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Abstract

Constructing a good graph to represent data structures is
critical for many important machine learning tasks such as
clustering and classification. This paper proposes a novel
non-negative low-rank and sparse (NNLRS) graph for semi-
supervised learning. The weights of edges in the graph are
obtained by seeking a nonnegative low-rank and sparse ma-
trix that represents each data sample as a linear combina-
tion of others. The so-obtained NNLRS-graph can capture
both the global mixture of subspaces structure (by the low
rankness) and the locally linear structure (by the sparse-
ness) of the data, hence is both generative and discrimina-
tive. We demonstrate the effectiveness of NNLRS-graph in
semi-supervised classification and discriminative analysis.
Extensive experiments testify to the significant advantages
of NNLRS-graph over graphs obtained through convention-
al means.

1. Introduction

For many applications of machine learning and computer
vision, such as object recognition, one often lacks of suffi-
ciently labeled training data, which are very costly and la-
borious to obtain. Nevertheless, today a large number of
unlabeled data are widely available over the Internet. Semi-
supervised learning (SSL) can utilize both limited labeled
samples and rich yet unlabeled samples, and has recently
received considerable attention in computer vision and ma-
chine learning communities [22]. Among current methods,
graph based SSL is particularly appealing due to its empiri-
cal success in practice and its computational efficiency.

Graph based SSL relies on using a graph G = (V, E)
to represent data structures, where V' is the set of vertices —
each vertex corresponding to a data sample, and E is the set
of edges associated with a weight matrix W. Label infor-
mation of a subset of the samples can then be efficiently and

effectively propagated to the remaining unlabeled data over
the graph. Most learning methods formalize the propaga-
tion process through a regularized functional on the graph.
Despite many forms used in the literature, the regularizers
mainly try to accommodate the so-called cluster assump-
tion [6, 17], which says that points on the same structure
(such as a cluster, a subspace, or a manifold) are likely to
share the same label. Since one normally does not have
explicit model for the underlying manifolds, most methods
approximate it by the construction of an undirected graph
from observed data points. Therefore, correctly construct-
ing a good graph that can best capture essential data struc-
tures is critical for all graph-based SSL methods [1, 23, 21].
In this paper, our main focus is on how to construct such a
graph based on powerful new tools from high-dimensional
statistics and optimization.

Motivations. Conceptually, a good graph should reveal
the true intrinsic complexity or dimensionality of the data
points (say through local linear relationships), and also cap-
ture certain global structures of the data as a whole (i.e.
multiple clusters, subspaces, or manifolds). Traditional
methods (such as k-nearest neighbors and Locally Linear
Reconstruction [10]) mainly rely on pair-wise Euclidean
distances and construct the graph by a family of overlapped
local patches. The so-obtained graphs only capture local
structures and cannot capture global structures of the whole
data (i.e. the clusters). Moreover, these methods cannot pro-
duce datum-adaptive neighborhoods because of using fixed
global parameters to determinate the graph structure and
their weights. Finally, these methods are very sensitive to
local data noise and errors.

According to Wright et al. [18], an informative graph
should have three characteristics: high discriminating pow-
er, low sparsity, and adaptive neighborhood. Inspired by
this insight, Yan et al. [20, 7] proposed to construct an ¢;-
graph via sparse representation (SR) [19] by solving an ¢;
optimization problem. An /;-graph over a data set is de-
rived by encoding each datum as a sparse representation of



the remaining samples, and automatically selecting the most
informative neighbors for each datum. The neighborhood
relationship and graph weights of an ¢;-graph are simulta-
neously obtained during the ¢; optimization in a parameter-
free way. Different from traditional methods, an ¢;-graph
explores higher order relationships among more data points,
and hence is more powerful and discriminative. Benefitting
from SR, the ¢;-graph is sparse, datum-adaptive and robust
to data noise. Following ¢;-graph, other graphs were also
proposed based on SR in recent years [8, 16]. However,
all these SR based graphs find the sparsest representation of
each sample individually, lacking global constraints on their
solutions. So these methods may be ineffective in capturing
the global structures of data. This drawback can greatly re-
duce the performance when the data is grossly corrupted.
When no extra “clean data” are available, SR based meth-
ods may not be robust to noise and outliers [14].

To capture the global structure of the whole data, Liu et
al. has proposed the low-rank representation (LRR) for the
data and use it to construct the affinities of an undirected
graph (here called LRR-graph) [14]. LRR-graph jointly ob-
tains the representation of all the data under a global low-
rank constraint, and thus is better at capturing the global
data structures (such as multiple clusters and subspaces). It
has been proven that, under mild conditions, LRR can cor-
rectly preserve the membership of the samples that belong
to the same subspace. However, compared to the ¢;-graph,
LRR often results in a dense graph (see Figure 2), which
is undesirable for graph-based SSL [18]. Moreover, as the
coefficients can be negative, LRR allows the data to “can-
cel each other out” by substraction, which lacks physical
interpretation for many visual data. In fact, non-negativity
is more consistent with the biological modeling of visual
data [9, 11], and often lead to better performance for data
representation [11] and graph construction [8].

Contributions. Inspired by above insights, we propose to
harness both sparsity and low rankness of high-dimensional
data to construct an informative graph. In addition, we will
explicitly enforce the representation to be non-negative so
that coefficients of the representation can be directly con-
verted to graph weights. Such a graph is called nonnega-
tive low-rank and sparse graph (NNLRS-graph). Specifi-
cally, given a set of data points, we represent a data point as
a linear combination of the other points, where the coeffi-
cients should be nonnegative and sparse. Nonnegativity en-
sures that every data point is in the convex hull of its neigh-
bors, while sparsity ensures that the involved neighbors are
fewest possible. Moreover, since we require that data vec-
tors on the same subspace can be clustered in the same
cluster, we require that the coefficient vectors of all data
points collectively form a low-rank matrix. The NNLRS
has many conceptual advantages: The sparsity property en-
sures NNLRS-graph to be sparse and capture the local low-

dim linear relationships of the data. By imposing the low-
rankness, the NNLRS-graph can better capture the global
cluster or subspace structures of the data than SR based
graphs [8, 16], and is more robust to noise and outliers.

Computing the NNLRS representation for a large set of
data points is in general an NP-hard problem. Neverthe-
less, recent breakthroughs in high-dimensional optimiza-
tion suggest that such a sparse and low-rank representation
can be very effectively obtained through convex relaxation.
As we will show in this paper, similar to the LRR-graph
and the ¢;-graph, the convex program associated with the
NNLRS model can be solved very efficiently by the alter-
nating direction method (ADM) [12]. To improve its speed
and scalability, we further adopt a novel method called the
linearized ADM with adaptive penalty (LADMAP) [13].
LADMAP uses less auxiliary variables and no matrix inver-
sions, hence converges faster than usual ADM and results
in less computation load.

We have conducted extensive experiments on public
databases for various SSL tasks. In many of these exper-
iments, we see that the NNLRS-graph can significantly im-
prove the performance of semi-supervised learning — often
reducing the error rates by multiple folds! These results
clearly demonstrate that NNLRS-graph is more informative
and discriminative than graphs constructed by conventional
methods.

The remainder of this paper is organized as follows. In
Section 2, we give the details of how to construct a non-
negative low-rank and sparse graph. Our experiments and
analysis are presented in Section 3. Finally, Section 4 con-
cludes our paper.

2. Nonnegative Low-Rank and Sparse Graphs

2.1. Nonnegative Low-Rank and Sparse Represen-
tation

Let X = [z1,20, -+ ,2,] € R?™ be a matrix whose
columns are n data samples drawn from independent sub-
spaces!. Then each column can be represented by a linear

combination of a basis A = [a1,ag, - ,am]:
X =AZ, (1)
where Z = [z1, 22, , 2, is the coefficient matrix with

each z; being the representation of x;. The basis (also called
dictionary) is often overcomplete. Hence there can be in-
finitely many feasible solutions to problem (1). To address
this issue, we impose the most sparsity and lowest rank cri-
teria, as well as a nonnegative constraint. That is, we seek
a representation Z by solving the following optimization
problem

ming rank(Z) + 8| Z]lo, st. X =AZ,Z>0, (2

I'The subspaces are independent iff Zle S = ?:1 Si, where @

is the direct sum.



where 5 > 0 is a parameter to trade off between low rank-
ness and sparsity. As observed in [14], the low rankness
criterion is better at capturing the global structure of data
X, while the sparsity criterion can capture the local struc-
ture of each data vector. The optimal solution Z* is called
the nonnegative “lowest-rank and sparsest” representation
(NNLRSR) of data X with respect to the dictionary A. Each
column z; in Z* reveals the relationship between x; and the
atoms in the basis.

However, solving problem (2) is NP-hard. Fortunate-
ly, as suggested by matrix completion methods [4], we can
solve the following relaxed convex program instead

ming | Z|. + 8| Z|l1, st. X =AZ, Z>0, (3)
where || - ||« is the nuclear norm of a matrix [3], i.e., the sum
of the singular values of the matrix, and || - ||; is the ¢;-norm
of a matrix, i.e., the sum of the absolute value of all entries
in the matrix.

In real applications, the data are often noisy and even
grossly corrupted. So we have to add a noise term E to (1).
If a fraction of the data vectors are grossly corrupted, we
may reformulate problem (3) as

ming g || Z]l« + Bl 2|1 + A E|

st. X=AZ+FE,Z >0,
where HE 2,1 = E;-lzl \/ Z:Zl([E}Z]P is called the 6271-
norm [15], and the parameter A > 0 is used to balance the
effect of noise, which is set empirically. The /5 ;-norm
encourages the columns of E to be zero, which assumes
that the corruptions are “sample-specific”, i.e., some data
vectors are corrupted and the others are clean. For small
Gaussian noise, we can relax the equality constraint in prob-
lem (2) similar to [5]. Namely, the Frobenious norm || E|| ¢
is used instead. In this paper, we focus on the £5 ;-norm.

2.2. LADMAP for Solving NNLRSR

The NNLRSR problem (4) could be solved by the pop-
ular ADM method [14, 12]. However, ADM requires in-
troducing two auxiliary variables when solving (4) and ex-
pensive matrix inversions are required in each iteration.
So we adopt a recently developed method called the lin-
earized alternating direction method with adaptive penalty
(LADMAP) [13] to solve (4).

We first introduce an auxiliary variable W in order to
make the objective function separable:

ming g | Z]« + BIWlly + Al Ell2,1, )
st. X =AZ+E,Z=W,W >0.
The augmented Lagrangian function of problem (5) is
L(Z,W,E,Y1,Ya, j1)
= Z]l + BIW I + A Ello,1+
W, X —-AZ-E)+ (Y2, Z - W)+
L (|1X — AZ — B3 + |12 - W[3)
= 121« + BIW |1 + Al Ell2,.+
(6)

2,1, (4)

Q(Zv W,E, Yla }/2’ ,LL)
= L(IX-AZ-E+Vi/ul}+1Z-W + Yz/u\(l%)
The LADMAP is to update the variables Z, W, and F alter-
nately, by minimizing L with other variables fixed, where
the quadratic term ¢ is replaced by its first order approxi-
mation at the previous iterate and then adding a proximal
term [13]. With some algebra, the updating schemes are as
follows.
Zit1 = argmin 1Z]]«
H(V2q(Zy, Wi, E, Y1 15, Yo o, o), Z — Zy,)
42— 7}
= argmin || Z||. + | Z - Zy

z
+[-AT(X — AZy — By + Y11/ 1)
+(Z, — Wi + Yo i [ pe)]/m || %

= Ouu)-(Zk+[AT(X — AZy — B + Y11/ )

—(Z = Wi + Yo /ur)]/m),
Wipr = argmin B||Wlly + 5| Zrp1 — W+ You/pe %
W>0

maX(SBH;1 (Zk;-i,-l + Y2,k/u/k)a 0)7
Ei1 = argmin \[[El|2,1
E

+EE|X — AZki1 — E+ Y i/ pll%
= QM;(X — AZy1 + Y i/ i),

(®)
where V zq is the partial differential of ¢ with respect to Z,
O, S and () are the singular value thresholding [3], shrink-
age [12] and the [ ; minimization operator [14], respective-
ly, and 11 = ||A||3. The complete algorithm is outlined in
Algorithm 1.

2.3. Nonnegative Low Rank and Sparse Graph Con-
struction

Given a data matrix X, we may use the data themselves
as the dictionary, i.e., A in subsections 2.1 and 2.2 is simply
chosen as X itself. With the optimal coefficient matrix Z*,
we may construct a weighted undirected graph G = (V, E)
associated with a weight matrix W = {w;;}, where V =
{v;}1_; is the vertex set, each node v; corresponding to a
data point z;, and E = {e;;} is the edge set, each edge
e;; associating nodes v; and v; with a weight w;;. As the
vertex set V' is given, the problem of graph construction is
to determine the graph weight matrix W.

Since each data point is represented by the other samples,
a column z; of Z* naturally characterizes how other sam-
ples contribute to the reconstruction of x;. Such informa-
tion is useful for recovering the clustering relation among
samples. The sparse constraint ensures that each sample is
associated with only a few samples, so that the graph de-
rived from Z* is naturally sparse. The low rank constraint
guarantees that the coefficients of samples coming from the
same subspace are highly correlated and fall into the same



Algorithm 1 Efficient LADMAP Algorithm for NNLRSR

Input: data matrix X, parameters 8 > 0, A > 0
Initialize: ZQ = WO = EO = YI,O = ng’() = 0, Ho = 01,
fmax = 1010, pg = 1.1, &y = 1076, g5 = 1072,
m = | Al3 k =0.
1: while ||X — AZk — Ek”F/”X”F > g1 oOr
ok max(y/n1l| Zk — Zk—1|p, Wi — We—1lF, | Ex —
Ei1|r)/[IX]|F > €2 do

2:  Update the variables as (8).
3:  Update Lagrange multipliers as follows:
Yigt1 =Yie+ (X —AZy1 — Eppa).
Yo k1 = Yo, + ik (Zi11 — Wigr).
4:  Update p as follows:

Pke+1 = min(fimax, ppk), Where

po, if px max(y/ml| Zr+1 — Zkl F,

[Wisr — Willr, | Exer — Eillr) /|| X || 7

< g9,

1, otherwise.

5:  Update k: k < k + 1.
6: end while
Output: an optimal solution (Zy, Wy, Ej).

cluster, so that Z* can capture the global structure (i.e. the
clusters) of the whole data. Note here that, since each sam-
ple can be used to represent itself, there always exist fea-
sible solutions even when the data sampling is insufficient,
which is different from SR.

After obtaining Z*, we can derive the graph adjacency
structure and graph weight matrix from it. In practice, due
to data noise the coefficient vector z; of point x; is often
dense with small values. As we are only interested in the
global structure of the data, we can normalize the recon-
struction coefficients of each sample (i.e. z} = z/||2¥]2).
and make those coefficients under a given threshold zeros.
After that, we can obtain a sparse A *, and define the graph
weight matrix W as

W= (Z"+(Z29)7))2. )

The method for constructing an NNLRS-graph is summa-
rized in Algorithm 2.

3. Experiments and Analysis

In this section, we evaluate the performance of NNLRS-
graph on public databases, and compare it with current-
ly popular graphs in the same SSL setting. Two typi-
cal semi-supervised learning tasks are considered, semi-
supervised classification and semi-supervised dimensional-
ity reduction. All algorithms are implemented in Matlab
2010. All experiments are run 50 times (unless otherwise

Algorithm 2 Nonnegative low rank and sparse graph con-
struction

Input: Data matrix X = [x1, 22, ,2,] € R¥*",
regularized parameters $ and A, threshold 6
Steps:
1: Normalize all the samples &; = x;/||x;||2 to obtain
X = {&1, &0, ,2n}.
2: Solve the following problem using Algorithm 1,

ming g [|Z ] + 81211 + | Ell2.
st X=XZ+E,Z>0

and obtain the optimal solution (Z*, E*).
3: Normalize all column vectors of Z* by zf = z/||z¥] 2,
and make small values under given threshold 6 zeros by

N z, izl >0,
0, otherwise,

and obtain a sparse A
4: Construct the graph weight matrix W by

W= (Z2*+(Z9)7))2.

Output: The weight matrix W of NNLRS-graph.

stated) on a Windows 2008 Server, with an Intel Xeon5680
8-Core 3.50GHz processor and 16GB memory.

3.1. Experiment Settings

Databases: We select three public databases? for our ex-
periments: YaleB, PIE, and USPS. YaleB and PIE are face
images and USPS is digit images. We choose them because
NNLRS-graph aims at extracting a linear subspace struc-
ture of data. So we have to select databases that roughly
have linear subspace structures.

e YaleB Database: This face database has 38 individ-
uals, each subject having around 64 near frontal im-
ages under different illuminations. We simply use the
cropped images of first 15 individuals, and resize them
to 32 x 32 pixels.

o PIE Database: This face database contains 41368 im-
ages of 68 subjects with different poses, illumination
and expressions. We select the first 15 subjects and
only use their images in five near frontal poses (CO5,
C07, C09, C27, C29) and under different illuminations
and expressions. Each image is manually cropped and
normalized to a size of 32 x 32 pixels.

e USPS Database: This handwritten digit database con-
tains 9298 16 x 16 handwritten digit images in total.
We only use the images of digits 1, 2, 3 and 4 as four

2 Available at http://www.zjucadcg.cn/dengcai/Data/



(c) USPS Sample Images
Figure 1: Sample images used in our experiments.

classes, each having 1269, 926, 824 and 852 samples,
respectively. So there are 3874 images in total.

Fig. 1 shows the sample images of the three databases. As
suggested by [19], we normalize the samples so that they
have a unit norm.

Compared graphs: The graphs used in our experiments
for comparison include:

e kNN-graph: We adopt Euclidean distance as our sim-
ilarity measure, and use a Gaussian kernel to re-weight
the edges. The Gaussian kernel parameter o is set to 1.
There are two configurations for constructing graphs,
denoted as kNNO and kNN1, where the numbers of
nearest neighbors are set to 5 and 8, respectively.

e LLE-graph [17]: Following the lines of [17], we con-
struct two LLE-graphs, denoted as LLEQ and LLE1,
where the numbers of nearest neighbors are 8 and 10,
respectively. Since the weights W of LLE-graph may
be negative and asymmetric, similar to [7] we sym-
metrize them by W = (|[W| + [WT])/2.

e (;-graph [7]: Following the lines of [7], we construct
the ¢1-graph. Since the graph weights W of ¢ -graph is
asymmetric, we also symmetrize it as suggested in [7].

e SPG [8]: In essence, the SPG problem is a lasso prob-
lem with the nonnegativity constraint, without consid-
ering corruption errors. Here, we use an existing tool-
box> to solve the lasso problem, and construct the SPG
graph following the lines of [8].

e LRR-graph: Following [14], we construct the LLR-
graph, and symmetrize it as ¢1-graph. The parameters
of LRR are the same as those in [14].

e NNLRS-graph: For our NNLRS-graph, the two reg-
ularization parameters are empirically set to 8 = 0.2
and A = 10.

3http://sparselab.stanford.edu/

3.2. Semi-supervised Classification

In this subsection, we carry out the classification experi-
ments on the above databases using the existing graph based
SSL frameworks. We select two popular methods, Gaus-
sian Harmonic Function (GHF) [23] and Local and Global
Consistency (LGC) [21] to compare the effectiveness of
different graphs. Let Y = [V; V,,]7 € RIVIX¢ be a label
matrix, where Y;; = 1 if sample x; is associated with label
jforj e {1,2,--- ¢} and Y;; = 0 otherwise. Both GHF
and LGC realize the label propagation by learning a classi-
fication function F = [F} F,|T € RIVI*¢, They utilize the
graph and the known labels to recover the continuous clas-
sification function by optimizing different predefined ener-
gy functions. GHF combines Gaussian random fields and
harmonic function for optimizing the following cost on a
weighted graph to recover the classification function F":

min tr(F'LwF), st. LwF, =0,F; =Y;, (10)
FeRIVIxe
where Lyy = D — W is the graph Laplacian, in which D is
a diagonal matrix with D;; = > ; Wij. Instead of clamping
the classification function on labeled nodes by setting hard
constraints F; = Y7, LGC introduces an elastic fitness term
as follows:

min tr{FTINJWF—l—M(F—Y)T(F—Y)}, (11)
FGR|V\><C

where 11 € [0 00) balances the tradeoff between the local fit-
ting and the global smoothness of the function F', and Ly is
the normalized graph Laplacian Ly, = D~ Y/2Ly, D~1/2,
In our experiments, we simply fix @ = 0.99.

We combine different graphs with these two SSL frame-
works, and quantitatively evaluate their performance by fol-
lowing the approaches in [20, 7, 18, 8]. For YaleB and PIE
databases, we randomly select 50 images from each sub-
ject as our data sets in each run. Among these 50 images,
images are randomly labeled. For USPS database, we ran-
domly select 200 images for each category, and randomly
label them. Different from [20, 8], the percentage of labeled
samples ranges from 10% to 60%, instead of ranging from
50% to 80%. This is because the goal of SSL is to reduce
the number of labeled images. So we are more interested in
the performance of SSL methods with low labeling percent-
ages. The final results are reported in Table 1 and Table 2,
respectively. From these results, we can observe that:

1) In most cases, NNLRS-graph consistently achieves the
lowest classification error rates compared to the other
graphs, even with low labeling percentages. In many
cases, the improvements are rather significant — cut-
ting the error rates by multiple folds! This suggests
that NNLRS-graph is more informative and thus more
suitable for semi-supervised classification.



(a) LRR-graph Weights

(b) ¢1-graph Weights

Figure 2: Visualization of different graph weights W on
YaleB face database.

2) Though LRR always results in dense graphs, the per-
formance of LRR-graph based SSL methods is not al-
ways inferior to that of ¢;-graph based SSL methos.
On the contrary, LRR-graph performs as well as ¢;-
graph in many cases. As illustrated in Fig. 2, the
weights W of LRR-graph on YaleB data set is denser
than that of /;-graph. However, LRR-graph outper-
forms ¢1-graph in all cases. This proves that the low
rankness property of high-dimensional data is as im-
portant as the sparsity property for graph construction.

3.3. Semi-supervised Discriminant Analysis

To further examine the effectiveness of NNLRS-graph,
we use NNLRS-graph for semi-supervised dimensionality
reduction (SSDR), and take Semi-supervised Discriminant
Analysis (SDA) [2] for instance. We use SDA to do face
recognition on the face databases of YaleB and PIE. SDA
aims to find a projection which respects the discriminant
structure inferred from the labeled data points, as well as the
intrinsic geometrical structure inferred from both labeled
and unlabeled data points. We combine SDA with differ-
ent graphs to learn the subspace, and employ the nearest
neighbor classifier. We run the algorithms multiple times
with randomly selected data sets. In each run, 30 images
from each subject are randomly selected as training images,
while the rest images as test images. Among these 30 train-
ing images, some images are randomly labeled. Note here
that, different from the above transductive classification,
the test set is not available in the subspace learning stage.
Table 3 tabulates the recognition error rates for different
graphs under different labeling percentages. We can see
that NNLRS-graph almost consistently outperforms other
graphs.

3.4. Parameters Sensitivity of NNLRS-graph

Finally, we examine the parameter sensitivity of
NNLRS-graph, which includes two main parameters, /5 and

A. [ is to balance the sparsity and the low-rankness, while
A is to deal with the gross corruption errors in data. Large S
means that, we emphasize the sparsity property more than
the low rankness property. We vary the parameters and eval-
uate the classification performance of NNLRS-graph based
SDA on PIE face database. Since the percentage of gross
corruption errors in data should be fixed, we set A = 10
empirically* and only vary 3. Because here we test many
parametric settings, like above experiments, here we on-
ly average the rates over 5 random trials. The results are
shown in Table 4. From this table, we can see that, the per-
formance of NNLRS-graph based SDA obviously decreases
when 8 > 1. If we ignore the sparsity properties (8 = 0),
the performance also decreases. This means that both spar-
sity property and low rankness property are important for
graph construction. An informative graph should reveal the
global structure of the whole data, and be as sparse as possi-
ble. In all of our experiments above, we always set 3 = 0.2.

4. Conclusion

This paper proposes a novel informative graph, called
the nonnegative low rank and sparse graph (NNLRS-graph),
for graph-based semi-supervised learning. NNLRS-graph
mainly uses two important properties of high-dimensional
data, sparsity and low rankness, both of which capture the
structure of the whole data. It simultaneously derives the
graph structure and the graph weights, by solving a prob-
lem of nonnegative low rank and sparse representation of
the whole data. Extensive experiments on both classifica-
tion and dimensionality reduction show that, NNLRS-graph
is better at capturing the globally linear structure of data,
and thus is more informative and more suitable than other
graphs for graph-based semi-supervised learning.
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Table 1: Classification error rates (%) of various graphs combined with the GHF label propagation method under different
percentages of labeled samples (shown in the parenthesis after the dataset names). The bold numbers are the lowest error
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USPS (40%)  7.87 8.44 1921 2278 34.86 14.22 13.44 7.44
USPS (50%) 17.19 18.44 18.41 1948 29.42 20.38 21.88 11.27
USPS (60%) 11.04 1520 14.80 14.94 23.36 15.89 17.75 6.09

Table 2: Classification error rates (%) of various graphs combined with the LGC label propagation method under different
percentages of labeled samples (shown in the parenthesis after the dataset names). The bold numbers are the lowest error
rates under different sampling percentages.

Dataset KNNO kNNI1 LLEO LLEl #;-graph SPG LRR-graph NNLRS-graph

YaleB (10%) 32.89 36.84 29.00 29.76 46.82 16.37 28.22 5.56
YaleB (20%) 31.09 3559 25.84 26.65 50.53 12.39 24.46 5.31
YaleB (30%) 28.56 33.54 2224 2283 52.33 9.57 22.33 4.29
YaleB (40%) 26.35 3097 19.82 19.90 57.16 7.07 19.42 3.75
YaleB (50%) 24.78 29.73 17.61 17.65 65.79 5.63 18.04 4.00
YaleB (60%) 22.98 28.58 15.75 15.94 77.56 4.42 16.09 3.23

PIE (10%) 3428 36.42 3225 3253 21.71 19.75 31.26 12.22

PIE (20%) 33.06 36.11 3042 30.83 17.18 15.45 29.82 10.63

PIE (30%) 30.11 33,51 26,52 27.01 12.06 10.71 25.61 9.82

PIE (40%) 2846 32,15 23.62 2401 9.01 8.25 23.86 7.08

PIE (50%) 2696 3045 21.65 2222 6.61 6.29 21.24 4.00

PIE (60%) 25.09 29.09 19.56 20.02 5.13 4.95 20.05 5.00
USPS (10%)  3.13 3.21 27.69 35.06 33.52 6.92 3.49 2.80
USPS (20%) 2.22 2.10 2243 28.96 26.42 4.04 1.83 1.62
USPS (30%) 1.55 1.53 19.18 25.30 18.92 2.69 1.22 1.13
USPS (40%) 1.20 1.18 16.62 22.53 16.64 1.88 0.92 0.88
USPS (50%)  0.82 0.86 14.28  20.01 11.67 1.14 0.61 0.59
USPS (60%)  0.65 0.72 12.61 17.69 8.89 0.83 0.49 0.48
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Table 3: Recognition error rates (%) of various graphs for semi-supervised discriminative analysis under different percentages
of labeled samples.

Dataset KNNO kNN1 LLEO LLEl {¢;-graph SPG LRR-graph NNLRS-graph
YaleB (10%) 43.79 48.55 39.06 39.43 37.29  36.88 40.18 34.46
YaleB (20%) 30.31 3437 2530 25.59 23.87  23.56 27.96 2243
YaleB 30%) 20.14 23.16 16.04 16.23 14.69 14.58 18.38 14.09
YaleB (40%) 13.95 16.01 10.57 10.84 9.87 9.68 12.60 9.40
YaleB (50%) 9.89 11.69 7.34 742 6.78 6.78 9.03 6.49
YaleB (60%)  7.56 9.78 5.71 5.79 5.32 5.30 7.09 5.16

PIE (10%)  44.53 48.80 38.79 39.30 35.82  35.02 42.20 34.40
PIE 20%)  29.16 33.60 23.57 24.02 2133 20.84 27.35 20.74
PIE (30%) 1626 19.26 12.58 12.76 11.37 11.13 15.30 11.11
PIE (40%) 10.74 13.05 826 844 7.55 7.42 10.28 7.47
PIE (50%) 7.26 8.55 570 577 5.30 5.23 6.93 5.17
PIE (60%) 5.36 6.23 438 442 4.11 4.08 522 4.08

Table 4: Recognition error rates (%) of NNLRS-graph for semi-supervised discriminative analysis on PIE face database
under different percentages of labeled samples. A is fixed at 10.
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