
Unsupervised Segmentation of Natural Images via
Lossy Data Compression

Allen Y. Yang

333 Cory Hall, UC Berkeley, Berkeley, CA 94720

John Wright

146 Coordinated Science Laboratory, 1308 W. Main St, Urbana, IL 61801

Shankar Sastry

514 Cory Hall, UC Berkeley, Berkeley, CA 94720

Yi Ma

145 Coordinated Science Laboratory, 1308 W. Main St., Urbana, IL 6180

Abstract

In this paper, we cast natural-image segmentation as a problem of clustering texture features
as multivariate mixed data. We model the distribution of the texture features using a mix-
ture of Gaussian distributions. Unlike most existing clustering methods, we allow the mix-
ture components to be degenerate or nearly-degenerate. We contend that this assumption
is particularly important for mid-level image segmentation, where degeneracy is typically
introduced by using a common feature representation for different textures in an image. We
show that such a mixture distribution can be effectively segmented by a simple agglomera-
tive clustering algorithm derived from a lossy data compression approach. Using either 2D
texture filter banks or simple fixed-size windows to obtain texture features, the algorithm
effectively segments an image by minimizing the overall coding length of the feature vec-
tors. We conduct comprehensive experiments to measure the performance of the algorithm
in terms of visual evaluation and a variety of quantitative indices for image segmentation.
The algorithm compares favorably against other well-known image-segmentation methods
on the Berkeley image database.
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1 Introduction

Natural-image segmentation is one of the classical problems in computer vision. It is widely accepted
that a good segmentation should group image pixels into regions whose statistical characteristics (of
the color or texture) are homogeneous or stationary, and whose boundaries are “simple” and “spatially
accurate” [11]. Nevertheless, from a statistical viewpoint, natural-image segmentation is aninherently
ambiguousproblem for at least the following two technical reasons1 :

(1) The statistical characteristics of local features (e.g., color, texture, edge, and contour) of natural
images usually do not show the same level of homogeneity or saliency at the same spatial or quan-
tization scale. This is not only the case for different natural images, but also often the case for
different regions within the same image. Thus, one should not expect the segmentation result to be
unique [34], and instead should prefer a hierarchy of segmentations at multiple scales.

(2) Even after accounting for variations due to the scale, different regions or textures may still have
different intrinsic complexities, making it a difficult statistical problem to determine the correct
number of segments and their model dimensions. For instance, if we use Gaussian distributions to
model the features of different textures, the Gaussian for a simple texture obviously has a higher
degree of degeneracy (or a lower dimension) than that for a complex texture.

In the literature, many statistical models and methods have been proposed to address some of these
difficulties. In this paper, we are interested inunsupervisedimage segmentation. Popular methods in this
category includefeature-basedMean-Shift [1],graph-basedmethods [31, 6],region-basedsplit-and-
merge techniques [26,38], and global optimization approaches based on either energy functions [40] or
minimum description length(MDL) [13]. Recent developments have mainly focused on the problem of
how to integrate textural information at different scales. For example, one can use more sophisticated
region-growingor split-and-mergetechniques [11, 33, 4, 9] to partition inhomogeneous regions; or one
can useMarkov random fieldsto model textures or other image cues [19, 26, 34]. For a more detailed
survey of these methods, the reader is referred to [41,15,8,27].

1.1 Motivations and Contributions

Although the reported performance of image-segmentation algorithms has improved significantly over
the years, these improvements have come partly at the price of ever more sophisticated feature selection
processes, more complex statistical models, and more costly optimization techniques. In this paper,
however, we aim to show that for texture features as simple as fixed-size cut-off windows (Figure 3), with
the choice of a likely more relevant class of statistical models (Figure 1) and its associated agglomerative
clustering algorithm (Algorithm 1), one can achieve equally good, if not better, segmentation results as
many of the above sophisticated statistical models and optimization methods. Our approach relies on the
following two assumptions about how to segment natural images:

(1) The distribution of texture features in a natural image is (approximately) a mixture of Gaussians that

1 It is arguably true that human perception of an image is itself ambiguous. However, here we are only concerned
with ambiguities in computing image segmentation.
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Fig. 1. Mixture of regular (left) or degenerate (right) Gaussians.

may bedegenerate and of different dimensions(see Figure 1 right), one for each image segment.
(2) At any given quantization scale, theoptimalsegmentation is the one that gives the most compressed

representation of the image features, as measured by the number of binary bits needed to encode
all the features.

It is evident that we have chosen to measure the “goodness” of image segmentation in terms of a
coding-theoretic criterion:minimum coding length. 2 Our earlier work in [16] revealed a strong relation-
ship between lossy data compression and clustering of mixed data. We derived an effective clustering
algorithm for mixtures of degenerate or non-degenerate Gaussian distributions. By minimizing the over-
all coding length of the given mixed data subject to a given distortion, the algorithm automatically
merges the data points into a number of Gaussian-like clusters.

Be aware that, although we have adopted the lossy data compression paradigm for image segmen-
tation, we are not suggesting compressing the imageper se. Instead of pixel values, we compress and
segment texture features extracted from the image. Our method bears resemblance to some global opti-
mization approaches, such as using region-merging techniques to minimize the MDL cost function [13].
However, the new method significantly differs from the existing maximum-likelihood (ML) or MDL-
based image segmentation in two main aspects:

First, we allow the distributions to bedegenerate, and introduce a new clustering algorithm capa-
ble of handling the degeneracy. Extant image-segmentation methods that segment features based on the
cluster centers (e.g., K-Means) or density modes (e.g., Mean-Shift) typically work well for low-level
segmentation using low-dimensional color features with blob-like distributions (Figure 1 left) [31]. But
for mid-level segmentation using texture features extracted at a larger spatial scale, we normally choose
a feature space whose dimension is high enough that the structures of all textures in the image can be
genuinely represented. 3 Such a representation unavoidably has redundancy for individual textures: The
cluster of features associated with one texture typically lies in a low-dimensional submanifold or sub-
space whose dimension reflects the complexity of the texture (Figure 1 right). Properly harnessed, such
low-dimensional structures can be much more informative for distinguishing textures than the means of

2 It is debatable whether this is how humans segment images. Coding length is an objective measure while human
segmentation is highly subjective – much prior knowledge is incorporated in the process. Later we will quanti-
tatively evaluate the extent to which our segmentation results emulate those of humans, in fair comparison with
other unsupervised image-segmentation techniques.
3 Here a genuine representation means that we can recover every texture with sufficient accuracy from the repre-
sentation.
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the clusters. In this paper, we will see that data compression provides a very effective means of extracting
such low-dimensional structures.

Second, we considerlossy codingof the image features, up to an allowable distortion. Varying the dis-
tortion provides a simple but effective means of considering textural information at differentquantization
scales.4 Compressing the image features with different distortions, we naturally obtain a hierarchy of
segmentations: the smaller the distortion, the more refined the segmentation is (see Figure 7). In a way,
the distortion also plays an important role in image segmentation as a measure of thesaliencyof the
segments in an image: First, how small the distortion needs to be in order for certain regions to be seg-
mented from the background, and second, how much we can change the distortion without significantly
altering the segmentation (see Figure 7 again). Thus, lossy compression offers a convenient framework
for diagnosing the statistics of a natural image at different quantization scales for various segmentation
purposes.

1.2 Organization

This paper is organized as follows: Section 2 briefly review the coding-based clustering algorithm
[16], which minimizes the coding length of data drawn from a mixture of (possibly degenerate) Gaus-
sians. Section 3 introduces the proposed image-segmentation algorithm. Particularly, we discuss how
to adaptively select the distortion threshold to achieve good segmentation over a large image database.
Section 4 gives experimental results on the Berkeley segmentation database, and compares to other
existing algorithms. Finally, Section 5 concludes the paper. We have made all the algorithms in this
paper available on our website for peer evaluation:http://www.eecs.berkeley.edu/˜yang/
software/lossy_segmentation/ .

2 Segmentation of Mixtures of Gaussians via Lossy Compression

Once one adopts the assumption that image feature vectors are drawn from a mixture of (possibly
degenerate) Gaussians, the problem of image segmentation reduces to that of segmenting such mixed
data into multiple Gaussian-like clusters. A popular statistical method for segmenting mixed data is the
expectation-maximization(EM) algorithm [3,21], which is essentially a greedy descent algorithm to find
the maximum-likelihood (ML) estimate of the mixture of Gaussian distributions [10,32,7].

However, notice that here we might be dealing with degenerate Gaussians with unknown dimensions,
and furthermore, we do not even know how many of them. Conventional EM-based clustering algorithms
do not address these problems, and must be modified to perform well in this domain [16]. In this paper,
we adopt a new but simple clustering method introduced in [16], which is especially adept at handling
unknown number of possibly degenerate Gaussians. For completeness, in this section, we give a brief
overview of this method and the associated clustering algorithm. Readers who are already familiar with
[16] may skip this section without loss of continuity.

4 In this paper, we do not consider varying spatial scale as we will always choose a fixed-size window as the
feature vector. Nevertheless, as we will demonstrate, excellent segmentation can already be obtained.
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The new clustering method follows the principle oflossy minimum description length(LMDL) 5 :

Principle 1 (Data Segmentation via Lossy Compression)We define the optimal segmentation to be
the one that minimizes the number of bits needed to code the segmented data, subject to a given distor-
tion.

To apply this principle to our problem, we require an accurate measure of the coding length of data
drawn from a mixture of Gaussians. We begin by examining the coding length of data from a single
Gaussian. Suppose we are given a random vectorv ∈ RD with a multivariate Gaussian distribution
N (µ, Σ), which we wish to encode such that the original vector can be recovered up to a given distortion
ε2, i.e., E[‖v − v̂‖2] ≤ ε2. From information theory [2], the average number of bits needed to codev is
given by therate-distortion functionof the Gaussian, which is well approximated as:

R(ε) =
1

2
log2 det(I +

D

ε2
Σ), (1)

whereI is an identity matrix, andΣ is the covariance.6

Now consider a set ofN i.i.d. samplesV = (v1, v2, . . . , vN) ∈ RD×N drawn from the Gaussian
distribution. Letµ .

= 1
N

∑N
i=1 vi, andV̄

.
= V −µ · 11×N . As Σ̂ = 1

N
V̄ V̄ T is an estimate ofΣ, an estimate

of the rate-distortion functionR(ε) is

R(ε, V )
.
=

1

2
log2 det

(
I +

D

ε2N
V̄ V̄ T

)
. (2)

Encoding theN vectors inV therefore requiresN · R(V ) bits. Since the codebook is adaptive to
the dataV , we must also represent it withD · R(V ) bits, which can be viewed as the cost of coding
theD principal axes of the data covariance1

N
V̄ V̄ T . As the data are in general not zero-mean, we need

additionalD
2

log2(1 + µT µ
ε2 ) bits to encode the mean vectorµ. This leads to the following estimate of the

total number of bits needed to encode the data setV :

L(V ) .=
N + D

2
log2 det

(
I +

D

ε2N
V̄ V̄ T

)
+

D

2
log2(1 +

µT µ

ε2
). (3)

Furthermore, although the above formula is derived for a Gaussian source, the same formula gives
an upper boundof the coding length for any finite number of samples drawn from a subspace,i.e., a
degenerate Gaussian. A detailed proof is provided in [16].

Now let us consider the given data setV as drawn from a mixture of Gaussians. In this case, (3) no
longer gives an accurate estimate of the minimum coding length forV . It may be more efficient to code

5 For a theoretical characterization and comparison of (lossy) ML estimate and (lossy) MDL estimate, one may
refer to [17].
6 Strictly speaking, the rate-distortion function for the Gaussian sourceN (µ,Σ) is R(ε) = 1

2 log2 det
(

D
ε2 Σ

)
when ε2

D is smaller than the smallest eigenvalue ofΣ. However, whenε2

D is larger than some eigenvalues of
Σ, the rate-distortion function becomes more complicated [2]. Nevertheless, the approximate formulaR(ε) =
1
2 log2 det(I + D

ε2 Σ) can be viewed as the rate distortion of the “regularized” source that works for all range ofε.
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V as the union of multiple disjoint subsets:V = W1 ∪W2 ∪ · · · ∪WK . If each subset is sufficiently
Gaussian, the total number of bits needed to codeV is at most:

Ls(W1, . . . ,WK) .=
K∑

i=1

{L(Wi)− |Wi| log2(|Wi|/N)} . (4)

Here the second term counts the number of bits needed to code (losslessly) the membership of theN
samples in theK groups,e.g., using the Huffman coding [2]. Notice that the Huffman coding of the
membership is optimal only when the membership of the vectors in theK segments is totally random.
However, in image segmentation, the membership of pixels is not random – adjacent pixels have higher
probability of being in the same segment. In this case, Huffman coding only gives a loose upper bound.
Nevertheless, we will demonstrate that minimizing such a function leads to a very simple and effective
segmentation algorithm.

To find the optimal segmentation, one essentially needs to compute the coding length for all possi-
ble segmentations of the dataV , which is a combinatorially expensive task. To make the optimization
tractable, we make use of apairwise steepest descentprocedure to minimize the coding length: In the
initialization step, each vectorvi is assigned as its own group. At each iteration a pair of groupsSi andSj

is merged such that the decrease in the coding length due to codingSi andSj together is maximal. The
algorithm terminates when the coding length can no longer be reduced by merging any pair of groups.

Algorithm 1. (Pairwise Steepest Descent).

1: input: the dataV = (v1, v2, . . . , vN) ∈ RD×N and a distortionε2.
2: initialize S := {Si = {vi} | i = 1, · · · , N}.
3: while |S| > 1 do
4: choose distinct groupsS1, S2 ∈ S such that

Ls(S1 ∪ S2)− Ls(S1, S2) is minimal.
5: if Ls(S1 ∪ S2)− Ls(S1, S2) ≥ 0 then break;
6: elseS :=

(
S \ {S1, S2}

)
∪ {S1 ∪ S2}.

7: end
8: output: S

Notice that the greedy merging process in Algorithm 1 is similar in concept to classical agglomerative
clustering methods, especially Ward’s method [37, 12]. However, by using the coding length as a new
distance measure between groups, Algorithm 1 significantly improves these classical methods particu-
larly when the distributions are degenerate or the data contain outliers. Nevertheless, as a greedy descent
scheme, the algorithm does not guarantee to always find the globally optimal segmentation for any given
(V, ε2). 7 In our experience, the main factor affecting the global convergence of the algorithm appears to
be the density of the samples relative to the distortionε2. For more detailed analysis of Algorithm 1, the
reader is referred to [16].

Extensive simulations have verified that this algorithm is consistently effective in segmenting data that
are drawn from a mixture of Gaussian or degenerate subspace distributions. In addition, the algorithm
tolerates significant amounts of outliers, and requires no prior knowledge of the number of groups nor
their dimensions. Figure 2 shows a few segmentation results of this algorithm on synthesized data sets.

7 It may be possible to improve the convergence by using more complicated split-and-merge strategies [35].
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Fig. 2. Simulation results (in color) of Algorithm 1 on three different mixture distributions. Left: Three Gaussian
distributions inR2. Middle: Three affine subspaces of dimensions(2, 2, 1) in R3. Right: Three linear subspaces of
dimensions(2, 1, 1) in R3 with 12% outliers; the algorithm groups all the outliers into one extra Gaussian cluster,
in addition to the three subspaces.

In the above experiment, the distortion parameterε2 was selected to be close to the true noise variance
to achieve best results. In practice, there is no universal rule for choosing a goodε for all practical data
sets. To apply Algorithm 1 to image segmentation, we need to be able to adaptively chooseε for each
image based on its unique texture distribution. We will carefully examine this issue in the next section.

3 Image Segmentation via Lossy Compression

In this section, we describe how the lossy compression-based method in Section 2 is applied to seg-
menting natural images. We first discuss what features we use to represent textures and why. We then
describe how alow-level segmentationis applied to partition an image into many small homogeneous
patches, known assuperpixels. The superpixels are used to initialize themid-level texture-based segmen-
tation, which minimizes the total coding length of all the texture features by repeatedly merging adjacent
segments, subject to a distortionε2. Finally, we study several simple heuristics for choosing a goodε for
each image.

3.1 Constructing Feature Vectors

We choose to represent a 3-channelRGB color image in terms of theL∗a∗b∗ color metric, which was
specially designed to best approximate perceptually uniform color spaces.8 While the dependence of
the three coordinates on the traditionalRGB metric is nonlinear [1], theL∗a∗b∗ metric better facilitates
representing texture via mixtures of Gaussians. Perceptual uniformity renders the allowable distortionε2

meaningful in terms of human perception of color differences, tightening the link between lossy coding
and our intuitive notion of image segmentation.

In the literature, there have been two major types of features used to capture local textures. The first
type considers responses of a 2D filter bank as texture features [18,39]. The second directly uses aw×w

8 Equivalently, one can also use theL∗u∗v∗ metric.
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cut-off window around each pixel and stacks the color values inside the window into a vector [25, 24].
Each texture window is usually smoothed by convolving with a 2D Gaussian kernel before stacking.
Figure 3 illustrates this process.

Fig. 3. The construction of texture features: Aw × w window of each of the threeL∗a∗b∗ channels is convoluted
with a Gaussian and then all channels are stacked into a single vectorv.

Although texture features were traditionally extracted through large-scale 2D filter banks, more recent
study has suggested that the texture features from simple cut-off windows may give better performance
in terms of image segmentation [36]. We have experimented with using both simple window features
and two classical filter banks, namely, the Leung-Malik set [18] and the Schmid set [30], in conjunction
with our clustering algorithm. We found the difference in the segmentation result is small despite the fact
that filter-bank features are more computationally expensive as they involve convolutions of the image
with large number of filters. One likely reason for the similar performance is that the compression-base
clustering algorithm is capable of automatically harnessing the low-dimensional linear structures of the
features, despite noise and outliers (see Figure 2 and additional evidence in [16]).

For simplicity, we choose to use the window features in this paper. We find that a7 × 7 window
provides satisfactory results, although other similar sizes also work well.9 Finally, to reduce the com-
putational cost, we project the feature vectors into an 8-dimensional space by PCA. This operation
preserves all linear structures of dimension less than 8 in the feature space. Experimentally, we found an
8-dimensional space to be sufficient for most textures from natural images.

3.2 Initialization with Superpixels

Given the feature vectors extracted from an image, one “naive” approach would be to directly apply
Algorithm 1, and segment the pixels based on the grouping of the feature vectors. Figure 4 shows one
such result. Notice that the resulting segmentation merges pixels near the strong edges into a single
segment. This should be expected from the compression perspective, since windows across the boundary
of two segments have significantly different structures from the (homogeneous) textures within those
segments [13]. However, such a segmentation does not agree well with human perception.

In order to group edge pixels appropriately, we preprocess an image with a low-level segmentation
based on local cues such as color and edges. That is, we oversegment the image into (usually several

9 We did not test window sizes larger than 9 pixels, as the current MATLAB implementation cannot store all
such texture vectors from a typical320 × 240 color image. However, this problem can be alleviated by sampling
a subset of the texture features from an image.
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Fig. 4. Two segmentation results of the left original using Algorithm 1 with differentε’s. Notice that the pixels
near the boundaries of segments are not grouped correctly.

hundred) small, homogeneous regions, known assuperpixels. This preprocessing step has been generally
recommended for all region merging algorithms in [13]. Such low-level segmentation can be effectively
computed using K-Means or Normalized-Cuts (NCuts) [31] with a conservative homogeneity threshold.
In this paper, we use a publicly available superpixel code [23].

Since the superpixel segmentation respects strong edges in an image (see Figure 5 middle), it does
not suffer from the misassignment of edge pixels seen in Figure 4. All feature vectors associated with
pixels in each superpixel are initialized as one segment, forcing the subsequent merging process to group
boundary pixels together with the interior pixels. An additional benefit from the superpixel preprocess-
ing is a significant reduction in the computational cost. Using superpixel segments as initial grouping,
the algorithm only needs to search amongst several hundred of superpixels for the optimal pair to merge,
instead of searching amongst all feature vectors (the number of vectors is on the order of tens of thou-
sands).

One may further consider sampling only a portion of the feature vectors associated with each super-
pixel. For instance, feature vectors at the boundary of a superpixel represent a combination of textures
from two adjacent superpixels, and their distribution can be rather complicated compared to the distri-
bution of the feature vectors in the interior of the superpixel. Thus, one may use only feature vectors
from the interior of each superpixel.10 Our experiments show that, under the same distortion parameter
ε, this modification tends to partition an image into smaller texture segments. This phenomenon will be
discussed in more detail in Section 4.3. For clarity, all segmentation results presented in this paper will
use both interior and boundary feature vectors of every superpixel unless stated otherwise.

3.3 Enforcing Connected Segments

Notice that in the definition of the overall coding length function (4), we use the Huffman coding
length to upper bound the number of bits required to encode the membership of the feature vectors.

10 If a superpixel only consists of boundary pixels, these pixels are used anyway.
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This obviously overestimates the coding length since it does not take into account the fact that in natural
images, adjacent pixels have higher probability of belonging to the same segment.

In order to enforce that the resulting segmentation respects spatial continuity and consists of only
connected segments, we impose an additional constraint that two segmentsSi andSj can be merged
together only if they are spatially adjacent in the 2D image. To this end, we need to construct and
maintain aregion adjacency graph(RAG) G in the clustering process. RAG is popularly used in other
merge-and-splittype segmentation methods [15]. We represent an RAG using an adjacency listG{i}
for each segmentSi. Indexj is in the setG{i} if the segmentSj is a neighbor ofSi. At each iteration,
the algorithm searches for a pair of adjacent segmentsSi andSj which leads to maximal decrease in the
total coding length. Note, however, that in some applications such as image compression, disconnected
regions may be allowed to be grouped as the same segment. In this case, one can simply discard the
adjacency constraint in our implementation.

Figure 5 shows an example of the two-step segmentation process. For this image, we find that all
feature vectors approximately lie in a 6D subspace in the 8D feature space (i.e., the first 8 principal com-
ponents of the Gaussian windows). Furthermore, feature vectors of each segment can be well modeled
as a 1D to 4D subspace. Figure 6 plots the singluar values of two representative segments. This validates
our initial assumption that the distributions of texture features are typically (close to) degenerate.

Fig. 5. The segmentation pipeline. Left: Original. Middle: Superpixels obtained from low-level oversegmentation.
Right: Segments obtained by minimizing the coding length withε = 0.2.

Fig. 6. Singluar values of the feature vectors drawn respectively from two image segments in Figure 5 right. The
segment plotted on the left is on the woman’s clothes, and the other is the background.
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3.4 Choosing the Distortion

As discussed in the introduction, the distortionε effectively sets the quantization scale at which we
segment an image. Figure 7 shows the segmentation of several images under different values ofε. As the
figure suggests, a singleε will not give good performance across a widely varying data set such as the
Berkeley image-segmentation database. Differences in the contrast of the foreground and background,
lighting conditions, and image category cause the distribution of the texture features to vary significantly
from image to image.

Fig. 7. Segmentation results under differentε. Left: Originals. Middle left:ε = 0.1. Middle right:ε = 0.2. Right:
ε = 0.4.

There are several ways to adaptively chooseε to achieve good segmentation for each image. For
example, if a desired number of segments is knowna priori, we can search a range ofε values for the
one that gives the desired number of segments. When such information is not availablea priori, as is the
case for image segmentation, a formal way in information theory to estimate the distortion parameter is
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to minimize a cost function such as the following one:

ε∗
.
= min

ε∈E
{Ls(V, ε) + λND log2(ε)}, (5)

whereλ is a parameter provided by the user that weighs the two termsLs(V, ε) andND log2(ε). Notice
that the first termLs(V, ε) decreases asε increases, as opposed to the second termND log2(ε). Hence,
the expression essentially seeks a balance between the coding length of the data and the complexity of
the model measured asND log2(ε). It is studied in [16] that (5) can accurately recover the true value of
ε for the simulated Gaussian mixture models by simply settingλ = 1. However, when applied to image
segmentation on real natural images, the so-estimatedε∗ tends to oversegment the images. One reason
for this discrepancy between simulation and experiment is that the noise associated with different texture
segments can have different covariance.

In this work, we choose to adaptively select the distortionε by stipulating that feature distributions in
adjacent texture regions must be sufficiently dissimilar. In the literature, the similarity measure between
two texture distributions has been extensively studied. In information theory, theKullback-Leibler(KL)
divergence measures the relative entropy between two arbitrary distribution functionsp(x) andq(x) [2]:

dKL =
∑
x∈X

p(x) log
p(x)

q(x)
. (6)

However, the KL divergence is ill-posed for distributions functionsp(x) andq(x) that have different
supports, whereq(x) may be equal to zero as the denominator in the log function. Unfortunately, this is
often the case to compare two degenerate distributions (e.g., texture vectors from images).

In computer vision, the heuristic Earth Mover’s Distance (EMD) is a metric to measure the similarity
of two image distributions [29, 28]. Levina and Bickel [14] further show that EMD is equivalent to
the Mallows distance in statistics, which has a closed-form expression for two Gaussian distributions
N(θ1, Σ1) andN(θ2, Σ2) [5]:

dM(N(θ1, Σ1), N(θ2, Σ2))
2 = (θ1 − θ2)

T (θ1 − θ2) + Tr(Σ1 + Σ2 − 2(Σ1Σ2)
1
2 ). (7)

Finally, as a reasonable approximation to the Mallows distance, one can measure the similarity of
N(θ1, Σ1) andN(θ2, Σ2) using their mean vectors:

dm(N(θ1, Σ1), N(θ2, Σ2))
2 = (θ1 − θ2)

T (θ1 − θ2). (8)

For a givenε and a fixed distance measure that can be either the Mallows distancedM or the mean
distancedm, the minimal distanced(ε) of an image is calculated between all pairs of adjacent segments
after the compression-based merging. The selection process gradually increases the value ofε from a list
E of candidate values until the minimal distanced(ε) is larger than a preselected thresholdγ:

ε∗ = min{ε : d(ε) ≥ γ}. (9)

The final segmentation result then gives the most refined segmentation which satisfies the above con-
straint. We note that increasingε typically causes the number of segments to decrease and results in a
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shorter coding length. We may therefore use the segmentation computed with a smallerε to initialize the
merging process with a largerε, allowing us to search for the optimalε more efficiently.

It may seem that we have merely replaced one free parameter,ε, with another,γ. This replacement
has two strong advantages, however. Experimentally we find that even with a single fixed value ofγ the
algorithm can effectively adapt to all image categories in the Berkeley database, and achieve segmenta-
tion results that are consistent with human perception. Furthermore, the appropriateγ can be estimated
empirically from human segmentations, whereasε cannot. This heuristic thresholding method is similar
in spirit to several robust techniques in computer vision for estimating mixture models,e.g., the Hough
transform and RANSAC.

The complete segmentation process is specified as Algorithm 2. In terms of speed, on a typical 3GHz
Intel PC, the MATLAB implementation of the CTM algorithm on a320 × 240 color image takes about
two minutes to preprocess superpixels, and less than one minute to search for the optimalε∗ and mini-
mize the coding length of the features.

Algorithm 2. (CTM: Compression-based Texture Merging).
input: ImageI ∈ RH×W×3 in L∗a∗b∗ metric, reduced dimensionD, window sizew, distortion rangeE ,
and minimum mean distanceγ.
1: PartitionI into superpixelsS1, . . . , SK . For pixelpi ∈ Sj, initialize its labelli = j.
2: Construct RAGG{1}, . . . , G{K} for theK segmentsS1, . . . , SK .
3: Samplew × w windows, and stack the resulting values into a feature vectorvi ∈ R3w2

.
4: Replacevi with their firstD principal components.
5: for all ε ∈ E in ascending orderdo
6: for all initial segmentsSi, i = 1, . . . , K do
7: ComputeLs(Si, ε).
8: for all j ∈ G{i} do
9: Uij

.
= Ls(Si, ε) + Ls(Sj, ε)− Ls(Si ∪ Sj, ε)

10: end for
11: end for
12: while Uij

.
= max{U} > 0 do

13: MergeSi andSj. Update arraysl, G, L, andU .
14: Segment numberK ← K − 1.
15: end while
16: if γ ≤ mini,j∈G(i){d(Si, Sj, ε)} then
17: break.
18: end if
19: end for
output: Final pixel labelsl1, . . . , lH×W .
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4 Experiments

In this section, we demonstrate the segmentation results of Algorithm 2 (CTM) on natural images in
the Berkeley segmentation database [20], which also contains benchmark segmentation results obtained
from human subjects.

4.1 Visual Verification

We firstvisuallyverify the segmentation results on the Berkeley database. Representative segmenta-
tion results of the CTM algorithm withγ = 0.1 andγ = 0.2 are shown in Figures 9 – 14. The mean
distancedm defined in (8) is used to measure the texture similarity between adjacent segments.11 For
better visual evaluation, we have partitioned the database into six different image categories, each of
which consists of images that are more relevant, namely,Landscape(Figure 9),Water(Figure 10),Ur-
ban (Figure 11),Animals(Figure 12),People(Figure 13), andObjects(Figure 14). By comparing the
segmentation results with the twoγ values, we conclude that smallerγ’s tend to generate more segments
and oversegment the images, and largerγ’s tend to generate less segments and hence undersegment the
images.

4.2 Quantitative Verification

We now quantitativelycompare CTM against three unsupervised algorithms that have been made
available publicly: Mean-Shift [1], NCuts [31], and Felzenszwalb and Huttenlocker (FH) [6]. The com-
parison is based on four quantitative performance measures:

(1) The Probabilistic Rand Index (PRI) [27] counts the fraction of pairs of pixels whose labellings
are consistent between the computed segmentation and the ground truth, averaging across multiple
ground truth segmentations to account for scale variation in human perception.

(2) The Variation of Information (VoI) metric [22] defines the distance between two segmentations as
the average conditional entropy of one segmentation given the other, and thus roughly measures the
amount of randomness in one segmentation which cannot be explained by the other.

(3) The Global Consistency Error (GCE) [20] measures the extent to which one segmentation can be
viewed as a refinement of the other. Segmentations which are related in this manner are considered
to be consistent, since they could represent the same natural image segmented at different scales.

(4) The Boundary Displacement Error (BDE) [8] measures the average displacement error of boundary
pixels between two segmented images. Particularly, it defines the error of one boundary pixel as the
distance between the pixel and the closest pixel in the other boundary image.

Since all methods are unsupervised, we use both the training and testing images for the evaluation.
Due to memory issues with the NCuts implementation in MATLAB, all images are normalized to have

11 The segmentation using the Mallows distancedM is slightly different. However, using the quantitative segmenta-
tion measures in Section 4.2, the segmentations using the two distances are very close in terms of the performance.
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the longest side equal to 320 pixels. We ran Mean-Shift [1] with parameter settings(hs, hr) chosen at
regular intervals of[7, 16]× [3, 23], and found that on the Berkeley database,(hs, hr) = (13, 19) gives a
good overall tradeoff between the above quantitative measures. We therefore use this parameter choice
for our comparison. For NCuts [31], we choose the number of segmentsK = 20 to agree with the
average number of segments from the human subjects. For the FH algorithm, we choose the Gaussian
smoothing parameterσ = 0.5, the threshold valuek = 500, and the minimal region size to be 200 pixels,
as suggested by the authors [6].

Table 1 gives the quantitative comparion of CTM against the other three algorithms on the Berke-
ley segmentation benchmark. In the experiment, threeγ values are tested for CTM, namely,γ =
0.1, 0.15, 0.2. The texture distance is the mean distancedm. The distortion rangeE for the ε value is
between0.01 and0.5, which are relative scales in terms of the normalized texture vectors.

Table 1
Average performance on the Berkeley Database (bold indicates best of all the algorithms). PRI ranges between
[0, 1], higher is better. VoI ranges between[0,∞), lower is better. GCE ranges between[0, 1], lower is better. BDE
ranges between[0,∞) in the unit of pixel, lower is better.

PRI VoI GCE BDE

Humans 0.8754 1.1040 0.0797 4.994

CTMγ=0.1 0.7561 2.4640 0.1767 9.4211

CTMγ=0.15 0.7627 2.2035 0.1846 9.4902

CTMγ=0.2 0.7617 2.0236 0.1877 9.8962

Mean-Shift 0.7550 2.477 0.2598 9.7001

NCuts 0.7229 2.9329 0.2182 9.6038

FH 0.7841 2.6647 0.1895 9.9497

Table 1 shows that quantitatively, CTM outperforms Mean-Shift, NCuts, and FH in terms of most
indices: Atγ = 0.15, CTM is better than Mean-Shift and NCuts in terms of all four indices; and for
all chosenγ’s, CTM is better than FH except for the PRI index. It is perhaps not surprising that CTM
significantly outperforms the other three algorithms in terms of the VoI index, since we are optimizing
an information-theoretic criterion. Comparing with the indices of the results by humans, these numbers
show that minimizing the coding length leads to segmentation that is closer to human segmentation. It
suggests that perhaps human perception also approximately minimizes some measure of the compactness
of the representation.

One may also interpret the results in terms of the differences among the four segmentation indices. The
GCE and BDE indices penalize undersegmentation more heavily than oversegmentation. In particular,
GCE does not penalize oversegmentation at all,i.e., the highest score is achieved by assigning each pixel
as an individual segment. As a result, CTMγ=0.1 has returned the best GCE and BDE values among all
the results in Table 1, but its VoI value is one of the worst in the table. From our experience (also shown
in Figures 9 – 14), PRI and VoI seem to be more correlated with human segmentation in term of visual
perception.
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To summarize both visual and quantitative comparisons, we notice that on one hand, if we tune the al-
gorithms to give the visually best match with human segmentation, none of the algorithms with different
parameters is a clear winner in terms of all four indices; on the other hand, none of the indices seems to
be a better indicator of human segmentation than others, which suggests that human segmentation uses
much more comprehensive cues. Nevertheless, the extensive visual demonstration and quantitative com-
parison does serve to validate our hypotheses that the distribution of texture features of natural images
can be well approximated by a mixture of (possibly degenerate) Gaussians. As a result, the compression-
based clustering algorithm as a powerful tool exploits the redundancy and degeneracy of the distributions
for good texture segmentation.

4.3 Difficulties and Possible Extensions

To fairly assess an image-segmentation algorithm, we also need to investigate examples for which
the algorithm has failed to produce good results. In this subsection, we will show a handful of such
examples from the Berkeley database, and discuss several possible extensions to the CTM algorithm to
further improve the segmentation results.

A particular category that CTM has trouble with is a set of images of animals with very severe cam-
ouflage. Figure 8 shows some representative examples. For these examples, it is difficult for CTM to
segment an animal from the background even with very small distortionε. Comparing with Figure 7,
human figures often endure a largerε, as human complexion and clothes stand out from the (man-made)
surroundings. Thus, in a way, the distortionε can be interpreted as a measure for how “salient” an object
is in an image and how much “attention” is needed to segment the object.

In order to extract severely camouflaged animals from their surroundings, a straightforward extension
of the CTM algorithm is to exclude texture vectors at the boundaries of the superpixels. A texture vector,
say the Gaussian window, at the boundary contains pixels from the two adjacent superpixels that share
the common boundary. By excluding these texture vectors, the set of texture vectors from the superpixel
become more homogeneous. Hence, the compression-based algorithm can more effectively distinguish
the texture of the animal from that of the background. This variation of CTM is denoted as CTM−
while the original version is denoted as CTM+. Figure 8 demonstrates the improvement of the CTM−
algorithm on these images. But notice that it still failed to segment out the body of the crocodile from
the background; in this case the camouflage is effective enough to fool even human eyes.

We also observe another limitation of CTM from the results in Figure 8. As an example, for the
Leopard image, the algorithm needs to use a relatively smallε to extract the image segment of the leopard
from the background. Nevertheless, under the the sameε, the background textures are oversegmented.
At a fixedγ, the CTM algorithm searches for the best distortion parameterε value to code the feature
vectors of the entire image, despite the fact that these textures may have different noise variances (e.g.,
foreground versus background).

A possible solution to this problem is to assign differentε values to different image regions in a
supervised scenario. Given a set of training images that are segmented by a human subject, one can learn
the distribution ofε of all the textures. Then, given a new image, one needs to infer the appropriateε to
use for different regions in a Bayesian fashion.
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(a) Original images.

(b) Segmentation results with CTM+,γ=0.1.

(c) Segmentation results with CTM−,γ=0.1.

Fig. 8. Segmentation results on certain animal images. CTM+ represents the CTM algorithm applied to all texture
vectors including those at the boundaries. CTM− represents the same algorithm without sampling the texture
vectors at the boundaries.

Such an extension may give more relevant segmentation results for several important applications,
such as salient object detection. For instance, saliency is arguably a subjective notion, as people have
their own preference of which region in an image is the most salient one. We have shown through
extensive experiments in this paper that whether an image region can be segmented from its surround-
ings is closely related to the distortion allowed in the lossy coding. Therefore, it is possible to learn
a compression-based saliency detector through a set of examples. The segmentation results will most
likely resemble the results of the individual human subject who has provided the training examples.
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5 Discussion and Conclusion

In this paper, we have proposed that texture features of a natural image should be modeled as a
mixture of possibly degenerate distributions. We have introduced a lossy compression-based clustering
algorithm, which is particularly effective for segmenting degenerate Gaussian distributions. We have
shown that the algorithm can be customized to successfully segment natural images by harnessing the
natural low-dimensional structures that are present in raw texture features such as Gaussian windows.

In addition, the lossy compression-based approach allows us to introduce the distortion as a useful
parameter so that we can obtain a hierarchy of segmentations of an image at multiple quantization scales.
We have proposed a simple heuristic criterion to adaptively determine the distortion for each image if
one wants to match the segmentation with that of humans.

In this paper, we have studied only unsupervised segmentation of natural images. However, the pro-
posed framework can also be extended to supervised scenarios. We believe that it is of great importance
to better understand how humans segment natural images from the lossy data compression perspective.
Such an understanding would lead to new insights into a wide range of important problems in computer
vision such as salient object detection and segmentation, perceptual organization, and image understand-
ing and annotation. These are some of the challenging problems left open for future investigation.
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Fig. 9. Examples in Category Landscape. Left: Original. Middle: CTMγ=0.1. Right: CTMγ=0.2.

Fig. 10. Examples in Category Water. Left: Original. Middle: CTMγ=0.1. Right: CTMγ=0.2.
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Fig. 11. Examples in Category Urban. Left: Original. Middle: CTMγ=0.1. Right: CTMγ=0.2.

Fig. 12. Examples in Category Animals. Left: Original. Middle: CTMγ=0.1. Right: CTMγ=0.2.
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Fig. 13. Examples in Category People. Left: Original. Middle: CTMγ=0.1. Right: CTMγ=0.2.
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Fig. 14. Examples in Category Objects. Left: Original. Middle: CTMγ=0.1. Right: CTMγ=0.2.
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