results demonstrate
that our method achieves unprecedentedly accurate estimates of surface normals in the presence of significant amount of shadows and
specularities. The new technique can be used to improve virtually any existing photometric stereo method. We not only showcase its
effectiveness in the case of photometric stereo, but also extend our method to perform classification of photometric factors. In contrast
to existing robust techniques, our method is computationally more efficient and provides theoretical guarantees for robustness to large
errors.
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1 INTRODUCTION

PHOTOMETRIC stereo [1], [2] is the classical computer
vision problem of estimating surface orientations

from a set of photographs taken from a fixed viewpoint
under different lighting directions. It is well-known that
when a Lambertian surface is illuminated by at least
three known lighting directions, the surface orientation
at each visible point can be uniquely determined from its
shading variations. Since photometric stereo can produce
a dense normal field at the level of detail that cannot
be achieved by other triangulation-based approaches,
it has generated a lot of interest for accurate shape
reconstruction.
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From different perspectives, it has long been shown
that if there are no shadows, the appearance of a con-
vex Lambertian scene illuminated from different light-
ing directions span a three-dimensional subspace [3]
or an illumination cone [4]. Basri and Jacobs [5] and
Georghiades et al. [6] have further shown that the
images of a convex-shaped object with cast shadows
can also be well-approximated by a low-dimensional
linear subspace. These works indicate that there exists
a degenerate structure in the appearance of Lambertian
surfaces under variation in illumination, and this is the
key property that almost all photometric stereo methods
harness to determine the surface normals. However, this
structure is rarely observed in real images due to com-
plex factors such as specular reflections and shadows
which render most existing algorithms unsuitable for
practical purposes.

One of the most popular approaches in photometric
stereo for Lambertian surfaces is to use a Least Squares
solution to a set of linear equations that relate the
observations and known lighting directions, or equiv-
alently, to identify the underlying low-dimensional sub-
space using conventional Principal Component Analysis
(PCA) [7]. Such a solution is known to be optimal if the
measurements are corrupted by i.i.d. Gaussian noise of
small magnitude. Unfortunately, in reality, photometric
measurements rarely obey such a simplistic noise model.
The intensity values at some pixels can be severely
affected by specular reflections (deviation from the basic
Lambertian assumption), sensor saturations, or shad-
owing effects. As a result, the Least Squares solution
normally ends up with incorrect estimates of surface
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orientations in practice. Most existing algorithms deal
with this problem by either treating these corruptions
as small noise, or by removing them using a global
threshold on the pixel intensity value.

For years, researchers have been exploring robust
methods to handle the above mentioned problems in im-
ages. In the context of uncalibrated photometric stereo,
Hayakawa [8] used a matrix factorization framework
to deal with multiple images with shadows. That algo-
rithm estimates the surface normal and reflectance in
shadowed regions by starting with a partial solution
obtained from a sub-matrix with no shadowed pixels
and then gradually estimates the surface normals in the
shadowed regions. The shadowed regions can also be
refilled using linear regression [9], [10], or removed by
techniques from robust statistics using a steepest descent
algorithm [11]. A significant limitation of these methods
is that they require an intensity matrix without large
magnitude errors barring shadows, which amounts to
assuming that there are no specularities in the observed
images.

More recently, researchers have explored various ro-
bust approaches to eliminate such deviations by treat-
ing the corrupted measurements as outliers, e.g., using
a Random Sample Consensus (RANSAC) scheme [12],
[13], or a median-based approach [14]. To identify dif-
ferent types of corruptions in images more carefully,
Mukaigawa et al. [15] proposed a method based on
RANSAC, which can estimate the surface normals with
high accuracy. Although these methods are shown to
work well, their computational cost is rather high for
practical applications.

To achieve the goal of both accuracy and efficiency,
we develop a new robust photometric stereo method
based on recent advances in the area of low-rank matrix
recovery [16], [17]. We recast the photometric stereo
problem as one of recovering and completing a low-
rank matrix in the presence of sparse, gross errors that
account for corrupted and missing pixels. Unlike pre-
vious heuristic methods, under fairly broad conditions,
the new method is guaranteed to correctly recover the
low-rank Lambertian diffuse component from the highly
corrupted and incomplete observations. Based on ad-
vanced convex optimization tools for nuclear norm and
`1-norm minimization, the new method can efficiently
obtain highly accurate estimates of surface orientations.
Our method can be used to improve virtually any exist-
ing photometric stereo method, including uncalibrated
photometric stereo [8], where traditionally, corruption in
the data (e.g., shadow and specularity) is either neglected
or ineffectively dealt with conventional heuristic robust
estimation methods. In addition, we show that the pro-
posed technique can be efficiently used for photometric
factor classification that can classify diffuse, specular, at-
tached shadows and cast shadows. Experimental results
on both synthetic and real data show that photometric
factors can be identified with very high accuracy by
our approach. Preliminary results of our approach were

presented in [18].
In contrast to previous robust approaches, our method

is computationally more efficient and provides theoret-
ical guarantees for robustness to large errors. More im-
portantly, our method uses all the available information
simultaneously for obtaining the optimal result, instead
of discarding informative measurements, e.g., by either
selecting the best set of illumination directions [13] or
using the median estimator [14].

The remainder of this paper is organized as follows.
In Section 2, we provide a brief description of the Lam-
bertian image formation model and the resulting low-
rank matrix structure in photometric stereo. In Section 3,
we propose an efficient and scalable convex optimization
algorithm to accurately recover the surface normal map.
In Section 4, we explain how the recovered solution can
be used for photometric factors classification. We show-
case the efficacy of our method through experiments
in Section 5. In Section 6, we discuss some potential
extensions of this work.

2 PHOTOMETRIC STEREO AS LOW-RANK MA-
TRIX RECOVERY WITH SPARSE ERRORS
In this section, we formulate the problem of estimating
the normal map as a rank minimization problem. We first
review the basic Lambertian image formation model,
and then discuss how to model large deviations like
shadows and specularities. In the following discussion,
we make a few assumptions:
• The relative position of the camera and object is

fixed across all images.
• The object is illuminated by a point light source at

infinity.
• The sensor response is linear.

2.1 Lambertian Image Formation Model
The appearance I of a point in a Lambertian scene
observed under a lighting direction l ∈ R3 is described
by the inner product:

I = ρn · l, (1)

where ρ is the diffuse albedo, and n ∈ R3 is the surface
normal at the point. Suppose that we are given n images
I1, . . . , In of a scene under different lighting conditions.
Let the region of interest be composed of m pixels in
each image.1 We order the pixel locations with a single
index k, and let Ij(k) denote the observed intensity at
pixel location k in image Ij . With this notation, we have
the following relation about the observation Ij(k):

Ij(k) = ρk nk · lj , (2)

where ρk is the albedo of the scene at pixel location k,
nk ∈ R3 is the (unit) surface normal of the scene at
pixel location k, and lj ∈ R3 represents the normalized
lighting direction vector corresponding to image Ij .2

1. Typically, m is much larger than the number of images n.
2. The convention here is that the lighting direction vectors point

from the surface of the object to the light source.
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We assume that the light intensity is constant across
images to simplify the discussion, although the proposed
method is not limited to such a condition.

2.2 Low-rank Matrix Structure

Consider the matrix O ∈ Rm×n constructed by stacking
all the vectorized images, denoted by vec(Ik), as

O = [vec(I1) | · · · | vec(In)] , (3)

where vec(Ij) = [Ij(1), . . . , Ij(m)]T for j = 1, . . . , n. It
follows from Eq. (2) that O can be factorized as follows:

O = NL, (4)

where N .= [ρ1n1 | · · · | ρmnm]T ∈ Rm×3, and L
.= [ l1 |

· · · | ln ] ∈ R3×n. Suppose that the number of images
n ≥ 3. Clearly, irrespective of the number of pixels m
and the number of images n, the rank of the matrix O
is at most 3.

2.3 Modeling Corruptions as Sparse Errors

The low-rank structure of the observation matrix O
described above is seldom observed with real images.
This is due to the presence of shadows and specularities
in real images.
• Shadows arise in real images in two possible ways.

Some pixels are not visible in the image because
they face away from the light source. Such dark
pixels are referred to as attached shadows [19]. In
deriving Eq. (4) from Eq. (2), we have implicitly
assumed that all pixels of the object are illuminated
by the light source in each image. However, if
the pixel faces away from the light source, then
the relation no longer holds. Mathematically, this
implies that Eq. (2) must be rewritten as follows:

Ij(k) = max {ρk nk · lj , 0} . (5)

Shadows can also occur in images when the shape of
the object’s surface is not convex: parts of the surface
can be occluded from the light source by other parts.
Even though the normal vectors at such occluded
pixels may form a sharp angle with the lighting
direction, these pixels appear entirely dark. We refer
to such dark pixels as cast shadows. Irrespective of
the type, all shadows occur in images as dark pixels
with very small, if not zero, intensity values.

• Specularities. Specular reflection arises when the
object of interest is not perfectly diffusive, i.e.,
when the surface luminance is not purely isotropic.
Thus, the intensity of reflected light depends on the
viewing angle, and light is reflected in a mirror-
like fashion accompanied by a specular lobe when
viewed from certain angles. This gives rise to some
bright spots or shiny patches on the surface of the
object that significantly deviate from the Lambertian
assumption.
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Fig. 1. Illustration of our approach. All vectorized
images are stacked into matrix with higher rank as ob-
servation. The problem is to find a sparse matrix E such
that matrix F has the lowest possible rank.

Suppose that we represent all these deviations from
the ideal low-rank diffusive model Eq. (4) by an error
matrix E ∈ Rm×n. Thus, instead of Eq. (4), the image
measurements should be modeled as

O = NL+ E, (6)

where the matrix E accounts for corruption by shadows
or specularities. Now suppose that only a small frac-
tion of the pixels in each image exhibit strong specular
reflectance and that a large majority of the pixels are
illuminated by the light source. Then, most pixels in the
input images obey the low-rank diffusive model given
by Eq. (4), and hence, most entries in the error matrix E
will be zero, i.e., E is a sparse matrix. If the matrix L of
lighting directions is known, then we can compute the
surface normals, provided that we can decompose O as
the sum of a low-rank matrix and a sparse error matrix,
as illustrates in Fig. 1. Thus, the problem can be stated
more formally as follows:

Let I1, . . . , In be n images of an object under differ-
ent illumination conditions. If O ∈ Rm×n is defined
as given in Eq. (3), then find a sparse matrix E such
that the matrix F

.= O − E = NL has the lowest
possible rank.

Using a Lagrangian formulation, we can write the
above problem as the following optimization problem:

min
F,E

rank(F ) + γ ‖E‖0 s.t. O = F + E, (7)

where ‖ · ‖0 denotes the `0-norm (number of non-zero
entries in the matrix), and γ > 0 is a parameter that
trades off the rank of the solution F versus the sparsity
of the error E. Let (F̂ , Ê) be the optimal solution to
Eq. (7).

Now, if the lighting directions L are given,3 we can
easily recover the matrix N of surface normals from F̂
as:

N = F̂L†, (8)

3. If the lighting directions are accurately given, our formulation
reduces to a simpler robust estimation problem: minN ||O − NL||1.
However, the low-rank minimization formulation applies to cases
when the directions are unknown or not accurate.
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where L† denotes the Moore-Penrose pseudo-inverse of
L. The surface normals n1, . . . ,nm can be estimated by
normalizing each row of N to have unit norm.

While Eq. (7) follows from our formulation, it is not
tractable since both rank and `0-norm are non-convex
and discontinuous functions. Solving this optimization
problem efficiently will be the topic of discussion in the
next section.

3 EFFICIENT SOLUTION VIA CONVEX PRO-
GRAMMING

As discussed above, the optimization problem given in
Eq. (7) is extremely difficult (NP-hard in general) to
solve. In this section, we propose to solve it efficiently
based on recent advances in algorithms for matrix rank
minimization [16], [17], [20].

3.1 Convex relaxation and modification
Recently, Candès et al. [16] and Chandrasekaran et al. [17]
have proposed that the problem in Eq. (7) can be solved
efficiently by replacing the cost function with its convex
surrogate, provided that the rank of the matrix F is
not too high and the number of non-zero entries in the
matrix E is not too large. This convex relaxation, dubbed
Principal Component Pursuit (PCP) in [16], replaces rank(·)
with the nuclear norm (sum of the singular values of the
matrix) and the `0-norm with the matrix `1-norm (sum
of the absolute values of all entries of the matrix). Under
quite general conditions, it has been proved in [16], [17]
that the following optimization problem can recover the
low-rank matrix F from corrupted observations O:

min
F,E
‖F‖∗ + λ ‖E‖1 s.t. O = F + E, (9)

where ‖ ·‖∗ and ‖ ·‖1 represent the nuclear norm and `1-
norm, respectively, and λ > 0 is a weighting parameter.
Theoretical considerations in [20], [16] suggest that λ
must be of the form C/

√
max{m,n}, where C is a

constant, typically set to unity. It is interesting to note
that the equivalence between Eq. (7) and Eq. (9) is not
affected by the magnitude of the singular values of the
solution F or by the magnitude of the non-zero entries
of the error matrix E.

In the framework of PCP, the locations of the non-
zero entries of the sparse matrix E are assumed to be
unknown. But if the locations of some of the corrupted
entries are known, then we can incorporate that informa-
tion into the recovery procedure and make the problem
somewhat easier to solve. This is similar in spirit to
the matrix completion problem [21], [22], [23]. Notice
that although both shadows and specularities corrupt
the low-rank matrix, they have different characteristics.
While the locations of the specular pixels are hard to
detect, especially that of pixels in specular lobes, it is
relatively easy to detect the location of shadows in an
image (e.g., by a simple thresholding of the pixel values).
Thus, we have more information about the shadows

than specularities, and such information can greatly
help finding the correct solution. So mathematically, we
have a problem of recovering a low-rank matrix with
both missing entries (shadows) and unknown corrupted
entries (specularities).

We denote by Ω the locations of missing entries in the
observed matrix O, defined in Eq. (3), that correspond
to shadows in the input images. By a slight abuse of
notation, we also denote by Ω the linear subspace of
m × n matrices with support in Ω. Let πΩ represent
the orthogonal projection operator corresponding to the
subspace Ω. Thus, we modify the PCP problem in Eq. (9)
to the following one which does both matrix completion
and error correction:

min
F,E
‖F‖∗ + λ ‖E‖1 s.t. πΩc(O) = πΩc(F + E), (10)

where Ωc denotes the linear subspace orthogonal to Ω,
and πΩc is the associated projection operator. The above
problem is almost identical to the PCP problem (Eq. (9)),
except that the linear equality constraint is now applied
only on the set Ωc of pixels that are not affected by the
detected shadows. It is not difficult to show that the
above problem is equivalent to

min
F,E
‖F‖∗ + λ ‖E‖1 s.t. πΩc(O) = πΩc(F ) + E. (11)

This is because if there exists an optimal solution Ê
that has a non-zero component in Ω, we could set it
to zero and achieve a reduction in the cost function.
The feasibility constraint is not affected by this operation
since it does not alter any entry in Ωc.

3.2 Fast Algorithm using Augmented Lagrangian
Methods

The optimization problem in Eq. (11) can be recast as
a semidefinite program and solved using interior-point
methods. Although interior-point methods have excel-
lent convergence properties, they are not very scalable
for large problems. Fortunately, there has been a flurry
of work recently on developing scalable algorithms for
high-dimensional nuclear-norm minimization [24], [25],
[26]. In this section, we show how one such algorithm,
the Augmented Lagrange Multiplier (ALM) method [24],
[27], can be adapted to efficiently solve Eq. (11).

The basic idea of the ALM method is to minimize
an augmented Lagrangian function instead of directly
solving the original constrained optimization problem.
For our problem Eq. (11), the augmented Lagrangian is
given by

L(F,E, Y, µ) = ‖F‖∗ + λ‖E‖1 + 〈Y, πΩc(O − F )− E〉
+
µ

2
‖πΩc(O − F )− E‖2F , (12)

where Y ∈ Rm×n is a Lagrange multiplier matrix, µ > 0,
〈·, ·〉 denotes the matrix inner product,4 and ‖·‖F denotes
the matrix Frobenius norm. With an appropriate choice

4. 〈X,Y 〉 .= trace(XTY ).
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Algorithm 1 (Matrix Completion and Recovery via ALM).
INPUT: O ∈ Rm×n, Ω ⊂ {1, . . . ,m} × {1, . . . , n}, λ > 0, ρ > 1
Initialize F1 ← 0, E1 ← 0, Y1 ← 0.
while not converged (k = 1, 2, . . .) do
Fk,1 ← Fk, Ek,1 ← Ek
while not converged (j = 1, 2, . . .) do
Ek,j+1 = shrink

(
πΩc(O − Fk,j) + 1

µk
Yk,

λ
µk

)
t1 ← 1, Z1 ← Fk,j , Fk,j,1 ← Fk,j
while not converged (i = 1, 2, . . .) do

(Ui,Σi, Vi)← svd
(

1
µk
Yk + πΩc(O)− Ek,j+1 + πΩ(Zi)

)
Fk,j,i+1 ← Ui shrink

(
Σi, 1

µk

)
V Ti

ti+1 ← 0.5
(

1 +
√

1 + 4t2i
)

Zi+1 ← Fk,j,i+1 + ti−1
ti+1

(Fk,j,i+1 − Fk,j,i)
Fk,j+1 ← Fk,j,i+1

end while
Fk+1 ← Fk,j+1, Ek+1 ← Ek,j+1

end while
Yk+1 ← Yk + µk (πΩc(O − Fk+1)− Ek+1)
µk+1 ← ρ · µk

end while
OUTPUT: (F̂ , Ê) = (Fk, Ek).

of the Lagrange multiplier matrix Y and sufficiently
large µ, it can be shown that the augmented Lagrangian
function has the same minimizer as the original con-
strained optimization problem in Eq. (11) [27]. The ALM
algorithm iteratively estimates both the Lagrange multi-
plier and the optimal solution.

The basic ALM iteration is given by
(Fk+1, Ek+1) = argminF,E L(F,E, Yk, µk)

Yk+1 = Yk + µk πΩc(O − Fk+1)− Ek+1

µk+1 = ρ · µk.
(13)

where {µk} is a monotonically increasing positive se-
quence (ρ > 1).

We now focus our attention on solving the non-trivial
first step of the above iteration. Since it is difficult to
minimize L(·) with respect to both F and E simultane-
ously, we adopt an alternating minimization strategy as
follows:

Ej+1 = argminE λ‖E‖1 − 〈Yk, E〉
+µk

2 ‖πΩc(O − Fj)− E‖2F
Fj+1 = argminF ‖F‖∗ − 〈Yk, πΩc(F )〉

+µk

2 ‖πΩc(O − F )− Ej+1‖2F .

(14)

The above minimization problems in Eq. (14) can be
solved as described below.

We first define the shrinkage (or soft-thresholding)
operator for scalars as follows:

shrink(x, α) = sign(x) ·max{|x| − α, 0}, (15)

where α ≥ 0. When applied to vectors or matrices, the
shrinkage operator acts element-wise. Then, the first step

in Eq. (14) has a closed-form solution given by

Ej+1 = shrink
(
πΩc(O − Fj) +

1
µk
Yk,

λ

µk

)
. (16)

Since it is not possible to express the solution to the
second step in Eq. (14) in closed-form, we adopt an
iterative strategy based on the Accelerated Proximal
Gradient (APG) algorithm [28], [26], [25] to solve it. The
iterative procedure is given as:

(Ui,Σi, Vi) = svd
(

1
µk
Yk + πΩc(O)− Ej+1 + πΩ(Zi)

)
Fi+1 = Ui shrink

(
Σi, 1

µk

)
V Ti

Zi+1 = Fi+1 + ti−1
ti+1

(Fi+1 − Fi).
(17)

where svd(·) denotes the Singular Value Decomposition
operator, and {ti} is a positive sequence satisfying t1 = 1
and ti+1 = 0.5

(
1 +

√
1 + 4t2i

)
. The entire algorithm to

solve Eq. (11) has been summarized as Algorithm 1.
In our experience, it is not necessary to solve the in-

nermost loop of Algorithm 1 exactly, but an approximate
solution is sufficient. More specifically, we found that
restricting the innermost loop to just one iteration does
not significantly affect the convergence of the algorithm.
Although the convergence of the ALM method in Al-
gorithm 1 has been well established in the optimiza-
tion literature, we currently know of no proof that its
approximation described here converges too. The main
difficulty comes from the fact that we have a πΩc opera-
tor in each iteration of the alternating minimization. The
projection operator can be equivalently replaced with
a separate variable term in the equality constraint. The
case without any projection operator between two terms
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has been studied extensively as the alternating direction
method of multipliers in the optimization literature and
its convergence has been well established for various
cases [29], [30], [31]. In particular, the convergence for
the Principal Component Pursuit problem, given in (9),
has been established in [24]. Recently, [32] obtained a
convergence result for a certain three-term alternation
scheme applied to the noisy Principal Component Pur-
suit problem (see also [33]). However, [32] reflects a very
similar theory-practice gap – the three-term alternation
for which convergence has been established is slower in
practice than an alternation used in this paper, for which
a rigorous proof of convergence remains elusive.

4 PHOTOMETRIC FACTOR CLASSIFICATION

In this section, we show that our robust photometric
stereo approach can be applied to the problem of clas-
sifying photometric factors, such as diffuse reflection,
specular reflection, and shadows. The classification of
photometric factors is important for various vision tasks
including image segmentation [34], shape recovery from
shadows [35], and shape from specularity [36]. Further-
more, the classification of photometric factors can help
in object recognition by enabling the removal of non-
diffuse components of the image, as well as provide a
more compact representation of objects in an image [37],
[38], [39], [40].

In the context of photometric stereo, specularities and
shadows are common factors that make accurate esti-
mation of surface normals a difficult problem. There
have been various techniques to identify and remove
these photometric factors. Wolff and Boult [41] presented
a polarization reflectance model to segment material
surfaces according to varying levels of relative elec-
trical conductivity. Ikeuchi and Sato [42] proposed a
method for determining reflectance properties based on
the depth and brightness observations. Lin et al. [34] pro-
posed a method for diffuse-specular separation based on
color analysis and multi-baseline stereo. Chandraker et
al. [43] proposed an algorithm for Lambertian photomet-
ric stereo in the presence of shadows by graph cuts.
Mukaigawa et al. [15] proposed a method to classify
photometric factors based on photometric linearization.
Their method used a RANSAC approach to linearize
input images and classified pixels into diffuse, specular,
and shadowed pixels with high accuracy.

Using a classification criteria similar to the one sug-
gested in Mukaigawa et al. [15], we show that our
rank minimization approach can be used for classifying
photometric factors with much less computational cost
than using a RANSAC based approach. Each iteration of
Algorithm 1 requires a SVD computation that has a com-
plexity of O(mn2). However, to speed up the algorithm,
we compute only partial SVDs in each iteration since
we expect the optimal solution to have rank at most 3.
Thus, the complexity of each iteration reduces to O(lmn),
where l is the number of singular vectors computed in

each iteration. Typically, we set l to be much smaller than
m and n. Although there is no good theoretical bound
on the number of iterations of the ALM method used in
Algorithm 1, in practice, the algorithm converges after
a few hundred iterations. The RANSAC-based method
has a complexity of O(kmn), where k is the number
of iterations. Although the RANSAC-based approach
has a complexity similar to our method, in reality, the
number of iterations k is typically quite large. Moreover,
the RANSAC criterion is implemented twice in the al-
gorithm proposed in [15], for the base images and for
the calculation of coefficients, which further increases
the computation time. On the other hand, our method
computes the linearized images in a holistic fashion and
comes with theoretical guarantees for recovery.

Unlike Mukaigawa’s method, which linearizes images
by random sampling, our method works in a global
manner. Our method recovers a rank-3 matrix F from
the observed image matrix O and corrects errors caused
by corruptions (specularities, cast shadow and attached
shadow) via an efficient convex program. Therefore, the
ideal diffuse images, i.e., linearized images in [15], can
be naturally obtained.

Borrowing some notation from [15], we define five
different classes of photometric factors - cast shadow
(C), attached shadow (A), diffuse reflection (D), specular
reflection (S), and undefined regions (U). Our goal is to
classify the pixels in each image, or equivalently each
entry of O, into one of these five classes.

Suppose that we apply our algorithm described in the
previous section to the observation matrix O, and let F
be the recovered matrix of rank 3. Let us order the entries
of O and F with a single index k, and let the kth entry of
O and F be denoted by Ok and Fk, respectively. We now
use the Lambertian image formation model described in
Section 2.1 to define a simple procedure to classify the
image pixels.

We have seen that if a point in the scene is illuminated
by the light source, then the angle between the surface
normal n at the point and lighting direction l is acute,
i.e., Fi = n · l > 0. If this point is not corrupted
by shadows and specularities, we have Oi = Fi. On
the other hand, this point could be corrupted by cast
shadows or specularities. In the case of cast shadow, we
would have Oi = 0, whereas in the case of a specularity,
we would typically have Oi > Fi. The other possibility is
that the point does not receive any light from the source.
In this case, we have Fi = n · l ≤ 0. Equivalently, this
point is part of an attached shadow, and we have Oi = 0.
Thus, each case can be distinguished by studying the
corresponding Oi and Fi values.

Mathematically , there could be cases when the values
of Oi and Fi do not satisfy any of the above criteria,
although such cases may not be possible physically.
We label such pixels as undefined. Furthermore, in
practice, shadowed regions seldom have perfectly zero
pixel values due to inter-reflections and imaging noise
in the sensor. In addition, due to observation noise and
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numerical errors, there may not be a case where Fi = Oi
holds exactly. Thus, we relax the equalities in the criteria
described above with thresholds T1, T2 ∈ [0, 1] that are
chosen empirically. We summarize below the revised
classification criteria:


C = {i |Fi > 0, Oi ≤ T1}
A = {i |Fi ≤ 0, Oi ≤ T1}
D = {i | |Fi −Oi| < T2 ·Oi, Oi > T1}
S = {i |Oi − Fi > T2 ·Oi, Oi > T1}

(18)

5 EXPERIMENTS

In this section, we verify the efficacy of the proposed
method using both synthetic and real-world images. We
first compare our results with a simple Least Squares
(LS) approach [1], which assumes the ideal diffusive
model given by Eq. (4). However, we do not use those
pixels that were classified as shadows (the set Ω). In
practice, we set the threshold for determining shadowed
pixels. Thus, the LS method can be summarized by the
following optimization problem:

min
N
‖πΩc(O −N L)‖F . (19)

We also compare our method with a RANSAC-based
method proposed in [15]. We also demonstrate the effi-
cacy of our method in photometric factors classification
through extensive experimental results.

We first test our algorithm using synthetic images
whose ground-truth normal maps are known [44]. In
these experiments, we quantitatively verify the correct-
ness of our algorithm by computing the angular errors
between the estimated normal map and the ground-
truth. We then test our algorithm on more challenging
real images. Throughout this section, we denote by m
the number of pixels in the region of interest in each
image, and by n the number of input images (typically,
m� n).

5.1 Quantitative evaluation with synthetic images
In this section, we use synthetic images of three different
objects (see Fig. 2(a)-(c)) under different scenarios to
evaluate the performance of our algorithm. Since these
images are noise-free, we use a pixel threshold value of
zero to detect shadows in the images. Unless otherwise
stated, we set λ = 1/

√
m in Eq. (11).

a. Specular scene. In this experiment, we generate im-
ages of an object under 40 different lighting conditions,
where the lighting directions are chosen at random from
a hemisphere with the object placed at the center. The im-
ages are generated with some specular reflection. For all
our experiments, we use the Cook-Torrance reflectance
model [45] to generate images with specularities. Thus,
there are two sources of corruption in the images –
attached shadows and specularities.

A quantitative evaluation of our method and the Least
Squares approach is presented in Table 1. The estimated

(a)  Sphere         (b) Caesar             (c) Elephant          (d) Caesar
(With texture)

Fig. 2. Synthetic images used for experiments.

TABLE 1
Specular scene.

Object Sphere Caesar Elephant
Mean error
(in degrees)

LS 0.99 0.96 0.96
Our method 0.0051 0.0014 0.0087

Max error
(in degrees)

LS 8.1 8.0 8.0
Our Method 0.20 0.22 0.29

Avg. %
of corruption

Shadow 18.4 20.7 18.1
Specularity 16.1 13.6 16.5

Statistics of angle error in the normals for different objects. In each
case, 40 images were used. In the bottom row, we indicate the
average percentage of pixels corrupted by attached shadows and
specularities in each image.

normal maps are shown in Fig. 3(b),(c). We use the
RGB channel to encode the three spatial components
(XYZ) of the normal map for display purposes. The
error is measured in terms of the angular difference
between the ground truth normal and the estimated
normal at each pixel location. The pixel-wise error maps
are shown in Fig. 3(d), (e). From the mean and the
maximum angular error (in degrees) in Table 1, we see
that our method is much more accurate than the LS
approach. This is because specularities introduce large
magnitude errors to a small fraction of pixels in each
image whose locations are unknown. The LS algorithm
is not robust to such corruptions while our method can
correct these errors and recover the underlying rank-3
structure of the matrix. The row on the extreme bottom
of Table 1 indicates the average percentage of pixels
in each image (averaged over all images) that were
corrupted by shadows and specularities, respectively. We
note that even when more than 30% of the pixels are
corrupted by shadows and specularities, our method can
efficiently retrieve the surface normals.

b. Textured scene. We also test our method using a
textured scene. Like the traditional photometric stereo
approach, our method does not have a dependency on
the albedo distribution and works well on such scenes.

We use 40 images of Caesar for this experiment
with each image generated under a different lighting
condition (see Fig. 2(d) for example input image). The
estimated normal maps as well as the pixel-wise error
maps are shown in Fig. 4. We provide a quantitative
comparison in Table 2 with respect to the ground-truth
normal map. From the mean and maximum angular
errors, it is evident that our method performs much
better than the LS approach in this scenario.
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Fig. 3. Specular scene. 40 different images of Caesar were generated using the Cook-Torrance model for specularities.
(a) Ground truth normal map with reference sphere. (b) and (c) show the surface normals recovered by our method
and LS, respectively. (d) and (e) show the pixel-wise angular error w.r.t. the ground truth.
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Fig. 4. Textured scene with specularity. 40 different images of Caesar were generated with texture, using the Cook-
Torrance model for specularities. (a) Ground truth normal map with reference sphere. (b) and (c) show the surface
normals recovered by our method and LS, respectively. (d) and (e) show the pixel-wise angular error w.r.t. the ground
truth.

TABLE 2
Textured scene with specularity.

Object
Mean error
(in degrees)

Max error
(in degrees)

LS Our method LS Our method
Caesar 2.2 0.014 36.5 0.19

Statistics of angle errors. We use 40 images under different illumi-
nations.

c. Effect of the number of input images. In the above
experiments, we have used images of the object under 40
different illuminations. In this experiment, we study the
effect of the number of illuminations used. In particular,
we would like to find out empirically the minimum
number of images required for our method to be effec-
tive. For this experiment, we generate images of Caesar
using the Cook-Torrance reflectance model, where the
lighting directions are generated at random. The mean
percentage of specular pixels in the input images is
maintained approximately constant at 10%. The angular

TABLE 3
Effect of number of input images.

No. of images
Mean error
(in degrees)

Max error
(in degrees)

LS Our method LS Our method
5 4.5 15.1 88.2 127.9
10 0.52 0.23 34.5 56.6
15 0.51 0.036 13.7 25.6
20 0.53 0.026 9.0 5.8
25 0.62 0.015 8.4 0.42
30 0.59 0.019 7.6 0.48
35 0.59 0.017 7.6 0.37
40 0.57 0.013 7.0 0.37

We use synthetic images of Caesar under different lighting con-
ditions. The number of illuminations is varied from 5 to 40. The
angle error is measured with respect to the ground truth normal
map. The illuminations are chosen at random, and the error has
been averaged over 20 different sets of illumination.

difference between the estimated normal map and the
ground truth is used as a measure of accuracy of the
estimate.
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Fig. 5. Effect of increasing size of specular lobes.
We use synthetic images of Caesar under 40 randomly
chosen lighting conditions. (a) Mean angular error, (b)
Maximum angular error w.r.t. the ground truth. The illu-
minations are chosen at random, and the error has been
averaged over 10 different sets of illumination. (a) contains
illustrations of increasing size of specular lobe.

We present the experimental results in Table 3. We
observe that with five input illuminations, our method is
worse than LS, although, in this scenario, the estimates of
both algorithms are very inaccurate. When the number
of illuminations is larger than ten, we observe that the
mean error in the LS estimate is higher than that of our
method. Upon increasing the number of images further,
the proposed method consistently outperforms the LS
approach. If the number of input images is less than 20,
then the maximum error in the LS estimate is smaller
than that of our method. However, our method performs
much better when at least 25 different illuminations are
available. Thus, the proposed technique performs signif-
icantly better as the number of input images increases.

d. Varying amount of specularity. From the above
experiments, it is clear that the proposed technique is
quite robust to specularities in the input images when
compared to the LS method. In this experiment, we em-
pirically determine the maximum amount of specularity
that can be handled by our method. We use the Caesar
scene under 40 randomly chosen illumination conditions
for this experiment. On an average, about 20% of the
pixels in each image are corrupted by attached shadows.
We vary the size of the specular lobe in the input images
(as illustrated in Fig. 5(a)), thereby varying the number
of corrupted pixels. We compare the accuracy of our
method against the LS technique using the angular error
of the estimates with respect to the ground-truth.

The experimental results are illustrated in Fig. 5. We
observe that our method is very robust when up to 16%
of all pixels in the input images are corrupted by specu-
larities. The LS method, on the other hand, is extremely
sensitive to even small amounts of specularities in the
input images. The angular error in the estimates of both
methods rises as the size of the specular lobe increases.

e. Enhancing performance by better choice of λ. We
recall that λ is a weighting parameter in our formulation
given by Eq. (11). In all the above experiments, we have
fixed the value of the parameter λ = 1/

√
m, as suggested

TABLE 4
Handling more specularities by appropriately choosing λ.

C 1.0 0.8 0.6 0.4
Mean error (in degrees) 1.42 0.78 0.19 0.029
Max error (in degrees) 8.78 8.15 1.86 0.91

We use 40 images of Caesar under different lighting conditions
specularities and shadows, and set λ = C/

√
m.

in [16]. While this choice promises a certain degree of
error correction, it may be possible to correct larger
amounts of corruption by choosing λ appropriately, as
demonstrated in [46] for instance. Unfortunately, the best
choice of λ depends on the input images, and cannot be
determined analytically.

We demonstrate the effect of the weighting parameter
λ on a set of 40 images of Caesar used in the previous
experiments. In this set of images, approximately 20% of
the pixels are corrupted by attached shadows and about
28% by specularities. We choose λ = C/

√
m, and vary

the value of C. We evaluate the results using angular
error with respect to the ground-truth normal map.
We observe from Table 4 that the choice of C greatly
influences the accuracy of the estimated normal map.
For real-world applications, where the data is typically
noisy, the choice of λ could play an important role in the
efficacy of our method.

f. Computation. The core computation of our method is
solving a convex program of Eq. (11). For the specular
Caesar data (Fig. 2(b)) with 40 images of 288 × 213 res-
olution, and with single-core MATLAB implementation
of our method takes about 68 seconds on a PC with a 3.0
GHz Core4 i7 processor and 16 GB memory, as against
12 seconds taken by the LS approach. While our method
is slower than the LS approach, it is much more accurate
in a wide variety of scenarios and is more efficient than
other existing methods (e.g., [14]).

g. Comparison with RANSAC-based method. We also
compare with the RANSAC-based method proposed
in [15], where the assumption is that an image under any
lighting direction can be expressed by a linear combina-
tion of three basis images. The photometric linearization
is then regarded as a problem of finding deviations from
this linear combination. Mukaigawa et al.’s method used
RANSAC for calculating coefficients and identifying the
basis images. In our approach, instead of using sampled
observations, we use all the observations for achieving
robust estimation without increasing the computational
cost. Despite this, our method runs much faster than the
RANSAC-based approach as demonstrated below.

In this experiment, 40 images with specularities were
taken from varying lighting conditions. The first three
images are selected as bases for the RANSAC-based
method, in which average 39% of the pixels are cor-
rupted. The number of samples is determined by the
fraction of outliers in the data and their distribution
for the RANSAC-based method. Since we have ground
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TABLE 5
Theoretical number of samples of RANSAC-based

method

Process of. Max Min Mean

No. of samples Coefficients
Calculation 11256 732 2256

Base images
Linearization 106 1 14

We use 40 images of Caesar under different lighting conditions
specularities and shadows, specularities and shadows with size of
288 by 213. Here list the maximum, minimum and mean number
of samples for coefficients calculation and base image linearization,
respectively.

TABLE 6
Performance with theoretical number of samples of

RANSAC-based method

Max error
(in degrees.) 0.0376

RANSAC Mean error
(in degrees.) 0.0037

Computation time
(in Sec.) 456

Max error
(in degrees.) 0.0695

Our method Mean error
(in degrees.) 0.005

Computation time
(in Sec.) 82

We use 40 images of Caesar under different lighting conditions
specularities and shadows, specularities and shadows with size of
288 by 213. Both our method and RANSAC-based method achieve
a higher degree of accuracy.

truth, thus, the optimal number of samples for each
image can be easily obtained. In Table 5, we have listed
the theoretical number of samples for coefficients calcu-
lation and base images linearization, respectively. The
number can ensure that the results are correct with a
probability of 99%. The experimental result is presented
in Table 6. We observe both our method and RANSAC-
based method achieve a higher degree of accuracy. While
our method takes just 82 seconds as against 456 seconds
taken by the RANSAC-based approach (All experiments
in this section are running on the same PC described in
f. Computation.).

Unfortunately, for the RANSAC-based method, it is
hard to estimate a proper number of samples due to
fraction of outliers in the data and their distribution are
not known exactly a priori, although in some cases they
can be approximated. In practice, one can limit the num-
ber of iterations, however, this could lead to sub-optimal
solutions, as illustrated in Table 7. In this experiment,
we fixed 110 samples 5 for base images linearization
and test their method by with 800, 1, 200 and 1, 600,
2, 000 samples for coefficients calculation, respectively.
We observe from Table 7 that for the RANSAC-based
method, the angular error is reduced as the number

5. The number can ensure the base images linearization is correct
with high probability.

TABLE 7
Performance with varying number of samples of

RANSAC-based method

No. of samples 800 1200 1600 2000
Max error

(in degrees.) 0.7585 15.3252 0.3368 0.0417

Mean error
(in degrees.) 0.2297 6.1671 0.1145 0.0059

Computation time
(in Sec.) 996 1036 1082 1125

We use 40 images of Caesar under different lighting conditions
specularities and shadows, specularities and shadows with size of
288 by 213. Inaccurate estimation of number of samples lead to
sub-optimal solutions.

of samples increases. However, the results show some
degree of randomness and uncertainty. For instance,
when only 1200 samples are available.

5.2 Qualitative evaluation with real images
We now test our algorithm on real images. We use
a set of 40 images of a toy Doraemon and Two-face
taken under different lighting conditions (see Fig. 6(a),
(d)). A glossy sphere was placed in the scene for light
source calibration when capturing the data. We used
a Canon 5D camera in the RAW image mode without
gamma correction. These images present new challenges
to our algorithm. In addition to shadows and specu-
larities, there is potentially additive noise inherent to
the acquisition process as well as possible deviations
from the idealistic Lambertian model illuminated by
distant lights. In this experiment, we use a threshold
of 0.01 to detect shadows in images.6 We also found
experimentally that setting λ = 0.3/

√
m works well for

these images.
Since the ground truth normal map is not available

for these scenes, we compare our method and the LS ap-
proach by visual inspection of the output normal maps
shown in Fig. 6(b), (c), (e), (f). We observe that the normal
map estimated by our method appears smoother and
hence, more realistic. This can be observed particularly
around the necklace area in Doraemon and nose area
in Two-face (see Fig. 6) where the LS estimate exhibits
some discontinuity in the normal map.

5.3 Photometric Factor Classification
In this section, we show that our method can identify
photometric factors with high accuracy on both synthetic
and real data. We first demonstrate our results on syn-
thetic data. For this experiment, the thresholds T1 and T2,
defined in Eq. (18), are set to 10−7 and 10−3, respectively.
We use a set of 40 synthetic images of Caesar as input
that are corrupted by attached shadows, cast shadows,
and specularities as shown in Fig. 7.

We summarize our classification results in Table 8. As
defined earlier, the labels C, A, D, S and U indicate cast

6. All pixels are normalized to have intensity between 0 and 1.
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(a) Doraemon                 (b) Our method                 (c) Least Squares                                     Close-up view

(d) Two-face                                       (e) Our method                                 (f) Least Squares

Color map

Our method                 Least Squares

Fig. 6. Qualitative comparison on real data. We use images of Doraemon and Two-face taken under 40 different
lighting conditions to qualitatively evaluate the performance of our algorithm against the LS approach. (a), (d) Sample
input images. (b), (e) Normal map estimated by our method. (c), (f) Normal map estimated by Least Squares. Close-up
views of the dotted rectangular areas (top-right) where the normal map estimate of our method is much more smoother
and realistic than that of Least Squares.

shadow, attached shadow, diffuse reflections, specular
reflection and undefined region, respectively. Table 8
summarizes the results of this experiment. For any two
labels X and Y , the entry in Table 8 corresponding
to row X and column Y denotes the proportion of
pixels of type X classified as Y by our scheme. We
observe that cast shadows and attached shadows are
perfectly classified. 99.65% of diffuse component is cor-
rectly classified, while 0.17% of diffuse component is
misclassified as specular component and 0.18% of diffuse
component is misclassified as undefined. On the other
hand, 17.22% of specular component is misclassified as
diffuse component, 82.78% of specular component is
correctly classified. The RANSAC-based approach [15]
can achieve a higher degree of accuracy if sufficient
number of samples are provided. However, our method
is more efficient than RANSAC-based method as shown
in Section 5.1. Besides, our method uses all the obser-
vations simultaneously for achieving robust estimation,
unlike the RANSAC-based scheme that uses a partial
sample of the observations.

In Fig. 8, we show the distribution of the various
components on the object as well as the classification
output at each pixel. We choose the fourth image from
our dataset for this illustration since the various classes
of pixels are clearly visible in it. Photometric factors are
indicated with different intensities, as shown in Fig. 8(b),
(c). We observe that the output of our algorithm is very
close to the ground truth. From Table 8, we notice that all
the misclassified pixels come from diffuse and specular
components. This is because specular pixels often occur
as specular lobes and the pixels around the boundaries
of these lobes appear very close to diffuse pixels. We see
from Fig. 8(d)-(g), (h)-(k), that most of the misclassified
pixels are either located at the edge of the specular lobes
that have very small intensity values. For better clarity of
illustration, all intensities are normalized to lie between
0 and 1.

We now test our algorithm on real images. We use
two real-world datasets, named Two-face and Cup, with
each of them containing 40 images taken under different
lighting conditions (see Fig. 9(a) and Fig. 11(a)). The
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Specularity

Diffusive

Cast shadow

Attached
shadow

Fig. 7. Input images (4 out of 40). With all kinds of
corruptions: Specularity, cast shadow, attached shadow.

TABLE 8
Accuracy of the classification(%)

C A D S U
C 100 0 0 0 0
A 0 100 0 0 0
D 0 0 99.65 0.17 0.18
S 0 0 17.22 82.78 0

Where C, A, D, S, U indicate cast shadow, attached shadow, diffuse
reflections,specular reflection, undefined, respectively. Each row
shows the percentage that how many pixels are classified into the
corresponding items in column.

thresholds (T1, T2) are set to (0.1, 0.15) for the Two-
face data, and (0.12, 0.3) for the Cup data, respectively.
Fig. 9(b)-(d), and Fig. 11(b)-(d) show the results of recov-
ered diffuse component, non-diffuse component by our
method, and the photometric factor classification results
(indicated with different intensities). Although we do not
have the ground truth of photometric factors for this
data, we can still observe that the photometric factors
are classified quite accurately.

We also test our algorithm on some face images from
the Extended Yale B database [47]. For this experiment,
the thresholds T1 and T2 are set to 0.15 and 0.1, re-
spectively. We select 31 images of a subject taken under
different lighting conditions. Some sample images from
this dataset is illustrated in Fig. 10. We observe that
our algorithm successfully removes the specularities and
shadows from the face images.

6 DISCUSSION AND FUTURE WORK

In this paper, we have presented a new computational
framework for robust photometric stereo. We have for-
mulated the basic photometric stereo problem as a rank
minimization problem that can be solved efficiently
by convex optimization. The efficacy of our method
is demonstrated using synthetic and real images. The
biggest advantage of the proposed technique is its ability
to handle shadows, specularities, and other kinds of
large-magnitude, non-Gaussian errors in a holistic fash-
ion. We have also shown that a simple extension of this
method can be applied to classify photometric factors
very effectively.

The new framework also opens up several avenues
for future research. In this work, we have assumed
that all the input images are noise-free and perfectly

(a) Input          (b) Ground Truth         (c) Our result

as specular
(d) Diffuse reflections    (e) Total error     (f) Misclassified         (g) Undefined

(h) Specular             (i) Total error        (j) Misclassified           (k) Undefined
as diffusereflections

Specular
reflections
Diffuse
reflections

Cast shadow

Attached
shadow

Undefined

S
D
A
C
U

Fig. 8. Classification results. All photometric factors
are indicated with different intensities: (a) Input synthetic
images, (b) Ground truth, (c) Our result,(d) Distribution
of diffuse component, (e) Total misclassified distribution
for diffuse component, (f) Distribution of pixels which are
misclassified as specular, (g) Distribution of pixels which
are misclassified as undefined for diffuse component, (h)
Distribution of specular component, (i) Total misclassified
distribution for specular component, (j) Distribution of
pixels which are misclassified as diffuse for specular com-
ponent, (k) Distribution of pixels which are misclassified
as undefined for specular component.

aligned with each other at the pixel level. However,
in real world scenarios, small noise and misalignment
are commonplace in any data acquisition process. It has
already been shown in [48] that the low-rank matrix
recovery framework used in this paper is stable to addi-
tive Gaussian noise. By exploring the low-rank structure
described in this work, we believe that the proposed
technique can be extended to simultaneously handle
small noise and misalignment in the input images.
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