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Applications on large-scale multiprocessors like the ASCI machines, are often written using message 
passing or, when the nodes are shared memory multiprocessors, a combination of message passing with 
threads.  The programming model is difficult to use, and the performance often disappointing.  For example, 
many important applications run at under 10% efficiency on the machines.  Some of the efficiency loss is 
due to overheads of parallelism and some to poor uniprocessor performance.  Moreover, algorithms that are 
theoretically more efficient are often avoided in favor of simpler, more regular algorithms, because of the 
difficulty of programming the machines.   
 
The goal of my research is to develop techniques for obtaining  high performance on a wide range of 
computational platforms  and to ease the programming effort required to obtain  performance.  My approach 
has been multi-faceted,   in short, pursuing any technique that is like to lead to better performance.  As a 
result, my work does not fit into a single category within Computer Science, but  rather covers programming 
languages, compilers, systems,  algorithms, and architecture.    
 
Global Address Space Languages 
 
Parallel programming is inherently harder than sequential programming, but most programmers agree that 
programming in a shared memory model is easier than a message-passing model.  In 1991 my group 
demonstrated that a relatively small change to a standard compiler (in this case gcc), when combined with 
lightweight communication primitives, could allow  one to run shared memory style programs on distributed 
memory machines.   This work later developed into one of the first shared address space  languages, Split-C, 
in a research collaboration with David Culler  [12].  Global address space languages make it possible to 
program large scale, distributed memory multiprocessors and clusters using a shared address space.  The key 
idea is to change the  representation of pointers and arrays in the language to allow data structures to be 
spread over processors.  The compiler is responsible for decoding pointer and array references into message 
calls on machines that do not directly support shared memory. 
 
More recently, I was  involved in the design of Unified Parallel C (UPC), which merged some  of the ideas 
from three shared address space dialects of C: Split-C, AC  (from IDA), and PCP (from LLNL) [7].  In 
recent years, UPC  has gained recognition as an alternative to message passing programming  for large-scale 
machines.  Compaq, Sun, Cray,  HP, and SGI are implementing UPC, and I am currently leading a large 
effort at LBL to implement UPC on Linux clusters and IBM machines and to develop new optimizations.   
 
Meanwhile, in a joint research effort with Susan Graham, Paul Hilfinger, Alex Aiken, and Phil Colella (from 
LBL) we developed a shared address space language called Titanium, which is based on Java rather than C 
[8]. The primary design goals of Titanium are performance and safety.  It inherits some of its safety features 
from Java and adds some additional ones to for parallelism.  To satisfy the performance goal,  Titanium uses 
the SPMD model and the same partitioned global address space of Split-C and UPC: any thread may access 
an object on any  processor, but the programmer controls the alignment of data with  threads.  To avoid the 
overhead of byte-code interpretation, the  Titanium specification allows for compilation directly to native 
code.   The Titanium project has demonstrated several important results:  1) Titanium provides a common 
programming model for shared memory and distributed memory -- it runs on any shared memory machine 
with POSIX threads, on most distributed memory multiprocessors and clusters.   2) Code generation from 
Titanium is quite competitive with C.  It is within 20% of a C performance (gcc on Linux) on four of six 
SciMark  benchmarks, and within 2x on the other two.  3) Complex applications have been written in 



Titanium, including challenging adaptive mesh  refinement algorithms and the heart simulation described 
below. 
 
The optimization problem for explicitly parallel languages like UPC,  Titanium, or even Java, is different 
than for sequential languages or data-parallel languages (which have a sequential execution model).  Most 
optimizations involve some form of code motion, which, in sequential programs, are limited by dependences 
in the sequential execution defined by the source program.  In a parallel execution model, an additional 
analysis is needed to ensure that operations reordered on one processor cannot be observed on another.  
There is no common agreement on what semantics should be allowed -- the current debate over the parallel 
semantics on Java, which is producing a new language specification, is one example; lack of uniform 
semantics across C compilers in the meaning of volatile and non-volatile shared variables is another.  In both 
cases, compilers may be overly conservative or may incorrectly order statements relative to programmer 
expectations.   In particular conventional C compilers are often used in multi-threaded code, but they are not 
designed for such environments, and they often perform transformations that are at best surprising and at 
worst incorrect. 
 
Together with Arvind Krishnamurthy, I developed new compiler analyses that allow one to implement a 
stronger semantic model on a weaker model [11]  For example, it can be used to ensure sequential 
consistency on a machine with weaker semantics.  (MIPS, SPARC, Alpha, and Pentium processors all have 
weaker semantics.)  While several other researchers have done theoretical work in the area, my work is key 
to demonstrating that this kind of analysis may be practical.  We developed new algorithms to handle 
programs with branches and to avoid an exponential blowup in the number of processors, and we also have 
the only implementation of the analysis, which was done for both Titanium and for a pointer-free subset of 
C.  We also incorporated common synchronization primitives into the analysis, which were a key to making 
the analysis practical [9].  The analysis preserves program safety in the following sense: programs that use 
built-in synchronization primitives will be susceptible to more precise analysis and therefore better 
optimizations, but programs that use primitives implemented directly on shared memory will still be correct.  
This is much stronger than the kinds of analyses suggested by some of the architectural work on memory 
systems (such as “proper labeling”), which requires that system synchronization primitives be used 
exclusively, or correctness is not ensured. 
 
Single Processor Optimizations 
 
It is well understood that blocking or tiling of many dense matrix  algorithms improves their performance on 
the deep memory hierarchies of  modern processors, although the specific choice of blocking factor can  be 
very difficult to find.  The problem is even more difficult for  problems with irregular memory access 
patterns.  A canonical example is sparse matrix-vector multiplication, the core of many sparse iterative  
solvers.  These algorithms exhibit little spatial locality, because of the indexed representation of the matrix, 
and little temporal locality, because there are only two floating-point operations performed per matrix 
element. 
 
In the Sparsity project, Eun-Jin Im and I developed techniques for automatically optimizing sparse matrix 
algorithms for memory hierarchies.  The three basic optimization techniques in Sparsity are: register 
blocking, cache blocking, and use of multiple vectors [3].  Register blocking differs from the dense case, 
because the zeros in the matrix are filled in to achieve a uniform block size; the small dense sub-problems 
are then optimized by loop unrolling and instruction scheduling.  Register blocking significantly improves 
the ``raw'' MFLOP/s rate of the code, but can slow execution time due to the extra computation on added 
zeroes.  Sparsity contains a code generation engine as well as a two-component performance model for 
selecting a good register block size.  The first component of the model is a performance profile of the 
machine, measured by running a dense matrix in sparse format for a large range of block sizes.  The second 
component is matrix-specific, and is an estimate of the number of zero elements that would be filled in for 



each block size in a given range.  The two components are combined to minimize overall running time.  We 
did an extensive set of experiments on over 40 matrices from a variety of application domains on several 
different machines.  This included validation of the model by comparing it to exhaustive search on a smaller 
number of matrices.  Overall, we have shown speedups up to 3x, with more recent machines like the 
Pentium IV showing some of the highest speedups.  We expect these optimizations will be increasingly 
important for future machines as the gap between processor speed and DRAM performance grows.  
 
The second optimization technique used in Sparsity is cache blocking, which is useful primarily for 
enormous rectangular matrices in which  the source vector does not fit in cache.  Cache blocking reorganizes  
the matrix layout by storing blocks of the matrix contiguously in memory, but each block retains its sparse 
format, so there is little overhead. Again, we developed a model for determining whether cache blocking is 
useful and for estimating the best cache block size.  Cache blocking showed speedups of 3x for a matrix 
taken from web document retrieval, whose dimensions are the number of keywords by the number of  
documents on the web [4]. 
 
Sparsity also implements a variation of basic sparse matrix-vector multiplication in which a sparse matrix is 
multiplied by a set of dense vectors.  This operation arises, for example, when there are multiple right-hand 
sides in a linear solver or when a higher-level algorithm has been blocked.  The introduction of multiple 
vectors offers enormous optimization opportunities, effectively changing a matrix-vector (BLAS-2) 
operation into a matrix-matrix (BLAS-3) operation.  Even for dense matrices, the latter algorithms have 
much higher data reuse and therefore better performance.  (BLAS-3  performance is typically 5x or more 
that of BLAS-2 performance, when both are hand-tuned.)  Sparsity shows speedups as high as 6x when the 
code is organized to take advantage of multiple vectors. 
 
The work done in Sparsity is continuing in an NSF-funded project called BeBOP (Berkeley Benchmarking 
and OPtimization), which is a joint project with Jim Demmel.  Over the past summer, we worked with  12 
undergraduate students on various aspects of the BeBOP agenda. One group of students looked at the 
problem of taking advantage of symmetry in optimizing sparse matrix-vector multiplication  for symmetric 
matrices.   Support for symmetric matrices is  important in many applications, and we were able to 
demonstrate speedups of 50% by exploiting symmetry, and an additional 2x by combining it with register 
blocking.  The issues of combining the  symmetry and register blocking were surprising subtle, due to  the 
particular structure of non-zeros that arise in practice, and  to the increased register demands in processing a 
single block  of a symmetric matrix.  Another group looked at a related  algorithm, sparse triangular solve, 
and demonstrated similar speedups using both register blocking and various heuristics that switch from a 
sparse to dense representation and algorithm when the matrix becomes relatively dense.  This latter 
technique was a especially useful in a matrix from Spice circuit simulation, demonstrating speedups of 50% 
overall.  Technical reports on  the work done by both groups are forthcoming.  
 
IRAM: An Architecture for Memory-Intensive Applications 
 
The difficulty of optimizing many algorithms for memory hierarchies originally led to my interest in 
alternate memory system designs, and in particular the use of mixed logic and DRAM, which avoids the off-
chip accesses to DRAM, thereby gaining bandwidth, while lowering latency and energy consumption.  In 
the IRAM project, a  joint effort with David Patterson, we developed an architecture  to take advantage of 
this technology.  The IRAM processor is a  single chip system designed for low power and high performance 
on multimedia applications and achieves an estimated 6.4 GOP/s in a 2 Watt design [2].  The project is in 
the final stages of design, and will be fabricated by IBM later in the next few months.  
 
Many architectural ideas that appear to be useful from a hardware standpoint fail to achieve wide acceptance 
due to lack of compiler support.  The IRAM architecture is based on vector instructions,  historically 
reserved for expensive vector supercomputers  designed for large-scale scientific and engineering 



applications. An important component of this project has been the compiler and benchmarking work done to 
help evaluate different designs and to demonstrate the ability to achieve high performance from compiled 
code.  We  demonstrated that a vectorizing compiler can effectively expose  the on-chip bandwidth on 
IRAM, and that vectorization can be  applied to the narrow data types (8, 16, and 32-bit) that arise  in 
multimedia applications [5].  Vector architectures are becoming  increasingly popular for graphics and 
multimedia in the commercial  arena, although they often come under the name ``SIMD extension.''   Our 
work on automatic vectorization has shown that the IRAM  instruction set, with it full support for strided 
and indexed memory operations on variable-width datatypes, is a better compilation target than the SIMD 
extensions like Intel's MMX. 
 
Earlier benchmarking work on IRAM for the FFT problem directly influenced the instruction set design.  
Initial work showed that IRAM needed an efficient mechanism for computing reductions.  Our work on 
benchmarking the FFT (in assembly) revealed that a small generalization of the instructions for reductions 
could make the FFT run 5x faster, without significant changes to the hardware.  Far from being an ``FFT 
instruction'' we have recently shown how to use these instructions in sorting and computing histograms.  In 
addition to the IRAM project on  campus (funded by DARPA and MICRO), the benchmarking work  is 
continuing with a project at LBL (with Xiaoye Li, Lenny Oliker, and Parry Husbands) to understand 
emerging architectures that  might be available for future high-end machines.  This may allow DOE to 
anticipate future architecture for scientific  computing, rather than having them disappear due to market 
shifts out of their control. 
 
ISTORE: Reliability of Large-Scale Clusters 
 
Many of the systems used for large-scale storage, web service, or  scientific computing are often based on 
the scalable cluster model.   It has the advantage of scalability and low cost, but even high profile systems at 
eBay, Amazon, and the New York Stock Exchange have proven susceptible to outages.  The ISTORE 
project looked at  hardware and software techniques for building highly available systems.  The ISTORE 
hardware has several levels of redundancy, as well as built-in monitoring for temperature, humidity, 
vibration,  and intrusion, as well as a separate diagnostic system that  contains a processor per node and an 
independent network [1].   One of my students, Daniel Hettena, has been developing an interface for  
accessing the diagnostic information, and also looking at ways of  using the redundant Ethernet interfaces in 
each node to dynamically  achieve high bandwidth (by striping messages across the interfaces) or  high 
availability (using subsets of interfaces when there is a  failure in an interface or network link).   
 
On the software side, I am working with another student, Noah Treuhaft, on the general trade-off between 
high available and high  performance in the design of distributed data structures.  In earlier  work, we 
developed dynamic techniques to address performance heterogeneity, which is increasingly important for 
large-scale  clusters.  This was an extension of the work described in the “River” paper [6].  Our work 
address heterogeneity in parallel I/O, which arise from different hardware or software versions,   
fragmentation, or simply different layouts.  The general problem  of performance heterogeneity will be 
increasingly important as  scientific applications are developed for loosely coupled clusters and ``the grid.'' 
 
Application Level Tools 
 
My research group has a strong tradition of doing research in the applications, as a driving function for our 
systems work.   Our most ambitious effort is to build a tool for fluid simulation using the immersed 
boundary method.  The method was developed by Charlie Peskin and Dave McQueen at Courant Institute, 
models a biological system as a set of elastic fibers within an incompressible fluid.  Best known for its use 
for heart simulation, the method has also been used to simulate platelet coagulation during clotting, embryo 
growth, fluid flow in the cochlea, and other biological (as well as non-biological) systems.  Several research 
groups in the U.S. and in Europe have used the immersed boundary method code, but the version developed 



at Courant runs only on vector and shared memory supercomputers, for which availability is quite limited.  
We have developed an implementation of the immersed boundary method in Titanium language, which is 
designed for distributed memory machines and large clusters as part of the NPACI partnership at SDSC.  
We have run a full heart model on a small number of time steps, and are working on several optimizations, 
including use of a more scalable solver based on the dissertation work of my former postdoc, Greg Balls.  
We are also developing a performance model for the application, similar to our model used several years ago 
for the 2D problem [10].  We plan to run a full execution of a heartbeat (which consumed roughly 100 hours 
of Cray C90 time) before the end of the year.  While our short term goal is accurate and efficient modeling 
of the heart, our longer term goal is to produce a tool for the immersed boundary method that uses the 
features of Java (and therefore Titanium) to allow Biologists to instantiate other physical systems within our 
generic parallel framework.  We believe such a system would be useful in building a full simulation of 
several interacting organ systems or, ultimately, even a “digital human.”  
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