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Abstract—In this paper, we study the problem of recovering
a low-rank matrix (the principal components) from a high-
dimensional data matrix despite both small entry-wise noise
and gross sparse errors. Recently, it has been shown that a
convex program, named Principal Component Pursuit (PCP), can
recover the low-rank matrix when the data matrix is corrupted
by gross sparse errors. We further prove that the solution to
a related convex program (a relaxed PCP) gives an estimate of
the low-rank matrix that is simultaneously stable to small entry-
wise noise and robust to gross sparse errors. More precisely,
our result shows that the proposed convex program recovers the
low-rank matrix even though a positive fraction of its entries
are arbitrarily corrupted, with an error bound proportional to
the noise level. We present simulation results to support our
result and demonstrate that the new convex program accurately
recovers the principal components (the low-rank matrix) under
quite broad conditions. To our knowledge, this is the first result
that shows the classical Principal Component Analysis (PCA),
optimal for small i.i.d. noise, can be made robust to gross sparse
errors; or the first that shows the newly proposed PCP can be
made stable to small entry-wise perturbations.

I. INTRODUCTION

The advance of modern information technologies has pro-
duced tremendous amount of high-dimensional data in sci-
ence, engineering, and society, such as images, videos, web
documents, and bioinformatics data. It has become a pressing
challenge to develop efficient and effective tools to pro-
cess, analyze, and extract useful information from such high-
dimensional data. One of the fundamental problems here is
how to extract the intrinsic low-dimensional structure of such
high-dimensional data.

a) Classical Principal Component Analysis: Arguably,
the classical Principal Component Analysis (PCA) [1], [2]
is the most widely used statistical tool for high-dimensional
data analysis and dimensionality reduction today. It basically
assumes that the data approximately lie on a low-dimensional
linear subspace. Mathematically, if we stack all the data points
as column vectors of a matrix M , then the matrix should be
approximately low-rank and can be written as M = L0 +Z0,
where L0 is a low-rank matrix (representing the subspace) and
Z0 models a small noisy perturbation of each entry of L0.
Then, PCA simply seeks the best rank-k estimate of L0 in the
`2 sense, which can be solved efficiently via singular value
decomposition (SVD) and thresholding. It can be shown that
if the perturbation is i.i.d. Gaussian, this gives a statistically
optimal estimate of the subspace. Such an estimate is naturally
stable in the sense that the error is bounded to be proportional

to the magnitude of the perturbation.
b) Robust PCA via Principal Component Pursuit: How-

ever, it is well known that the classical PCA breaks down even
with a single grossly corrupted entry in the data matrix M , i.e.,
it is not robust to gross errors or outliers. Many methods have
been proposed to alleviate this problem, however, none of them
yield a polynomial-time algorithm with strong performance
guarantees (see [3] for a detailed discussion).

The recently proposed Principal Component Pursuit (PCP)
method utilizes a convex program that guarantees to recover a
low-rank matrix despite gross sparse errors under rather broad
conditions. Mathematically, it considers the matrix M of the
form M = L0 + S0, where L0 is low-rank and S0 is a sparse
matrix with most of its entries being zero. Unlike the model for
PCA, here both components can be of arbitrary magnitude and
no other information about the rank of L0 and/or the support
or signs of S0 is given. To recover L0 and S0, PCP solves the
following convex optimization problem1

min
L,S
‖L‖∗ + λ‖S‖1 subject to M = L+ S. (1)

It has been shown in [3], under surprisingly broad conditions,
the above convex program exactly recovers L0 and S0. Readers
are also referred to [4] which proposed to solve the same
problem but with different exact recovery conditions.

c) Main Assumptions: Since our analysis and result will
be largely based on the same conditions of PCP, for complete-
ness, we summarize the precise conditions and result of PCP
here. Let L0 = UΣV ∗ =

∑r
i=1 σiuiv

∗
i denote the singular

value decomposition of L0 ∈ Rn1×n2 , where r is the rank,
σ1, . . . , σr are the singular values, and U = [u1, . . . , ur], V =
[v1, . . . , vr] are the matrices of left- and right-singular vectors,
respectively. The incoherence conditions on U and V with
parameter µ are as follows:

max
i
‖U∗ei‖2 ≤

µr

n1
, max

i
‖V ∗ei‖2 ≤

µr

n2
, ‖UV ∗‖∞ ≤

√
µr

n1n2
,

(2)
where ei’s are the canonical basis vectors. Now let ‖S0‖0 =
m be the number of nonzero entries in S0. The conditions
on S0 concern the identifiability issue arises when S0 is also
low-rank. To avoid such pathological cases, [3] assumes that
the support of sparse component S0 is selected uniformly at
random among all subsets of size m. Under these conditions,
the main result of [3] states:

1In this paper, we use five norms of a matrix A. ‖A‖∗ denotes its nuclear
norm – sum of its singular values, ‖A‖F denotes its Frobenius norm and
‖A‖ denotes its 2-norm. Moreover, ‖A‖1 and ‖A‖∞ are the `1 and `∞
norms of A viewed as a vector, respectively.



Theorem 1 ([3]). Suppose L0 ∈ Rn×n obeys (2) and that
the support set of S0 is uniformly distributed. Then there is
a numerical constant c such that with probability at least
1 − cn−10 (over the choice of support of S0), Principal
Component Pursuit (1) with λ = 1/

√
n recovers L0 and S0

exactly, provided that
rank(L0) ≤ ρrnµ−1(log n)−2 and m ≤ ρsn2, (3)

where ρr and ρs are some positive constants.

The analysis and result of PCP apply to any rectangular
(n1 × n2) matrix, so will be the result of this paper. But to
simplify presentation, we have assumed that the matrices are
all square and write n = n1 = n2. The modification needed
for general rectangular matrices is straightforward and will be
briefly discussed in the end of the paper.

A. Main Result of This Paper

The PCP result [3] is limited to the low-rank component be-
ing exactly low-rank and the sparse component being exactly
sparse. However, in real world applications the observations
are often corrupted by noise, which may be stochastic or deter-
ministic, affecting every entry of the data matrix. For example,
in face recognition, the human face is not a strictly convex
and Lambertian surface hence small perturbation accounting
for the fact that the low-rank component is only approximately
low-rank needs to be considered. In ranking and collaborative
filtering, user’s ratings could be noisy because of the lack
of control in the data collection process. Therefore, for the
techniques developed in [3] to be widely applicable, results
that guarantee stable and accurate recovery in the presence of
entry-wise noise must be established.

The new measurement model that we consider in this paper
assumes that we observe

M = L0 + S0 + Z0, (4)
where Z0 is a noise term – say i.i.d. noise on each entry of the
matrix. However, all we assume about Z0 in this paper is that
‖Z0‖F ≤ δ for some δ > 0. To recover the unknown matrices
L0 and S0, we propose solving the following optimization
problem, as a relaxed version to PCP (1):

min
L,S
‖L‖∗ + λ‖S‖1 subject to ‖M − L− S‖F ≤ δ. (5)

where we choose λ = 1/
√
n. Our main result is that under

the same conditions as PCP, the above convex program gives
a stable estimate of L0 and S0:

Theorem 2. Suppose again that L0 obeys (2) and the support
of S0 is uniformly distributed. Then if L0 and S0 satisfy (3)
with ρr, ρs > 0 being sufficiently small numerical constants,
with high probability in the support of S0, for any Z0 with
‖Z0‖F ≤ δ, the solution (L̂, Ŝ) to the convex program (5)
satisfies

‖L̂− L0‖2F + ‖Ŝ − S0‖2F ≤ Cn2δ2, (6)
where C is a numerical constant.

The precise form of the constant C will be given in
Proposition 4. Here, we would like to point out two ways
to view the significance of this result. To some extent, our
model unifies the classical PCA and the robust PCA by

considering both gross sparse errors and small entry-wise noise
in the measurements. So on one hand, our result says that the
low-rank and sparse decomposition via PCP is stable in the
presence of small entry-wise noise, hence making PCP more
widely applicable to practical problems where the low-rank
structure is not exact. On the other hand, together with the
result of PCP [3], our new result convincingly justifies that
the classical PCA can now be made robust to sparse gross
corruptions via certain convex programs. Since this convex
program can be solved very efficiently [5], at a cost not so
much higher than the classical PCA, our result is expected to
have significant impact on many practical problems.

B. Relations to Existing Work

Aside from its close relations to the classical PCA and
the newly proposed robust PCA work mentioned above, our
analysis and result are closely related to two lines of develop-
ment, regarding stable recovery of sparse signals and low-rank
matrices, respectively.

Conceptually, our work is very similar to the development
of results for the “imperfect” scenarios in compressive sensing
where the measurements are noisy and the signal is not exact
sparse. More precisely, `1-norm minimization techniques are
adapted to recover a vector x0 ∈ Rm from incomplete and
contaminated observations y = Ax0 + z where A is a n×m
matrix with n� m and z is the noise term. After the landmark
work of [6] which established that for the noise free case, the
minimal `1-norm solution exactly recovers the sparse signal
under fairly broad conditions, later works have demonstrated
that stable recovery occurs for most measurement ensembles
[7], or particularly, when the measurement ensembles satisfy
some simple incoherence conditions [8] or restricted isometry
property (RIP) [9].

Recently, there has been an explosion of literature regarding
the power of nuclear-norm minimization in recovering low-
rank matrices from under-sampled measurements. A matrix
RIP is first proposed by [10] to connect compressive sensing
with low-rank matrix recovery. For measurement ensembles
obeying the RIP, tight bounds of the recovery error from noisy
data have been developed in [11] which is within a constant
of the minimax risk and an oracle error. Also see [12] for
similar results. Technically, our work is more closely related
to the recent work [13] which developed the first stability result
for the matrix completion problem under small perturbations.
Naturally, in establishing the stability result for robust PCA,
we borrow heavily from the techniques used in [13] and [3].

II. NOTATION AND OUTLINE OF ANALYSIS

Our goal is to show that in cases where the noise free
principal component pursuit (1) exactly recovers (L0, S0), the
noise aware version (5) stably estimates (L0, S0). In the noise
free case, exact recovery is guaranteed by the existence of a
“dual certificate” W described in Lemma 3 below. The main
result of [3] is to show that under the stated conditions, with
high probability such a dual certificate exists. Then Proposition



4 below shows that the existence of such a certificate actually
also implies that the recovery via (5) under noise is stable.

Before continuing, we fix some notation. Given a matrix
pair X0 = (L0, S0), let Ω ⊆ [n] × [n] denote the support of
S0, and PΩ denote the projection operator onto the space of
matrices supported on Ω. Let r = rank(L0), and let L0 =
UΣV ∗ denote the compact singular value decomposition of
L0, with U, V ∈ Rn×r and Σ ∈ Rr×r. We will let T denote the
subspace generated by matrices with the same column space
or row space as L0:

T = {UQ∗ +RV ∗ | Q,R ∈ Rn×r} ⊂ Rn×n,
and PT be the projection operator onto this subspace.

For any pair X = (L, S) let ‖X‖F
.= (‖L‖2F + ‖S‖2F )1/2,

and define the projection operator PT × PΩ : (L, S) 7→
(PTL,PΩS). Define the subspaces Γ .= {(Q,Q) | Q ∈
Rn×n} and Γ⊥ .= {(Q,−Q) | Q ∈ Rn×n}, and let PΓ and
PΓ⊥ denote their respective projection operators. Finally, for
any linear operator A : Rn×n → Rn×n, we use ‖A‖ to denote
the operator norm sup‖X‖F =1 ‖AX‖F .

With these notations, the optimality conditions for (1) can
be stated in terms of a dual vector as follows.

Lemma 3 (Lemma 2.5 in [3]). Assume that ‖PΩPT ‖ ≤ 1/2
and λ < 1. Suppose that there exists W such thatW ∈ T⊥, ‖W‖ < 1/2,

‖PΩ(UV ∗ − λsgn(S0) +W )‖F ≤ λ/4,
‖PΩ⊥(UV ∗ +W )‖∞ < λ/2.

(7)

Then the pair (L0, S0) is the unique optimal solution to (1).

From now on, we will write λPΩD = PΩ(UV ∗ −
λsgn(S0) + W ). The following proposition shows that under
the existence of such a dual certificate, (5) will also stably
recover L0 and S0 in the presence of noise.

Proposition 4. Assume ‖PΩPT ‖ ≤ 1/2, λ ≤ 1/2, and that
there exists a dual certificate W satisfying (7). Let X̂ = (L̂, Ŝ)
be the solution to (5) and X0 = (L0, S0), then X̂ satisfies

‖X0 − X̂‖F ≤ (8
√

5n+
√

2)δ. (8)

Proposition 4 implies Theorem 2, since under the conditions
of Theorem 2, Lemma 2.8 and Lemma 2.9 of [3] show that
with high probability, there indeed exists such a dual certificate
W , and Corollary 2.7 of [3] proves ‖PΩPT ‖ ≤ 1/2 as well.

The rest of the paper then sets out to prove Proposition
4 and is organized as follows. In Section III, we prove two
key lemmas on which our main result depends. The proof of
Proposition 4 then follows in Section IV. We further provide
numerical results in Section V to support our analysis and
conclude the paper with additional discussions in Section VI.

III. TWO LEMMAS

In this section, we prove two lemmas which will be useful
in the development of our main result. For any matrix pair
X = (L, S), we define ‖X‖♦ = ‖L‖∗ + λ‖S‖1.

Lemma 5. Assume ‖PΩPT ‖ ≤ 1/2 and λ ≤ 1/2. Suppose
that there exists a dual certificate W satisfying (7) and write
Λ = UV ∗ + W . Then for any perturbation H = (HL, HS)

obeying HL +HS = 0,
‖X0 +H‖♦ ≥ ‖X0‖♦ + (3/4− ‖PT⊥(Λ)‖)‖PT⊥(HL)‖∗

+(3λ/4− ‖PΩ⊥(Λ)‖∞)‖PΩ⊥(HS)‖1.

Proof: For any Z = (ZL, ZS) ∈ ∂‖X0‖♦, we have
‖X0 +H‖♦ ≥ ‖X0‖♦ + 〈ZL, HL〉+ 〈ZS , HS〉.

Now due to the form of the subgradients of the `1 norm and the
nuclear norm,2 we have the identities: ZL = Λ+PT⊥(ZL−Λ)
and ZS = Λ− λPΩD + PΩ⊥(ZS − Λ). Thus we have:

〈ZL, HL〉+ 〈ZS , HS〉
= 〈Λ, HL〉+ 〈PT⊥(ZL − Λ), HL〉

+〈Λ− λPΩD,HS〉+ 〈PΩ⊥(ZS − Λ), HS〉
≥ 〈ZL − Λ,PT⊥(HL)〉

+〈ZS − Λ,PΩ⊥(HS)〉 − λ

4
‖PΩ(HS)‖F

since HL +HS = 0 and ‖PΩD‖F ≤ 1/4.
Moreover, by duality, there exists Z∗L ∈ ∂‖L0‖∗ with

‖Z∗L‖ ≤ 1 such that 〈Z∗L,PT⊥(HL)〉 = ‖PT⊥(HL)‖∗.
Also notice that |〈Λ,PT⊥(HL)〉| = |〈PT⊥(Λ),PT⊥(HL)〉| ≤
‖PT⊥(Λ)‖‖PT⊥(HL)‖∗. Therefore, let ZL = Z∗L, we have:
〈ZL − Λ,PT⊥(HL)〉 ≥ (1− ‖PT⊥(Λ)‖)‖PT⊥(HL)‖∗.

Similarly, by duality, there exists Z∗S ∈ ∂(λ‖S0‖1) with
‖Z∗S‖∞ ≤ λ such that 〈Z∗S ,PΩ⊥(HS)〉 = λ‖PΩ⊥(HS)‖1.
Therefore, choose ZS to be ZS = Z∗S , we have:
〈ZS − Λ,PΩ⊥(HS)〉 ≥ (λ− ‖PΩ⊥(Λ)‖∞)‖PΩ⊥(HS)‖1.

Observe now that
‖PΩ(HS)‖F ≤ ‖PΩPT (HS)‖F + ‖PΩPT⊥(HS)‖F

≤ 1
2
‖HS‖F + ‖PT⊥(HS)‖F

≤ 1
2
‖PΩ(HS)‖F +

1
2
‖PΩ⊥(HS)‖F + ‖PT⊥(HS)‖F ,

therefore,
‖PΩ(HS)‖F ≤ ‖PΩ⊥(HS)‖F + 2‖PT⊥(HS)‖F

≤ ‖PΩ⊥(HS)‖1 + 2‖PT⊥(HL)‖∗.
Combining the inequalities above, we have
‖X0 +H‖♦ ≥ ‖X0‖♦ + (1− λ/2− ‖PT⊥(Λ)‖)‖PT⊥(HL)‖∗

+(λ− λ/4− ‖PΩ⊥(Λ)‖∞)‖PΩ⊥(HS)‖1
≥ ‖X0‖♦ + (3/4− ‖PT⊥(Λ)‖)‖PT⊥(HL)‖∗

+(3λ/4− ‖PΩ⊥(Λ)‖∞)‖PΩ⊥(HS)‖1.

Lemma 6. Suppose that ‖PTPΩ‖ ≤ 1/2. Then for any pair
X = (L, S), ‖PΓ(PT ×PΩ)(X)‖2F ≥ 1

4‖(PT ×PΩ)(X)‖2F .

Proof: For any matrix pair X ′ = (L′, S′), PΓ(X ′) =(
L′+S′

2 , L
′+S′

2

)
and so ‖PΓ(X ′)‖2F = 1

2‖L
′ + S′‖2F . So,

‖PΓ(PT × PΩ)(X)‖2F = 1
2‖PT (L) + PΩ(S)‖2F

=
1
2
(
‖PT (L)‖2F + ‖PΩ(S)‖2F + 2 〈PT (L),PΩ(S)〉

)
.

Now,
〈PT (L),PΩ(S)〉 = 〈PT (L), (PTPΩ)PΩ(S)〉

≥ −‖PTPΩ‖‖PT (L)‖F ‖PΩ(S)‖F .

2That is, ZS = λ(sgn(S0) + F ) with PΩF = 0 and ‖F‖∞ ≤ 1; and
ZL = UV ∗ +W ′ with PTW

′ = 0 and ‖W ′‖ ≤ 1.



Since ‖PTPΩ‖ ≤ 1/2,
‖PΓ(PT × PΩ)(X)‖2F
≥ 1

2

(
‖PT (L)‖2F + ‖PΩ(S)‖2F − ‖PT (L)‖F ‖PΩ(S)‖F

)
≥ 1

4

(
‖PT (L)‖2F + ‖PΩ(S)‖2F

)
= 1

4‖(PT × PΩ)(X)‖2F ,
where we have used that for any a, b, a2 + b2 − ab ≥ (a2 +
b2)/2.

IV. PROOF OF PROPOSITION 4

Our proof uses two crucial properties of X̂ . First, since X0

is also a feasible solution to (5), we have ‖X̂‖♦ ≤ ‖X0‖♦.
Second, we use triangle inequality to get

‖L̂+ Ŝ − L0 − S0‖F
≤ ‖L̂+ Ŝ −M‖F + ‖L0 + S0 −M‖F ≤ 2δ. (9)

Furthermore, set X̂ = X0 + H where H = (HL, HS) and
write HΓ = PΓ(H), HΓ⊥ = PΓ⊥(H) for short. We want to
bound ‖H‖2F , which can be expanded as
‖H‖2F = ‖HΓ‖2F + ‖HΓ⊥‖2F
= ‖HΓ‖2F + ‖(PT × PΩ)(HΓ⊥)‖2F + ‖(PT⊥ × PΩ⊥)(HΓ⊥)‖2F .

(10)
Since (9) gives us ‖HΓ‖F =

(
‖(HL + HS)/2‖2F + ‖(HL +

HS)/2‖2F
)1/2 ≤ √2/2 × 2δ =

√
2δ, it suffices to bound the

second and third terms on the right-hand-side of (10).
a. Bound the third term of (10). Let W be a dual certificate

satisfying (7). Then, Λ = UV ∗ +W obeys ‖PT⊥(Λ)‖ ≤ 1/2
and ‖PΩ⊥(Λ)‖∞ ≤ λ/2. We have

‖X0 +H‖♦ ≥ ‖X0 +HΓ⊥‖♦ − ‖HΓ‖♦ (11)
and

‖X0 +HΓ⊥‖♦
≥ ‖X0‖♦ + (3/4− ‖PT⊥(Λ)‖)‖PT⊥(HΓ⊥

L )‖∗
+
(
3λ/4− ‖PΩ⊥(Λ)‖∞

)
‖PΩ⊥(HΓ⊥

S )‖1

≥ ‖X0‖♦ +
1
4

(
‖PT⊥(HΓ⊥

L )‖∗ + λ‖PΩ⊥(HΓ⊥

S )‖1
)
,

which implies that
‖PT⊥(HΓ⊥

L )‖∗ + λ‖PΩ⊥(HΓ⊥

S )‖1 ≤ 4‖HΓ‖♦. (12)
For any matrix Y ∈ Rn×n, we have the following inequalities:

‖Y ‖F ≤ ‖Y ‖∗ ≤
√
n‖Y ‖F ,

1√
n
‖Y ‖F ≤ λ‖Y ‖1 ≤

√
n‖Y ‖F ,

where we assume λ = 1√
n

. Therefore

‖(PT⊥ × PΩ⊥)(HΓ⊥)‖F
≤ ‖PT⊥(HΓ⊥

L )‖F + ‖PΩ⊥(HΓ⊥

S )‖F
≤ ‖PT⊥(HΓ⊥

L )‖∗ + λ
√
n‖PΩ⊥(HΓ⊥

S )‖1
≤ 4
√
n‖HΓ‖♦ = 4

√
n(‖HΓ

L‖∗ + λ‖HΓ
S‖1)

≤ 4n(‖HΓ
L‖F + ‖HΓ

S‖F ) = 4
√

2n‖HΓ‖F ≤ 8nδ, (13)
where the last equation uses the fact that HΓ

L = HΓ
S .

b. Bound the second term of (10). By Lemma 6,

‖PΓ(PT × PΩ)(HΓ⊥)‖2F ≥
1
4
‖(PT × PΩ)(HΓ⊥)‖2F .

But since PΓ(HΓ⊥) = 0 = PΓ(PT ×PΩ)(HΓ⊥)+PΓ(PT⊥×
PΩ⊥)(HΓ⊥), we have
‖PΓ(PT × PΩ)(HΓ⊥)‖F = ‖PΓ(PT⊥ × PΩ⊥)(HΓ⊥)‖F

≤ ‖(PT⊥ × PΩ⊥)(HΓ⊥)‖F .

Combining the previous two inequalities, we have
‖(PT × PΩ)(HΓ⊥)‖2F ≤ 4‖(PT⊥ × PΩ⊥)(HΓ⊥)‖2F ,

which, together with (13), gives us the desired result,
‖HΓ⊥‖2F ≤ 5‖(PT⊥×PΩ⊥)(HΓ⊥)‖2F ≤ 64×5×n2δ2. (14)

V. SIMULATIONS

In this section, we run a series of numerical experiments
on square matrices with noisy entries. For each setting of
parameters, we report the average errors over 20 trials. Each
entry of the noise term Z0 is i.i.d. N(0, σ2). A rank-r matrix
L0 is generated as L0 = UV ∗ where both U and V are n× r
matrices with i.i.d. N(0, σ2

n) entries, with σ2
n
.= 10 σ√

n
. Here,

the value of σn is rather arbitrary and set such that the singular
values of L0 are much larger than the singular values of Z0.
The entries of S0 are independently distributed, each taking
on value 0 with probability 1− ρs, and uniformly distributed
in [−5, 5] with probability ρs.

In order to stably recover X̂ = (L̂, Ŝ), instead of directly
solving (5), we solve the following dual problem, to which a
fast proximal gradient algorithm proposed in [5], Accelerated
Proximal Gradient (APG), can be applied.

min
L,S
‖L‖∗ + λ‖S‖1 +

1
2µ
‖M − L− S‖2F . (15)

It is well established that (15) is equivalent to (5) for some
value µ(δ). Our choice of µ here follows similar arguments
as in [13]. First, note that if we fix S = 0 in (15), the solution
L̂ of (15) is equal to the singular value thresholding version
of M with threshold µ. Similarly, if we fix L = 0 in (15), the
solution Ŝ is equal to the entry-wise shrinkage version of M
with threshold µλ. Thus, we choose µ to be the smallest value
such that the minimizer of (15) is likely to be L̂ = Ŝ = 0
if we set L0 = S0 = 0 and M = Z0. In this way, µ is
large enough to threshold away the noise, but not too large
to over-shrink the original matrices. Now, it is well known
that for Z0 ∈ Rn×n, n−1/2‖Z0‖ →

√
2σ almost surely as

n → ∞. Thus, we choose µ =
√

2nσ. This also fits the
sparse component well since µλ =

√
2σ. We shall see that

this choice of µ works well in practice.

A. Comparison with An Oracle

To further understand our algorithm, we would like to
compare its performance to the best possible accuracy one
can achieve, for instance, by the minimal mean-square-error
(MMSE) estimator over all low-rank and sparse matrix pairs.
However, because obtaining the MMSE estimation is not
computationally tractable, we instead resort to an oracle which
gives us information about the support Ω of S0 and the row
and column spaces T of L0. Our oracle estimates L and S as
the solution Loracle and Soracle to the following least squares
problem:

min
L,S
‖M − L− S‖F subject to L ∈ T, S ∈ Ω. (16)

Since we know the locations of the corrupted entries, we can
solve for Loracle and Soracle separately. That is, we first find
the matrix in T which best fits the uncorrupted data in a
least squares sense. Under the hypotheses of Theorem 4, the



operator PTPΩ⊥PT is invertible3 when restricted to T and the
least squares solution is given by

Loracle = (PTPΩ⊥PT )−1PTPΩ⊥(M).
and the sparse component is given by

Soracle = PΩ(M − Loracle).

B. Experiment Results and Analysis

We first evaluate the performance of (15) with matrix L0

whose rank r = 10 is fixed. We measure estimation errors
using the root-mean-squared (RMS) error as ‖L̂ − L0‖F /n,
‖Ŝ − S0‖F /n for the low-rank component and the sparse
component, respectively. Fig. 1(a) shows the RMS error with
varying noise level σ. In this experiment, the dimension
n = 200 and the fraction of corrupted entries ρs = 0.2
are fixed. As predicted by our main result, the RMS error
grows approximately linearly with the noise level. Moreover,
the RMS error by solving (5) is just about twice the RMS error
achieved by the oracle introduced in the previous section.

Now we fix σ = 0.1. Fig. 1(b) and Fig. 2(a) show the
results with varying ρs (when n = 200 is fixed) and n (when
ρs=0.2 is fixed). Fig. 1(b) illustrates that one can achieve
higher breakdown point by knowing Ω and T . It is observed in
[3] that when the rank r is fixed or grows sufficiently slowly as
n increases, our method can recover more and more corrupted
entries. Here in Fig. 2(a) we see a similar phenomenon. As
n increases, the RMS error decreases given a fixed fraction
of corrupted entries. That is, our approach can simultaneously
tolerate a large fraction of corrupted entries and a high level
of noise when the dimension n is sufficiently large.

To further test the stability of (15), we examine how the
algorithm performs when the rank of L0 grows in proportion
to n and the fraction of errors in S0 grows in proportion to n2.
More precisely, in Fig. 2(b) we fix σ = 0.1, and plot the RMS
error as a function of n, with rank(L0) = 0.1 × n and ρs =
0.1. The result clearly shows that our approach can recover a
wide range of matrix pairs (L0, S0), in the presence of noise.
Interestingly, these results also suggest that our analysis loses
a factor of n with respect to the optimal bound.

VI. DISCUSSION

In this paper, we only present the result for square matrices
for simplicity. However, the arguments and results can be
easily modified to handle the general case. For instance, when
the matrices are n1 × n2, let n(1) = max(n1, n2) and n(2) =
min(n1, n2). The conclusion of Theorem 1 can be stated as:
PCP with λ = 1/√n(1) succeeds with probability at least
1 − cn−10

(1) , provided that rank(L0) ≤ ρrn(2)µ
−1(log n(1))−2

and m ≤ ρsn1n2. Also, relation (6) in Theorem 2 becomes
‖L̂− L0‖2F + ‖Ŝ − S0‖2F ≤ Cn1n2δ

2.
As suggested by the numerical results, one could hope to

improve the stability result by removing the dependence on
n. In this direction, we would like to point out that most of
our analysis seems to be tight, except (13) where we invoke

3In fact, since ‖PTPΩPT ‖ = ‖PΩPT ‖2 ≤ 1/4, the smallest eigenvalue
of PTPΩ⊥PT is bounded below by 1− 1/4 = 3/4.
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Fig. 1. (a) RMS errors as a function of σ with r = 10, ρs = 0.2, n = 200.
(b) RMS errors as a function of ρs with r = 10, σ = 0.1, n = 200.
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Fig. 2. RMS errors as a function of n with (a) σ = 0.1, ρs = 0.2, r = 10
fixed, (b) σ = 0.1, ρs = 0.1 and r = 0.1× n growing in proportion to n.

the generic relations between the nuclear norm, `1 norm and
the Frobenius norm. Fully examination of this problem may
require additional model assumptions. It is also very likely
that some results in the geometry of Banach spaces, namely
the spherical sections theorem and concentration of measure,
will play a key role in it.
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