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Abstract

Compressive sampling (CS) aims at acquiring a signal
at a sampling rate that is significantly below the Nyquist
rate. Its main idea is that a signal can be decoded from
incomplete linear measurements by seeking its sparsity in
some domain. Despite the remarkable progress in the the-
ory of CS, little headway has been made in the compressive
imaging (CI) camera. In this paper, a three-dimensional
compressive sampling (3DCS) approach is proposed to re-
duce the required sampling rate of the CI camera to a prac-
tical level. In 3DCS, a generic three-dimensional sparsity
measure (3DSM) is presented, which decodes a video from
incomplete samples by exploiting its 3D piecewise smooth-
ness and temporal low-rank property. In addition, an effi-
cient decoding algorithm is developed for this 3DSM with
guaranteed convergence. The experimental results show
that our 3DCS requires a much lower sampling rate than
the existing CS methods without compromising recovery ac-
curacy.

1. Introduction

Digital images and videos are being acquired by new
imaging sensors with ever increasing fidelity, resolution and
frame rate. The theoretical foundation is the Nyquist sam-
pling theorem, which states that the signal information is
preserved if the underlying analog signal is uniformly sam-
pled above the Nyquist rate, which is twice its highest ana-
log frequency. Unfortunately, Nyquist sampling has two
major shortcomings. First, acquisition of a high resolution
image necessitates a large-size sensor. This may be infea-
sible or extremely expensive in infrared imaging. Second,
the raw data acquired by Nyquist sampling is too large to
acquire, encode and transmit in short time, especially in the
applications of wireless sensor networks, high speed imag-
ing cameras, magnetic resonance imaging (MRI) and etc.
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Compressive sensing [8, 4] or compressive sampling
(CS), was developed to solve this problem effectively. It
is advantageous over Nyquist sampling, because it can (1)
relax the computational burden during sensing and encod-
ing, and (2) acquire high resolution data using small sen-
sors. Assume a vectorized image or signal x of size L is
sparsely represented as x = Ψz, where z has K non-zero
entries (called K-sparse) and Ψ is the wavelet transform.
CS acquires a small number of incoherent linear projections
b = Φx and decodes the sparse solution z = ΨTx as fol-
lows:

min
z
‖z‖1 s. t. Az , ΦΨz = Φx = b (1)

where Φ is a random sampling (RS) ensemble or a circu-
lant sampling ensemble. According to [5], CS is capable of
recovering K-sparse signal z (with an overwhelming prob-
ability) from b of size M , provided that the number of ran-
dom samples meets M ≥ αK log(L/K). The required
sampling rate (ML ), to incur lossless recovery, is roughly
proportional to K

L . A compressive imaging camera proto-
type using RS is presented in [9]. Recently, circulant sam-
pling (CirS) [25]) was introduced to replace RS with the
advantages of easy hardware implementation, memory ef-
ficiency and fast decoding. It has been shown that CirS is
competitive with RS in terms of recovery accuracy [25].

CS often reduces the required sampling rate by seek-
ing the sparsest representation or by exploring some prior
knowledge of the signal. Image CS (called 2DCS) decodes
each image independently by minimizing both its sparsity
in wavelet domain and total variation (TV2D+2DWT) [15,
16]. However, due to the significant sparsity, the required
sampling rate is still quite high. Video CS (called 3DCS) is
introduced to further reduce the sampling rate by adding the
temporal correlation. Adaptive methods sense a key frame
by Nyquist sampling and then sense consecutive frames
[23] or frame differences [26] by CS; Sequential methods
first decode a key frame and then recover other frames based
on motion estimation [13]. Joint methods recover a video by
seeking its 3D wavelet sparsity (3DWT) [24], or by mini-
mizing the wavelet sparsity of its first frame and subsequent



Figure 1. A compressive imaging (CI) camera using the proposed 3DCS. In this CI camera, a photographic lens (for forming image
sequences, vectorized as It, 1 ≤ t ≤ T ) is followed by video compressive sampling, which consists of optical random convolution (C),
random permutation (P ) and time-varying subsampling (St) on a sensor. From the sampled data sequences Bt = StPCIt, 1 ≤ t ≤ T ,
the image sequences Ît, 1 ≤ t ≤ T is decoded by minimizing the 3DSM.

frame differences (Bk and Ck) [17]. However, none of the
existing methods has exploited the major features of videos,
i.e. 3D piecewise smoothness and temporal low-rank prop-
erty.

In this paper, a new 3DCS approach is proposed to fa-
cilitate a promising CI camera (Figure 1) requiring a very
low sampling rate. Without any computational cost, this
CI camera acquires the compressed data Bt, 1 ≤ t ≤ T ,
from which a video clip is recovered by minimizing a new
3D sparsity measure (3DSM). This 3DSM is motivated by
two characteristics of videos. First, videos are often piece-
wise smooth in 2D image domain and temporal domain.
Second, image sequences in a video are highly correlated
along the temporal axis, which can be modeled as a tem-
poral low-rank matrix [10] with sparse innovations. Thus,
a new 3DSM is constructed by combining 3D total varia-
tion (TV3D) and the low-rank measure in the Ψ-transform
domain (Psi3D). The contributions of this paper are as fol-
lows:

1. A generic 3D sparsity measure (3DSM) is proposed,
which exploits the 3D piecewise smoothness and tem-
poral low-rank property in video CS. Extensive exper-
iments demonstrate (1) the superiority of our 3DSM
over other measures in terms of much higher recovery
accuracy and (2) robustness over small camera motion.

2. An efficient algorithm is developed for the 3DSM with
guaranteed convergence, which enables the recovery
of large-scale videos.

3. circulant sampling (CirS) is extended from 2DCS to
video CirS, by adding time-varying subsampling. The
3DSM and its efficient decoding algorithm, together
with the video CirS, constitute the framework of our
3DCS (Figure 1).

This paper is organized as follows. Section 2 presents
the proposed 3DSM and video CirS. Section 3 develops the
recovery algorithm for the 3DSM. Section 4 describes the
experiments in comparison with existing methods. Section
5 gives the concluding remarks.

2. Proposed Method
2.1. Overview of our 3D sparsity measure (3DSM)

In this section, a 3D sparsity measure (3DSM) is given
for a fixed CI camera and will be extended to a mov-
ing camera later. A video clip is represented as a matrix
I = [I1, ..., It, ..., IT ], where each column It denotes one
frame. For computational convenience, I is often vectorized
as I = [I1; I2; ...; IT ]. A 3D sparsity measure (3DSM) is
built by combining two complementary measures—3D to-
tal variation (TV3D) and 3D Ψ-transform sparsity (Psi3D).
TV3D keeps the piecewise smoothness, while Psi3D retains
the image sharpness and enforces the temporal low-rank
property. As shown in Figure 1, the video I is recovered
from the sampled data B by minimizing 3DSM.

min
I

TV3D(I) + γPsi3D(I) s. t. ΦI = B (2)

where γ is a tuning parameter, Φ = diag(Φ1,Φ2, ...,ΦT )
is the video circulant sampling matrix, and B =
[B1;B2; ...;BT ] is the sampled data.

2.2. 3D Total Variation

In this section, TV3D is presented in detail. In 2DCS,
total variation (TV) is often used to recover an image
from incomplete measurements, by exploiting its piecewise
smoothness in the spatial domain. The widely-used form of
TV is TVL1L2 [15, 21, 16, 12], denoted as TV`1`2(It) =



∑
i

√
(D1It)2

i + (D2It)2
i . In [22], the `1-norm based TV

measure TV`1(It) = ‖D1It‖1 + ‖D2It‖1 is proven to be
better than TV`1`2 in reducing the sampling rate. By ex-
tending TV`1 to the three-dimensional (spatial and tempo-
ral) domain, a new measure TV3D is formulated as:

TV3D(I) = ‖D1I‖1 + ‖D2I‖1 + ρ‖D3I‖1 (3)

where (D1, D2, D3) are finite difference operators in 3D do-
main and ρ is proportional to the temporal correlation.

2.3. 3D Sparsity Measure in Ψ-transform Domain

In a video captured by a fixed camera, most pixels cor-
respond to static scene and almost keep constant value over
time. This video is temporally correlated and sparsely in-
novated (a small number of pixels varies with time), the
same as its Ψ-transform coefficients Z = [Z1, ..., ZT ] =
[ΨT I1, ...,Ψ

T IT ]. Motivated by robust principal compo-
nent analysis (RPCA) [3], Z is modeled as the sum of a low
rank (LR) matrix Z and sparse innovation Ẑ. Thus, Psi3D
is formulated as follows:

Psi3D(I) = min
Z,Ẑ

µRank(Z) + η‖Z‖1 + ‖Ẑ‖1

s.t. Ψ
T
I = Z + Ẑ (4)

where Ψ = diag(Ψ, ...,Ψ), Z = [Z1; ...;ZT ] and Ẑ =

[Ẑ1; ...; ẐT ] are vectorized versions of Z and Ẑ. The weight
coefficient µ tunes the rank of Z and η must be set as η ≤
1; otherwise, the optimal Z is prone to vanish. Different
from the RPCA which seeks Z and Ẑ from complete data
I , our 3DCS needs to recover Z and Ẑ from incomplete
projections B = ΦI . Thus, both the sparsity and rank of
Z are explored to decode I . The proposed Psi3D attempts
to minimize the number of nonzero singular values of Z,
which is NP-hard and no efficient solution is known [7]. In
practice, the widely used alternative [6, 3] is the nuclear
norm ‖Z‖∗ =

∑
k=1 σk(Z), which equals the sum of the

singular values. Thus, the Psi3D is approximated as:

Psi3D1(I) = min
Z,Ẑ

µ‖Z‖∗ + η‖Z‖1 + ‖Ẑ‖1

s.t. Ψ
T
I = Z + Ẑ (5)

By assuming constant background, i.e., Rank(Z) = 1
and Z = [Zc, ..., Zc], the Psi3D is simplified by deleting
the rank term as follows:

Psi3D2(I) = ηT‖Zc‖1 + ‖Ẑ‖1 s.t. ΨT It = Zc + Ẑt,∀t (6)

By setting ηT = 1, the simplified Psi3D2 is similar
to the joint sparsity model of multiple signals [1]. In the
case of constant background, Psi3D2 requires less tuning
parameters and computational cost than Psi3D1. However,
it is expected that Psi3D1 achieves higher recovery accu-
racy than Psi3D2 in the case of time-varying background
(Rank(Z) > 1), e.g., illumination changes.

2.4. Robustness over Camera Motion

In this section, the 3DSM in Eq. (2) will be modified to
be robust to camera motion. The 3DSM proposed in Eq. (2)
explores the piecewise smoothness and the low-rank prop-
erty, which is quite effective in improving the recovery ac-
curacy of 3DCS. However, this model assumes a fixed cam-
era or low-texture background. Even small camera motion
might cause misalignments among real image sequences
I = [I1; ...; IT ] and increase the temporal rank dramati-
cally. these misalignments of I are modeled as a group of
transformations (affine or perspective) Ω = {Ω1, ...,ΩT }
on well-aligned image sequences Ĩ = [Ĩ1; ...; ĨT ] captured
by a fixed camera. Specifically, It = Ĩt ◦ Ωt, 1 ≤ t ≤ T .
By introducing a group of transformations Ω, the 3DSM is
extended to the moving camera as follows:

min
I,Ω

TV3D(Ĩ) + γPsi3D(Ĩ) s. t. ΦI = B, It = Ĩt ◦Ωt (7)

2.5. Video Circulant Sampling

In this section, a video circulant sampling (CirS) is pre-
sented, which, together with a photographic lens, consti-
tutes a compressive imaging camera (Figure 1). It consists
of two steps:

1. Random convolution. Video CirS convolves an image
It by a random kernel H , denoted by CIt, where C
is a circulant matrix with H as its first column. C is
diagonalized as C = F−1diag(Ĥ)F , where Ĥ is the
Fourier transform of H , denoted by Ĥ = FH . It can
be easily implemented using Fourier optics [20].

2. Random subsampling, which consists of random per-
mutation (P ) and time-varying subsampling (St). St
selects a block of M pixels from all N pixels on PCIt
and obtains the data Bt = StPCIt , ΦtIt. Note that
the selected block drifts with time t (Figure 1). To relax
the burden of both sensing and encoding, it is desirable
to implement a physical mapping from a random sub-
set to a 2D array (sensor). Although it is challenging, a
possible solution is to implement random permutation
by a bundle of optical fibers, followed by a moving
small sensor. The easy way—sensing the whole image
CIt by a big sensor and throwing away the unwanted
N − M pixels, does not benefit sensing but yields a
method of computation-free encoding.

3. 3DCS Recovery Algorithms
3.1. 3DCS Recovery using Inexact ALM-ADM

In this section, an efficient algorithm is presented to
solve the 3DSM for a fixed camera. By introducing weight
parameters α1 = α2 = 1, α3 = ρ, and auxiliary parameters



χ , (Gi, Z, Ẑ, R), our 3DCS using Psi3D1 Eq. (2) can be
rewritten as:

min
I,Gi,Z,Ẑ

3∑
i=1

αi‖Gi‖1 + γ(µ‖Z‖∗ + η‖Z‖1 + ‖Ẑ‖1)

s.t. Gi = DiI, Z + Ẑ = Ψ
T
I, Rt = CIt, StPRt = Bt (8)

This linearly constrained problem can be solved by aug-
mented Lagrangian multipliers (ALM) [12]. Given an L1-
norm problem min ‖a‖1 s.t. a = b, its augmented La-
grangian function (ALF) is defined as Lβ(a, b, y) = ‖a‖1−
yβ(a− b) + β

2 ‖a− b‖
2
2. Then, the ALF of Eq. (8) is written

as

L(I,Gi, Z, Ẑ, R, bi, d, g) =

3∑
i=1

αiLβi(Gi, DiI, bi)

+γ(µ‖Z‖∗ + η‖Z‖1 + ‖Ẑ‖1 +
β4

2
‖Z + Ẑ −Ψ

T
I − d‖22)

+
β5

2
‖R− CI − g‖22 s.t. StPRt = Bt, 1 ≤ t ≤ T (9)

where βi, 1 ≤ i ≤ 5 are over-regularization parameters,
λ , (b1, b2, b3, d, g) is Lagrangian multipliers and C =
diag(C, ..., C). ALM solves Eq. (8) by iterating between
the following two steps:

1. Solve (Ik+1, χk+1)← arg minL(I, χ, λk).

2. Update λk+1 with (λk, Ik+1, χk+1).

Each ALM iteration requires an exact minimization of
L(I,Gi, Z, Ẑ, R), which is expensive. Fortunately, at fixed
I and λk, minimization ofL(Gi, Z, Ẑ, R) can be performed
independently. In this case, all the variables can be di-
vided into two groups (I and χ = {Gi, Z, Ẑ, R}), and
L(Ik, χ) can be minimized by applying the alternating di-
rection method (ADM) [12]. Given λk+1 is updated at a
sufficiently slow rate, the exact minimization can be simpli-
fied as only one round of alternating minimization (called
inexact ADM). As shown in Algorithm 1, the inexact ALM-
ADM solves our 3DCS by iterating among three major
steps: (1) separate rectification of χ, (2) joint reconstruc-
tion of I and (3) update of λ.

Given the exact solution to arg minχ L(Ik, χ, λk) is
reached in the first step, the group of components χ is equiv-
alent to a single variable and the inexact ALM-ADM with
respect to two variables {χ, I} is guaranteed with conver-
gence. Motivated by the convergence analysis in [11], the
convergence condition of our recovery algorithm using in-
exact ALM-ADM is given as follows.

Theorem 1 If the over-regularization parameters βi >
0,∀1 ≤ i ≤ 5 and the step length τ ∈ (0, (1 +

√
5)/2),

the video sequence Ik+1 reconstructed by the inexact ALM-
ADM (Algorithm 1) will uniquely converge the solution to
Eq. (8).

Algorithm 1 Solving 3DCS using inexact ALM-ADM

Input: C, Ĥ , P , St and Bt, 1 ≤ t ≤ T
Output: Ik+1

1: I0 ← G0
i ← b0i ← zeros(m,n, T ), 1 ≤ i ≤ 3;

Z
0 ← Ẑ0 ← d0 ← R0 ← g0 ← zeros(m,n, T ).

2: while I not converged do
3: Separate Rectification of: χ = {Gi, Z, Ẑ, R}

χk+1 ← arg minχ L(Ik, χ, λk)
4: Joint Reconstruction:

(Ik+1)← arg minL(I, χk+1, λk)
5: Update λ by “Adding back noise”:

bk+1
i ← bki − τ(Gk+1

i −DiI
k+1)

dk+1 ← dk − τ(Zk+1 −Ψ
T
Ik+1)

gk+1 ← gk − τ(Rk+1 − CIk+1)
6: k ← k + 1
7: end while

3.1.1 Separate Rectification using Soft Shrinkage

The convergence of the inexact ALM-ADM requires an
exact solution to arg minχ L(Ik, χ, λk) at each iteration,
which can be obtained separately with respect to Gi, R
and the pair {Z, Ẑ}. Define a soft shrinkage function as
S(X, 1/β) = max{abs(X) − 1/β, 0} · sgn(X), where “·”
denotes elementwise multiplication, then Gk+1

i , 1 ≤ i ≤ 3
are straightforwardly updated by

Gk+1
i ← S(DiI

k + bki ,
1

βi
) (10)

As for Psi3D1, {Z, Ẑ} are rectified from Ik and dk by
singular value shrinkage (SVS)[2]. To meet the conver-
gence condition in Theorem 1, the pair {Z, Ẑ} need be rec-
tified iteratively until the pair is converged. In practice, the
algorithm can be accelerated by just applying one round of
rectification.

Z
k+1 ← US(Σ, µ/β4)V T (11)

Z
k+1 ← S(Z

k+1
, η/β4) (12)

Ẑk+1 ← S(Ψ
T
Ik + dk − Zk+1

, 1/β4) (13)

where [U,Σ, V ] = svd(Ψ
T
Ik + dk − Ẑk). Similarly, as for

Psi3D2, {Z, Ẑ} can be rectified without SVS operation.
The complete circulent samples R = [R1; ...;RT ] are

rectified by 3D data Ik and partial circulant samples Bt.

Rk+1
t ← CIkt (14)

Rk+1
t (Pickst, :) ← Bt (15)

where Pickst are the indices of rows selected by St.



3.1.2 Efficient Joint Reconstruction using 3D FFT

In this section, an efficient algorithm is presented
to recover Ik+1 jointly from rectified variables
(Gk+1

i , Z
k+1

, Ẑk+1, Rk+1). This algorithm is greatly
accelerated by our 3DSM and video circulant sampling. By
setting the derivative of L with respect to I to be zero, the
optimal condition of I is induced as follows:

3∑
i=1

αiβiD
T
i (Gi −DiI − bi) + γβ4Ψ(Z + Ẑ −Ψ

T
I − d)

+β5C
T

(R− CI − g) = 0 (16)

Eq. (16)is reformulated into the form ΓI = Θ, where
Γ =

∑3
i=1 αiβiD

T
i Di+γβ4 +β5C

T
C. Under the periodic

boundary condition [18] of finite operators Di, 1 ≤ i ≤ 3,
both C

T
C and DT

i Di, 1 ≤ i ≤ 3 are block-circulant ma-
trices. The operation Γ on 3D data I is equivalent to the
sum of separate convolutions with five point spread func-
tions PSFi, 1 ≤ i ≤ 5, which are given as follows:

Horizontal: PSF1 = α1β1[1;−2; 1] (17)
Vertical: PSF2 = α2β2[1,−2, 1] (18)

Temporal: PSF3 = α3β3[1 : −2 : 1] (19)
Dirac delta: PSF4 = α4β4δ(x, y) (20)

2D: PSF5 = β5F−1(Ĥ∗ · Ĥ) (21)

where [A1 : A2 : A3] denotes concatenating A1, A2 and
A3 along the third (temporal) axis and Ĥ∗ is the complex
conjugate of Ĥ . According to the convolution theory, this
optimal condition with respect to I can be solved efficiently
by applying 3D fast Fourier transform.

5∑
i=1

F(PSFi) · Î = F(Θ) (22)

where Î = F(I). By defining the optical transfer func-
tion OTF ,

∑5
i=1 PSFi, given χk+1 and λk, Θk+1 can

be updated as Θk+1 =
∑3
i=1 αiβiD

T
i (Gk+1

i − bki ) +

γβ4Ψ(Z
k+1

+Ẑk+1−dk)+β5C
T

(Rk+1−gk). Then, Ik+1

is recovered by applying inverse FFT the element-wise di-
visor of FΘk+1 by OTF. Our decoding algorithm is ex-
tremely efficient, for its joint reconstruction only requires
two 3D FFT and some simple 1D/2D filtering.

3.2. 3DCS Recovery with Camera Motion

In this section, the inexact ALM-ADM above can be
adapted to solve Eq. (7) for the moving camera. The ob-
jective function can be relaxed as F(I,Ω) as:

F(I,Ω) =

3∑
i=1

αi‖Gi‖1 + γ(µ‖Z‖∗ + η‖Z‖1 + ‖Ẑ‖1)

s.t.Gi = Di(I ◦ Ω−1), Z + Ẑ = Ψ
T

(I ◦ Ω−1), StPCIt = Bt (23)

The main difficulty in solving Eq. (23) is the complicated
dependence of aligned images Ĩt = ItΩt on unknown trans-
formations Ωt, 1 ≤ t ≤ T . It is almost impossible to solve
Ĩt and Ωt simultaneously. The ADM is applied to solve
them by iterating between the following two steps:

1. Given Ωk, solve Ik+1 ← minI F(I,Ωk). This can
be solved by adding forward and backward transfor-
mations in each iteration cycle of inexact ALM-ADM
(Algorithm 1), however, it might be time-consuming.
To accelerate it, the misalignments Ωt are modeled as
translation (∆xt,∆yt). According to Fourier shift the-
orem, F(It) is equal to multiplying F(Ĩt) by a linear
phase P (∆xt,∆yt). it is induced that CIt = F−1(Ĥ ·
F(It)) = F−1(Ĥ · P (∆xt,∆yt) · F(Ĩt)) = C̃tĨt,
where C̃t = F−1(Ĥ · P (∆xt,∆yt)). Thus, I is re-
covered by fast solving Ĩ , followed by circulant shift
(∆xt,∆yt).

min
Ĩ

3∑
i=1

αi‖Gi‖1 + γ(µ‖Z‖∗ + η‖Z‖1 + ‖Ẑ‖1)

s.t. Gi = DiĨ , Z + Ẑ = Ψ
T
Ĩ , StPC̃tĨt = Bt (24)

2. Given Ik+1, solve Ωk+1 ← minΩ F(Ik+1,Ω), with-
out considering the constraint StPCIt = Bt. It is
quite similar to robust image alignment. Readers are
referred to [19] for detailed algorithms.

4. Experimental Results
Although the compressive imaging camera has not been

built, the 3DCS approach can still be evaluated by feed-
ing the intermediate images It, 1 ≤ t ≤ T (Figure 1)
with three surveillance videos from [14], i.e., an airport
video (size: 144× 176 pixels), a brighter lobby video (size:
128×160 pixels) and a darker lobby video (size: 128×160
pixels), as well as a video captured by a handheld cam-
era (building video, size: 480 × 480). Our 3DSM (de-
fault: TV3D+Psi3D1) is compared with existing sparsity
measures, such as TV2D+2DWT, 3DWT, Bk and Ck. Peak
signal-to-noise ratio (PSNR) is used as the measure of re-
covery accuracy.

4.1. Parameter Selection

Assigning appropriate values to weight parameters
γ, ρ, η, µ, τ and βi, 1 ≤ i ≤ 5 seems quite complicated
but it is actually not. Weight parameters γ and ρ are often
set to be greater than 1. η is often set to be 1

T . µ depends on
the rank of the background components in the video. Over-
regularization parameters βi, 1 ≤ i ≤ 5 prefer large val-
ues. To evaluate our 3DSM and its decoding algorithm, The
values of the weight parameters are set empirically through



all experiments, i.e. γ = 4, ρ = 3, η = 1
T , τ = 1.6 and

βi = 100,∀i.

4.2. Evaluation of our 3DSM in video CS

4.2.1 Evaluation of 3DSM using Psi3D2

Figure 2. Recovery accuracy of different sparsity measures on a
32-frame airport video at sampling rate M

L
= 25%.

Figure 3. Averaged recovery accuracy of 10 frames at varying sam-
pling rates in the brighter lobby video.

Fixed Sampling Rate. Our 3DSM is evaluated on the
airport video (32 frames) at the sampling rate 25%, in com-
parison with other sparsity measures and a naive method—
bicubic interpolation after half downsampling. The comput-
ing time is about 123 seconds on a normal computer (Intel
E6320 CPU, 3 GB memory). As shown in Figure 2, our
3DSM achieves a recovery accuracy at least 6 dB higher
than all the other methods at each frame. 2DCS fails to
achieve high recovery accuracy, for the PSNR of its state-
of-art (TV2D+2DWT) is lower than bicubic interpolation,
which suffers from significant blur. As shown in Figure 4,
our 3DSM recovery is much sharper, cleaner and closer to
the original 4th frame. The recovery accuracy of our 3DSM
decreases as the size of moving foreground grows, e.g., the
4th and 17th frames in Figure 4. Our 3DSM is tested on
the brighter and darker lobby videos at the sampling rate of
30%. Figure 5 shows that our 3DSM decodes much bet-
ter images (PSNR: up to 45 dB) than other measures and

the JPEG version of the original image (compression ratio:
30%). Our 3DSM achieves better recovery in the brighter
lobby than that in the darker one, due to the significant
photon-counting noise under the darker condition.

Varying Sampling Rate. By varying the sampling rate,
TV3D, Psi3D2 and 3DSM are tested on the brighter lobby
video. As shown in Figure 3, either TV3D or our Psi3D is
better (3 dB higher PSNR) than other measures at any sam-
pling rate (ML ), and their combination (3DSM) is better than
each one alone. The superiority of our 3DSM over other
measures at ML = 25% is up to 7 dB. At ML = 10%, 3DSM
achieves the recovery accuracy (PSNR: 40 dB), which is
conventionally considered to be lossless.

Varying Video Size T . As shown in Figure 1, our 3DCS
divides a video into short clips of T frames and then de-
code each short clip by minimizing our 3DSM. To study the
influence of T on the decoding accuracy, a hybrid video is
built by 16 frames from brighter lobby and 16 frames from
from darker lobby. The average accuracy of all T frames
using our 3DSM increases quickly with T in the beginning
and reaches a stable value when T ≥ 10. When the lighting
changes at the 17th frame, both the accuracy of Psi3D1 and
that of Psi3D2 decrease to some extent (Figure 6).

Psi3D1 and Psi3D2. As shown in Figure 6, under con-
stant lighting (T ≤ 16), our 3DSM using Psi3D2 is better
than using Psi3D1 at any tuning parameter µ. However, un-
der varying lighting conditions (T > 16), the decoding ac-
curacy of Psi3D1 at µ = 100 remains almost invariant (46
dB ≤ PSNR ≤ 47 dB) as T increases, and is much higher
than that of Psi3D2. This can be explained by the back-
ground models of Psi3D1 and Psi3D2. Psi3D1 uses a low-
rank background model and can recover rank-2 background
images (top row in Figure 7). Thus, the innovation images
of Psi3D1 will be sparser than that of Psi3D2, which rigidly
assumes rank-1 background. Since the complete data I is
unknown, the low-rank images recovered by Psi3D1 are dif-
ferent from the real background (Figure 7).

Robustness over Motion. the robustness of our 3DSM
over motion is evaluated by applying it to a video acquired
by a moving (up and down) camera. As shown in Figure 8,
without image alignment, our 3DSM can still recover the
image sequences at M/L = 30% with acceptable accuracy
(top row: PSNR > 31 dB). From this initial recovery, the
transformations Ωt, 1 ≤ t ≤ 12 are estimated, of which the
dominant components are translations (∆xt,∆yt). Given
the translation knowledge, our 3DSM improves upon the
initial recovery by 2.6 dB in terms of PSNR, less noise (e.g.,
bricks) and more detailed information (e.g., parking sign),
as shown in Figure 8 (mid row). For computational effi-
ciency, the translations are rounded to integer pixels. It is
expected that our 3DSM recovery can be further improved
by using perspective transformations.



(a) (b) (c) (d) (e) (f)
Figure 4. Reconstructed images (top)of 4th frame and error maps at sampling rate M

L
= 25% using (a) bicubic (PSNR: 24.42 dB), (b)

TV2D+2DWT (PSNR: 23.84 dB), (c) Ck (PSNR: 28.84 dB), (d) Bk (PSNR: 29.13 dB), and (e) our 3DSM (PSNR: 37.10 dB). (f) original
4th (top) and 17th (bottom) frames in airport video.

(a) (b) (c) (d) (e) (f)
Figure 5. Reconstructed images (top) at M

L
= 30% and error maps (bottom) from the bright video clip (10 frames) using (a) Ck (PSNR:

40.62 dB), (b) Bk (PSNR: 39.75 dB) and (c) our 3DSM (PSNR: 46.09 dB), with (d) their original image (top) and error map of its JPEG
version (bottom), compression ratio: 30%, PSNR: 40.59 dB). (d) Our 3DSM recovery (top, PSNR: 44.66 dB) and error map (bottom)
from 30% circulant samples of the darker clip (10 frames), with (f) its original image (top) and error map of its JPEG version (bottom,
compression ratio: 30%, PSNR: 42.53 dB).

Figure 6. Comparison of Psi3D1 and Psi3D2 by varying T . This
hybrid lobby video consists of 16 frames from brighter lobby and
16 from the darker one.

5. Conclusion
In this paper, a 3D compressive sampling (3DCS) ap-

proach has been proposed to facilitate a promising compres-
sive imaging camera, which consists of video circulant sam-
pling, 3D sparsity measure (3DSM) and an efficient decod-
ing algorithm with convergence guarantee. By exploiting
the 3D piecewise smoothness and temporal low rank prop-
erty of videos, our 3DSM reduces the required sampling

(a) (b) (c) (d)
Figure 7. Low rank recovery using our 3DSM (Psi3D1, µ = 100)
from the hybrid lobby video (brighter: 16 frames and darker: 16
frames) at M

L
= 30%. Reconstructed 4 frames (bottom) with low

rank components (top): (a) (PSNR: 45.98 dB), (b) (PSNR: 46.36
dB), (c) (PSNR: 45.31 dB) and (d) (PSNR: 46.28 dB).

rate to a practical level (e.g. 10% in Figure 3). Extensive
experiments have been conducted to show (1) the superior-
ity of our 3DSM over existing sparsity measures in terms of
recovery accuracy with respect to the sampling rate, and (2)
robustness over small camera motion. Motivated by these
exciting results, a real compressive imaging camera will be
built, which is very promising for applications such as wire-
less camera network, infrared imaging, remote sensing and
etc.



(a) (b) (c)
Figure 8. Recovery of the 12-frame building video acquired by a
handheld camera using our 3DSM at M/L = 30%. Top: ini-
tial results without image alignment (a) (PSNR: 31.50 dB), (b)
(PSNR: 31.71 dB) and (c) (PSNR: 32.63 dB). From initial results,
the estimated translations (∆x,∆y) are listed as (a)(2.35, 3.11),
(b) (0.62, -1.77), (c)(-0.31, 2.36). Middle: final results with esti-
mated (∆x,∆y) (a) (PSNR: 33.85 dB), (b) (PSNR: 34.10 dB) and
(c) (PSNR: 35.18 dB). Bottom: three original frames.
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