
ROC-1: Hardware Support for Recovery-Oriented Computing
David Oppenheimer, Aaron Brown, James Beck, Daniel Hettena, Jon Kuroda, Noah

Treuhaft, David A. Patterson, and Kathy Yelick
Computer Science Division, University of California at Berkeley

{davidopp,abrown,beck,danielh,jkuroda,treuhaft,pattrsn,yelick}@cs.ber-
keley.edu

Abstract
We introduce the ROC-1 hardware platform, a large-scale cluster system designed
to provide high availability for Internet service applications. The ROC-1 prototype
embodies our philosophy of Recovery-Oriented Computing (ROC) by emphasizing
detection and recovery from the failures that inevitably occur in Internet service
environments, rather than simple avoidance of such failures. ROC-1 promises
greater availability than existing server systems by incorporating four techniques
applied from the ground up to both hardware and software: redundancy and isola-
tion, online self-testing and verification, support for problem diagnosis, and con-
cern for human interaction with the system.

1 Introduction

In recent years the number and variety of Internet services has proliferated. The economic cost of

downtime to service providers is substantial—millions of dollars per hour for brokerages and

credit card companies, hundreds of thousands of dollars per hour for online retailers and services

like amazon.com and eBay [34] [21]. Despite this pressing need for high availability, and many

decades of research by the fault-tolerance community, existing techniques for avoiding failures

have not prevented a string of costly and well-publicized problems for those who operate Internet

services. Indeed, InternetWeek recently reported that 65% of the sites they surveyed had experi-

enced at least one customer-visible outage during the previous six months, while 25% had experi-

enced three or more [34].

We believe these problems stem from a fundamental mismatch between the goals and

assumptions of much previous availability research, and the realities of modern Internet services.

For example, much fault-tolerance research has focused on reducing the failure rate of individual
1

system hardware and software components in isolation. Error-correcting memory reduces the fail-

ure rate of DRAM, and formal models of software allow specified failure modes to be checked

and eliminated. But Internet services are created by composing a complex set of hardware and

software components that are heterogeneous and subject to continuous upgrade, replacement, and

scaling in their numbers. These systems are too complex to model formally, and reducing the fail-

ure rate of individual components may not substantially reduce the rate of overall system failures

due to unexpected interactions between components. Moreover, a focus on reducing hardware and

software failure rates ignores the fact that many system failures result from unavoidable human

interaction with systems, e.g., during hardware and software upgrades and repairs, problem diag-

nosis, configuration, system expansion, and the like. Indeed, the design of existing server systems

generally overlooks the importance of human factors and the fact that humans are fallible [4].

Put simply, despite reductions in hardware and software failure rates, failures are inevitable.

With this observation in mind, we propose recovery-oriented computing, a philosophy for achiev-

ing high availability that focuses on detecting and recovering from failures rather than preventing

them entirely. Quantitatively one can view this philosophy as focusing on the reducing the contri-

bution of Mean Time to Repair to overall system unavailability. We propose four techniques as

the initial basis for ROC: redundancy and isolation; online self-testing and verification; support

for problem diagnosis; and concern for human interaction with the system. The ROC philosophy

was first introduced in [3] and its goals and techniques are described in more detail in [2].

In this paper we focus on ROC-1, a prototype hardware platform for Internet services that

incorporates hardware support for mechanisms essential to Recovery Oriented Computing. The

ROC-1 system is a 64-node cluster that holds 1.2 TB of online storage and that fits in three stan-

dard machine room racks. Each brick node, packaged in a half-height disk canister, consists of an
2

18 GB SCSI disk along with a custom-designed x86 PC board that contains a Pentium II mobile

processor, DRAM, network interfaces, and a Motorola MC68376-based diagnostic processor con-

nected to a private diagnostic network. The diagnostic processors, described in more detail in Sec-

tion 3, collect data from environmental sensors distributed throughout the system and control fault

injection hardware.

The remainder of this paper is organized as follows. In Section 2 we present an overview of

Recovery Oriented Computing. Section 3 describes the ROC-1 hardware in detail, with a particu-

lar focus on its hardware mechanisms that support ROC. Section 4 describes the status of our soft-

ware support for ROC and our evaluation methodology, Section 5 briefly discusses related work,

and in Section 6 we conclude.

2 An overview of Recovery Oriented Computing

Traditional fault-tolerant computing research has generally focused on systems with software that

evolves slowly if at all, that use a single well-defined hardware platform, that are operated by an

extremely well-trained staff, and that are given workloads that can be well-defined at develop-

ment time and that do not change during operation. In such an environment, techniques such as

the use of redundant hardware with built-in error checking, extensive pre-deployment testing, and

formal modeling can be applied to achieve high availability.

But Internet service systems are developed and deployed under significantly different condi-

tions. For these systems, software and hardware vary widely and evolve during system operation;

development cycles are short; workloads are constantly changing; testing is minimal; operators

may be poorly trained; and software and hardware components are commodity, heterogeneous,

and of a scale that defies simple modeling. As a result, traditional high-availability techniques
3

have proven inadequate, too inflexible, too time-consuming, or too expensive for use in these sys-

tems. Therefore instead of trying to prevent failures, Recovery-Oriented Computing focuses on

techniques to expose latent errors early, to contain failures when they do occur, to improve the

reliability of error detection and recovery mechanisms, to help operators diagnose and repair

problems, and to tolerate operator error during system maintenance tasks. The techniques we are

implementing fall into four general categories: redundancy and isolation, online testing and verifi-

cation, support for online problem diagnosis, and design for human interaction.

Redundancy dictates that the system should have extra software and hardware components,

paths between them, and copies of data, so that there exists no single point of failure in the sys-

tem. Isolation refers to the ability to partition the system so that one partition of components can-

not affect any other partition. This property is useful for concealing the effects of failures,

avoiding propagation of failures, allowing incremental system upgrade, permitting repair of bro-

ken components without taking the entire system down, and allowing testing and operator training

on parts of a live system without affecting portions of the system not being used for testing or

training.

A second principle of ROC is the use of online testing and verification to detect latent soft-

ware and hardware errors, and to test the correctness of error-handling and recovery procedures.

Shrinking software development cycles, ever-growing software feature sets, and a proliferation of

hardware and software building blocks have made fully testing products—let alone the interac-

tions of features within and between products and versions of products—nearly impossible [17].

A system with hardware and software isolation can be instrumented at its component interfaces to

inject test inputs or faults and to observe the system’s response.
4

Online testing and verification may prove particularly useful in addressing latent errors

caused by faults. A fault is the original cause of an error, such as a programmer mistake or an

alpha particle striking a memory cell. When a fault occurs, it creates a latent error that is said to

become effective when it is activated (e.g., when a faulty code path is executed or data is read

from a corrupted memory cell). Studies of accidents in other fields, such as the nuclear power

industry [27] [29], indicate that latent errors can accumulate and lead to multiple simultaneous

failures. Self-testing makes it possible to find latent errors that may not be exposed during offline

testing, hence extending the testing cycle throughout the lifetime of the system.

Just as some modern DRAM incorporates scrubbing logic to detect and correct latent single-

bit errors using ECC information, online testing and verification can be used on a system-wide

level to detect latent hardware and software errors before they turn into failures. Latent errors may

manifest themselves during online testing because the system can test the full stack of applica-

tions, operating system, drivers, and hardware at the user’s site; no vendor can test for all possible

combinations of these factors. As two specific examples, we believe online testing can help sig-

nificantly in exposing transient bugs that may only become manifest when certain sets of compo-

nents interact, and can also help to reveal bugs in error0handling code. Error and fault handling

code paths are generally difficult to test because of the infrequency with which errors are encoun-

tered in traditional “beta testing” scenarios and the difficulty of testing under all possible scenar-

ios of product, version, and patches applied to software, firmware, and hardware.

Additionally, we propose the use of fault injection to reduce latent human errors. By continu-

ally and automatically training and retraining operators to diagnose and handle failure scenarios, a

ROC system should experience a smaller Mean Time to Repair than a non-ROC system when

human intervention is necessary to configure, upgrade, or repair the system.
5

Despite the proliferation of management standards and APIs such as SNMP [7], WBEM [10],

and JMX [33], pinpointing the root cause of system failures and performance degradations

remains challenging. We believe that like online testing and verification, support for diagnosis of

system problems must be built into a system from the ground up. This is in contrast to systems

that mask failures using redundancy; in those systems failures may manifest themselves as perfor-

mance degradations as load is shifted onto non-failed system components without any indication

of what has happened. Instead, we suggest that all components should have error-reporting inter-

faces and that failure information should be propagated up through all levels in the system so that

the errors can be handled appropriately by an application or an administrator. Logging failures at

all levels of the system allows both early detection of components that are on the verge of failure

and eases post-mortem investigation of a failure that could not be prevented.

Finally, recovery-oriented computing recognizes that reducing human error is essential to

improving system availability [4]. Because not all tasks of system operation can be automated,

interaction of human operators with the system is inevitable. We believe large-scale server sys-

tems should be designed with concern for human interaction so as to minimize the likelihood and

seriousness of these errors. Many of the techniques already discussed support this goal, e.g., the

ability to insert faults allows simulation of failures for operator training; comprehensive data

gathering for problem diagnosis makes easier the task of finding the root cause of problems; and

the use of redundancy and isolation allows failed components to remove themselves from the sys-

tem for repair or replacement at the operator’s leisure. We are currently investigating additional

software techniques for reducing the impact of human error such as the ability to undo all human-

initiated operations.
6

Overall, the goal of the UC Berkeley Recovery Oriented Computing project is to substan-

tially improve system availability by applying techniques of the type just described. Although

many of the techniques for ROC are software-based, specialized hardware support can provide

additional benefits by implementing some of the techniques at a lower level than is possible in

software. To this end we have built the ROC-1 hardware prototype, a prototype server platform

for exploring the techniques of Recovery Oriented Computing. We describe this system in the

next section.

3 Hardware Overview

The ROC-1 hardware prototype is a 64-node cluster composed of custom-built nodes, called

bricks. Figure 1 shows the organization of a brick. Each brick contains a 266 MHz mobile Pen-

tium II processor, an 18 GB SCSI disk, 256 MB of ECC DRAM, four redundant 100 Mb/s net-

work interfaces connected to a system-wide Ethernet, and an 18 MHz Motorola MC68376-based

diagnostic processor (DP) connected to a private diagnostic network. For both space and power

efficiency, the bricks are each packaged in a single half-height disk canister. A photograph of a

brick partially inserted into its canister appears in Figure 2.

The ROC-1 bricks are fully interconnected via redundant Ethernet networks. Each of the four

brick network interfaces is connected to one of sixteen first-level network switches. Each of these

switches connects via a Gigabit Ethernet uplink to one of two ganged Gigabit switches, each of

which is capable of routing the nodes’ full crossbar bandwidth. Figure 3 shows the interconnec-

tion topology of the network connecting the nodes. Although we considered using System Area

Network (SAN) technology when designing ROC-1, the availability of network interface parts at
7

the time, and physical space constraints on the processor board, led Gigabit Ethernet to be the

only viable networking option.

Though logically structured as a cluster, ROC-1 is designed with a processor-to-disk ratio

higher than that used by most existing server clusters. This choice was made to ensure that suffi-

cient excess computing capacity is available, beyond that required by the application software

running on each node, to dedicate to self-monitoring and other self-maintenance functionality.

An additional important difference between ROC-1 nodes and standard server nodes is ROC-

1’s incorporation of a diagnostic subsystem. The per-brick diagnostic processor is a prototype for

what in a production system would be a small, independent, trusted piece of hardware running

well-verified monitoring and control software. The diagnostic subsystem consists of a Motorola

68376 CPU that includes a Controller Area Network (CAN) [19] bus controller, a dual UART that

connects the 68376 to two serial port interfaces on the PC chipset, 1MB of FLASH RAM, and

1MB of battery-backed SRAM. The diagnostic subsystem’s hardware monitoring functionality is

fed by an array of sensors on each brick and on the system backplane. Each brick contains three

thermometers, four voltage monitors, a sensor that detects attempts to remove the brick from the

system, a battery warning for the diagnostic processor’s SRAM memory, and an accelerometer on

the disk drive to detect abnormal vibrations due to improper disk mounting or even earthquakes.

Figure 1: Block diagram of a ROC-1 brick board.
8

Each “shelf”, a unit of 8 bricks, contains three more thermometers, a fan stall detector, and a

humidity sensor.

The control functionality of the diagnostic subsystem allows power to the disk, Pentium II

CPU, and network interfaces to be independently turned on and off; turning off power is one way

to simulate component failure. The DP also controls extra hardware that allows faults to be

injected onto the brick’s SCSI and memory buses and the brick’s Ethernet transmit and receive

lines. Finally, the DP can reset the Pentium II CPU. Monitoring and control data is exchanged

among diagnostic processors through a private diagnostic network built from per-shelf 1 Mb/sec

Figure 2: A ROC-1 brick. The processor board is shown partially removed from the canister, and with its disk
removed.

Figure 3: ROC-1’s fault-tolerant routing topology. Each
square is a node, each trapezoid is a second-level 100
Mb/sec switch with 1 Gb/sec uplink and each triangle is a
first-level Gigabit Ethernet switch. There are four paths from
each brick to a distinct second-level switch, and two paths
from each second-level switch to a distinct first-level switch.
As a result, there are two completely distinct routes from
each node to each other node.

Figure 4: A ROC-1 brick connected to the backplane for
one shelf. Each brick connects to the backplane via two
72-pin connectors and two larger power connectors. The
72-pin connectors contain wires for four full-duplex 100
Mbps Ethernets and one full-duplex serial line.
9

CAN buses. A photograph of a ROC-1 brick connected to the backplane appears in Figure 4, and

a photograph of one ROC-1 shelf appears in Figure 5.

Although designed primarily with availability and maintainability in mind, ROC-1 also offers

good cost-performance as a Internet server. Internet servers are typically deployed at colocation

sites, which charge on the order of $1000 per rack per month and $200 per month for extra 20

Amp power circuits. Thus physical space and power consumption should be minimized when

designing Internet servers. To address space efficiency, ROC-1’s packaging one disk with one

CPU in a half-height disk canister allows eight nodes to fit in 3U of rack space. Power efficiency

was also considered: by using a ratio of one disk for each CPU, each node needs only the process-

ing power of a low-cost, low-power, embedded CPU. This contrasts with traditional server sys-

tems which attach multiple disks to each node and use one or more expensive, high-power, server

CPUs. We have measured average brick power consumption at 27.6W and peak brick power con-

sumption at 50W, for a total power consumption per shelf of 221W average and 400W peak. Our

first-level network switches add 6.6 kW and our second-level network switches add 5.3 kW, for a

total power budget of almost 12 kW just for network switches. Including network switches, then,

total peak system power consumption for 64 nodes is 15kW. Thus while our nodes are quite

power-efficient, for a non-prototype ROC-1 system to make sense, newer, lower-power switches

should be used.

Figure 5: A shelf with five bricks inserted and three empty spaces.
10

In addition to saving cost by using an embedded CPU, packing a CPU with each disk amor-

tizes the cost of disk enclosures, power supply, cabling, and cooling that are already needed for

disks (and are provided by existing disk enclosures) across both the disks and CPUs. Finally, from

a performance standpoint, by using only one disk on each I/O bus, the system eliminates bottle-

necks associated with placing multiple I/O devices on a bus, e.g., bus contention during arbitra-

tion and data transfer. Note that although the current ROC-1 system occupies three machine room

racks, many of the largest components such as UPSes and network switches were purchased sev-

eral years ago. We believe that by using today’s smaller UPSes and switches the system could be

made to fit in approximately two racks.

The remainder of this section focuses on specific characteristics of the ROC-1 hardware

architecture intended to support the four major principles of ROC: isolation and redundancy;

online self-testing and verification; support for problem diagnosis; and concern for human inter-

action with the system.

3.1 Redundancy and isolation

The ROC-1 hardware platform implements the classic principle of avoiding any single point

of failure by incorporating redundant network interfaces, network switches, shelf power supplies,

and fans; using an uninterruptable power supply; and using a diagnostic processor and diagnostic

network that provide a secondary path to control each node. This last feature is useful in that it

allows bricks to be power-cycled when all of a node’s Ethernet interfaces fail or a design flaw in

the Ethernet driver software or firmware has made a node unable to communicate via the Ethernet

network. This hardware support for redundancy is orthogonal to higher-level redundancy pro-

vided through software techniques such as replicated storage of data or use of redundant front-end

processes to handle interaction with user clients.
11

Related to redundancy is isolation—the ability to partition the system logically as well as

physically during normal operation. Logical partitioning is provided through standard mecha-

nisms such as running system software components in different virtual machines or different

operating system address spaces protected by memory management hardware, while physical par-

titioning is provided by the ability of the diagnostic processor to control power to each network

interface and CPU, and each disk. The ability to turn off network interfaces allows a node to be

physically isolated from the rest of the system at a very low level but left online and accessible

through the diagnostic network for debugging purposes.

As mentioned in Section 2, partitioning is useful for a number of reasons: it helps to confine

faults to the software or hardware module in which they occur; it allows failed system compo-

nents to be diagnosed and repaired online without affecting the rest of the system; it enables incre-

mental online system upgrade and scaling; and it allows operators to experiment and train using

the actual, deployed hardware and software configuration at a site without affecting normal sys-

tem operation.

3.2 Online testing and verification

Online testing analyzes the exact hardware and software configuration used at a particular

server site. An isolated partition of the system with redundant copies of the actual dataset of a

site’s application can be established; the actual request load to which the system is exposed during

normal operation can then be mirrored during the test from the load sent to the “production” parti-

tion of the system, or a historical trace of previous requests can be used as the test load.

We foresee three types of online testing: correctness tests, robustness tests, and operator tests.

In correctness tests, an input or fault with a known expected response by the system is inserted,

and hardware or software monitoring checks for the expected response. In robustness tests, a ran-
12

domly generated input or fault is inserted, and software checks to make sure that the system fails

in a reasonable way. In operator tests, a failure is caused that requires a human operator’s

response, and the system checks to make sure the problem is corrected properly and within a

desired time period. Note that of these three types of tests, only correctness tests require fore-

knowledge of the correct response to the test; robustness and operator tests only require checking

that the state of the system after the test is sane.

At the hardware level, in situ testing is enabled in ROC-1 by the ability to isolate nodes at the

Ethernet level and by the low-level fault injection hardware integrated into each brick. For exam-

ple, the diagnostic processor can inject faults into the memory bus and the transmit and receive

lines on the network interface in order to simulates errors such as bit flips. As a substitute for spe-

cialized hardware support, we are also investigating the possibility of using software-based virtual

machine technology to enable fault insertion on commodity hardware platforms.

3.3 Support for online problem diagnosis

At the hardware level, online problem diagnosis is supported by the environmental sensors

on the bricks and the system backplane. Each brick contains three thermometers (for detecting

components that are beginning to overheat), four voltage monitors (for detecting power irregular-

ities), a sensor that detects attempts to remove a brick from the system (so that critical state in the

node can be saved before power is removed), a monitor that indicates when the diagnostic proces-

sor's SRAM memory battery is low, and an accelerometer on the disk drive to detect abnormal

vibrations such as those that might cause a head crash or that might occur during an earthquake.

Furthermore, each shelf contains three thermometers and a humidity sensor for detecting such

conditions as overheating or flooding, and a fan stall detector for detecting failure of the power

supply fans. Though the software for automatically processing the data received from these sen-
13

sors is still under development, we intend that the information obtained from them is analyzed by

the diagnostic processor for automatic reaction, or is sent to a system administrator’s diagnostic

console. As an example of automatic reaction, a diagnostic processor that detects the ambient

temperature rising excessively might throttle back the brick’s CPU speed, power off the brick’s

disk, or power down the brick entirely, in order to reduce power consumption and hence decrease

the amount of heat produced by the node.

Recognizing that growth and upgrade can lead to an actual system configuration that differs

significantly from the original design, and that therefore an operators’ understanding of a system’s

configuration may not match the actual configuration, ROC-1 incorporates automatic network

and power topology self-discovery. Network configuration self-discovery can be accomplished

using standard SNMP-based network mapping tools, while power topology can be mapped using

powerline networking products that utilize power circuits for communication between PCs [35].

Finally, we intend to use the diagnostic processor’s Flash RAM as a “flight recorder,” storing

system logs and hardware status information in nonvolatile memory to enable post-mortem fail-

ure investigation. Flash RAM is particularly well-suited to this task because critical data can be

written to it as a node is failing in less time than is needed to write to a disk, and because data can

be written to the Flash RAM even in the case of a disk failure.

3.4 Design for human interaction

Because operator failure is a significant cause of downtime, ROC-1’s packaging is designed

with maintainability in mind: the only field-replaceable unit is the brick, which is as easy for an

operator to replace as a disk in a standard RAID array. ROC-1’s modular hardware architecture is

homogenous and free of cables within a shelf, thus simplifying upgrade and replacement. Finally,

the isolation and fault-injection techniques described earlier can be combined to train operators—
14

a portion of the system can be isolated and failures can be injected into the actual system hard-

ware, software, and workload request stream to allow operators to practice responding to prob-

lems.

4 Applications and evaluation

While the ROC-1 hardware has been built, its software is still under development. Rather than

write a generic software layer implementing all of the ROC techniques, we are starting by inte-

grating some of the ROC techniques into NinjaMail, an electronic mail system developed as part

of the UC Berkeley Ninja project [15]. In particular, we are implementing undo for administrative

actions and online testing of modules. Our initial email workloads are based on the SPECmail

[31] benchmark and mirroring the email load applied to the UC Berkeley EECS department’s

email server. To provide an initial fault workload we are instrumenting the Java Runtime Environ-

ment in which NinjaMail runs, to return errors from I/O operations.

Evaluating the effectiveness of techniques aimed at improving system availability is inher-

ently more difficult than evaluating those that improve performance, the traditional metric of sys-

tems research. This is because measuring availability requires not only an application workload,

as for performance benchmarks, but also a fault workload that simulates the faults to which a real

system is expected to be exposed during operation. Establishing a fault workload requires defin-

ing a fault model (i.e., enumerating the type and frequency of faults to which the system will be

exposed) and implementing mechanisms for injecting these faults into the system under evalua-

tion. Our approach to benchmarking availability, developed in earlier work, is to measure varia-

tions in Quality of Service metrics, e.g., throughput, latency, completeness of results returned, and

accuracy of results returned, as a fault workload is applied to a system running a standard perfor-
15

mance benchmark [5]. Because our first application is email, we intend to use the SPECmail

benchmark as the performance benchmark, and we will measure such metrics as throughput, error

rate, and number and impact of human errors made in administering the service.

A preliminary evaluation of the ROC-1 prototype indicates that it does well in achieving the

goals of enforcing isolation and redundancy, allowing low-level system monitoring, and enabling

hardware fault injection. The per-node power consumption is also quite reasonable: the average

power consumption of 28W/node is better than the typical 1U server consumption of 76W/node

but not quite as good as some recent power-optimized systems that consume 15W/node [30].

Overall system power consumption in ROC-1 could be significantly reduced by using new lower-

power switches—the switches we used consume five times as much power as all the brick nodes

combined.

5 Related Work

The notion of designing a system that assumes code will be buggy and therefore uses techniques

for fast recovery is reflected in recent work on the design of Internet services that are partitioned

into stateless “worker modules” and stateful back-end nodes [11] [26]. The worker modules in

these systems operate purely from soft state, and therefore can be restarted without damaging or

losing system data. Moreover, because they do not keep their own persistent state, worker mod-

ules do not incur startup time overhead in recovering lost data or restoring data consistency when

they are restarted. Other recent work has focused on formalizing the properties of such restartable

systems and on determining how and when they should be rebooted [6] [18].

Isolation and redundancy are traditional fault-tolerance techniques. Fail-fast system modules

were originally identified as an important system structuring principle by Gray [14], and the
16

recent use of shared-nothing hardware has enabled clusters to achieve fault containment for free

as compared to shared-memory multiprocessors that must use virtual-machine techniques for

such containment [13]. Redundancy via process pairs was also identified by Gray as an important

technique [14], and data replication has long been used in RAID systems to enhance storage avail-

ability [8]. Our ROC philosophy is novel not in its use of these techniques for enhancing avail-

ability, but rather in its use of these system properties to enable other techniques such as realistic

online self-testing and operator training.

Online verification has appeared in previous systems in the form of redundant data with

checking and repair logic, e.g., ECC, and as multi-way component replication with comparison

and voting logic. Online self-testing in the form of “built-in self-test” (BIST) techniques has

appeared in circuits and embedded systems [32], but not in server or cluster systems. IBM main-

frames such as the 3090 and ES/9000 incorporate the ability to inject faults into hardware data

and control paths and to invoke recovery code, but these mechanisms have been used for offline

testing rather than for revealing latent errors online [24].

Support for problem diagnosis has been studied in the context of root cause analysis. Banga

describes a combination of monitoring, protocol augmentation, and cross-layer data correlation

techniques to identify the causes of network problems in Network Appliance servers [1]. Other

researchers have studied event correlation techniques to isolate potential root causes from a com-

ponent dependency graph and observed symptoms and alarms [9] [16] [20] [36]. Our work builds

on these techniques by proposing more extensive hardware and software logging, by potentially

offloading diagnostic work onto a separate diagnostic processor, and by dynamically building

dependency information by tracing system requests end-to-end as they pass through the system.
17

The importance of human operators in maintaining system availability has been recognized

for decades [12] [28], but research into reducing human error in server systems through improved

human-computer interaction techniques has been all but ignored and its potential impact on avail-

ability has not been quantified.

Finally, we note that servers optimized for high density and low power consumption have

recently entered the marketplace [30].

6 Conclusion

In this paper we have described the design of ROC-1, a 64-node prototype Internet server based

on combined CPU-disk bricks that incorporate hardware support for Recovery Oriented Comput-

ing (ROC). Emphasizing redundancy and isolation, online testing and verification, support for

problem diagnosis, and design for human interaction, ROC recognizes that failures are inevitable

and therefore emphasizes reducing the time needed to detect and recover from failures rather than

eliminating them. By building the ROC principles into ROC-1’s hardware and software from the

ground up, we believe we will achieve a significantly higher resilience to hardware, software, and

human errors than is achieved using existing techniques. ROC-1’s hardware is also built with a

concern for cost performance; in an era of Internet servers with largely “embarrassingly parallel”

workloads, we believe small, low-power-consuming nodes optimized for density yield better cost-

performance than large, power-hungry nodes optimized for SPEC benchmarks.

References

[1] G. Banga. Auto-diagnosis of Field Problems in an Appliance Operating System. Proceedings

of the 2000 USENIX Annual Technical Conference, 2000.
18

[2] A. Brown. Accepting failure: availability through repair-centric system design. U.C. Berke-

ley Qualifying Exam Proposal, 2001.

[3] Brown, A. and D. A. Patterson. Embracing Failure: A Case for Recovery-Oriented Comput-

ing (ROC). To appear in Proceedings of the 2001 High Performance Transaction Processing

Symposium (HPTS ‘01), 2001.

[4] A. Brown and D. A. Patterson. To Err is Human. First Workshop on Evaluating and Archi-

tecting System dependabilitY (EASY ‘01), 2001.

[5] A. Brown and D.A. Patterson. Towards Availability Benchmarks: A Case Study of Software

RAID Systems. Proceedings of the 2000 USENIX Annual Technical Conference, 2000.

[6] G. Candea and A. Fox. Recursive Restartability: Turning the Reboot Sledgehammer into a

Scalpel. Proceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII),

2001.

[7] J.D. Case, M. Fedor, M.L. Schoffstall, and C. Davin. Simple Network Management Protocol

(SNMP), RFC 1157, 1990.

[8] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High perfor-

mance, reliable secondary storage. ACM Computing Surveys, vol. 26, no. 2, pp. 145-185,

1994.

[9] J. Choi, M. Choi, and S. Lee. An Alarm Correlation and Fault Identification Scheme Based

on OSI Managed Object Classes. 1999 IEEE International Conference on Communications,

1999, pp. 1547–51.

[10] Distributed Management Task Force, Inc. Web-Based Enterprise Management (WBEM) Ini-

tiative, 2001. http://www.dmtf.org/standards/standard_wbem.php
19

[11] A. Fox, S. Gribble, Y. Chawathe, et al. Cluster-based Scalable Network Services. Proceed-

ings of the 16th Symposium on Operating System Principles (SOSP-16), 1997.

[12] J. Goldberg. New Problems in Fault-Tolerant Computing. Proceedings of the 1975 Interna-

tional Symposium on Fault-Tolerant Computing, 1975, pp. 29-34.

[13] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cellular Disco: resource management

using virtual clusters on shared-memory multiprocessors. Proceedings of the 17th Sympo-

sium on Operating Systems Principles, 1999.

[14] J. Gray. Why Do Computers Stop and What Can Be Done About It? Symposium on Reliabil-

ity in Distributed Software and Database Systems, 1986, pp., 3-12.

[15] S. Gribble, M. Welsh, R. von Behren, et al. The Ninja architecture for robust Internet-scale

systems and services. Computer Networks 35(4):473-497.

[16] B. Gruschke. Integrated Event Management: Event Correlation Using Dependency Graphs.

Proceedings of 9th IFIP/IEEE International Workshop on Distributed Systems Operation &

Management (DSOM98), 1998.

[17] J. Hamilton. Fault Avoidance vs. Fault Tolerance: Testing Doesn’t Scale. High Performance

Transaction Systems (HPTS) Workshop, 1999.

[18] Y. Huang, C. Kintala, N. Kolettis et al. Software Rejuvenation: Analysis, Module and Appli-

cations. Proceedings of the 1995 International Symposium on Fault-Tolerant Computing,

1995, pp. 381–390.

[19] ISO/DIS 11898. Controller Area Network (CAN) for High Speed Communication. 1992.
20

[20] S. Kätker and M. Paterok. Fault Isolation and Event Correlation for Integrated Fault Manage-

ment. Fifth IFIP/IEEE International Symposium on Integrated Network Management (IM V),

1997, pp. 583–596.

[21] R. Kembel. The Fibre Channel Consultant: A Comprehensive Introduction. Northwest Learn-

ing Assoc., 1998.

[22] D. R. Kuhn. Sources of Failure in the Public Switched Telephone Network. IEEE Computer

30(4), April 1997.

[23] J. Menn. Prevention of Online Crashes is No Easy Fix. Los Angeles Times, 2 December 1999,

C-1.

[24] A. C. Merenda and E. Merenda. Recovery/Serviceability System Test Improvements for the

IBM ES/9000 520 Based Models. Proceedings of the 1992 International Symposium on

Fault-Tolerant Computing, 1992, pp. 463–467.

[25] B. Murphy and T. Gent. Measuring System and Software Reliability using an Automated

Data Collection Process. Quality and Reliability Engineering International, 11:341–353,

1995.

[26] Ninja: A Framework for Network Services. Submission to the 18th Symposium on Operating

System Principles (SOSP), 2001.

[27] C. Perrow. Normal Accidents. Princeton University Press, 1999.

[28] J. Rasmussen and W. Rouse, eds. Human Detection and Diagnosis of System Failures: Pro-

ceedings of the NATO Symposium on Human Detection and Diagnosis of System Failures.

Plenum Press, 1981.

[29] J. Reason. Human Error. Cambridge University Press, 1990.
21

[30] RLX Technologies. “Redefining server economics.” RLX Technologies White Paper, 2001.

http://www.rocketlogix.com/

[31] SPEC, Inc. SPECmail 2001. http://www.spec.org/osg/mail2001/

[32] A. Steininger and C. Scherrer. On the Necessity of On-line-BIST in Safety-Critical Applica-

tions—A Case-Study. Proceedings of the 1999 International Symposium on Fault-Tolerant

Computing, 1999, pp. 208–215.

[33] Sun Microsystems, Inc. Java Management Extensions JMX. Preliminary Specification Draft

1.9, Sun Microsystems, Inc., 1999.

[34] T. Sweeney. No Time for DOWNTIME—IT Managers feel the heat to prevent outages that

can cost millions of dollars. InternetWeek, n. 807, 3 April 2000.

[35] J. Waddle and M. Walker. Power Dependence Determination with Powerline Networking.

Project for UC Berkeley CS252, May 2001. http://www.cs.berkeley.edu/~mwalker/power-

net.html

[36] S. Yemini, S. Kliger et al. High Speed and Robust Event Correlation. IEEE Communications

Magazine, 34(5):82–90, May 1996.
22

	ROC-1: Hardware Support for Recovery-Oriented Computing
	Abstract
	1 Introduction
	2 An overview of Recovery Oriented Computing
	3 Hardware Overview
	Figure 1: Block diagram of a ROC-1 brick board.
	Figure 2: A ROC-1 brick
	Figure 3: ROC-1’s fault-tolerant routing topology.
	Figure 4: A ROC-1 brick connected to the backplane for one shelf.
	Figure 5: A shelf with five bricks inserted and three empty spaces
	3.1 Redundancy and isolation
	3.2 Online testing and verification
	3.3 Support for online problem diagnosis
	3.4 Design for human interaction

	4 Applications and evaluation
	5 Related Work
	6 Conclusion
	References

