
An Evaluation of Current High-Performance Networks

Christian Bell† Dan Bonachea∗ Yannick Cote† Jason Duell† Paul Hargrove†

Parry Husbands† Costin Iancu† Michael Welcome† Katherine Yelick∗†

†Computational Research Division, Lawrence Berkeley National Laboratory
∗Computer Science Division, University of California at Berkeley

upc@lbl.gov http://upc.lbl.gov/

Abstract

High-end supercomputers are increasingly built out of
commodity components, and lack tight integration between
the processor and network. This often results in inefficien-
cies in the communication subsystem, such as high software
overheads and/or message latencies. In this paper we use
a set of microbenchmarks to quantify the cost of this com-
moditization, measuring software overhead, latency, and
bandwidth on five contemporary supercomputing networks.
We compare the performance of the ubiquitous MPI layer
to that of lower-level communication layers, and quan-
tify the advantages of the latter for small message perfor-
mance. We also provide data on the potential for various
communication-related optimizations, such as overlapping
communication with computation or other communication.
Finally, we determine the minimum size needed for a mes-
sage to be considered ‘large’ (i.e., bandwidth-bound) on
these platforms, and provide historical data on the soft-
ware overheads of a number of supercomputers over the
past decade.

1. Introduction

Over the past ten years, improvements in communica-
tion latency and the software overhead of communication
on high-end machines have lagged far behind the exponen-
tial increases in processor performance. One reason for this
trend is that most current large-scale parallel machines are
constructed as clusters of workstations or personal comput-
ers: the commodity PCI buses commonly found in such sys-
tems were not designed to support parallel computation, and
provide a lower level of hardware integration between the
CPU/memory and networking subsystems than was char-
acteristic of the custom-designed parallel machines built in
the early 90’s. Also, the emergence of MPI as the dominant
parallel programming model has focused attention on mes-
sage passing performance, with large message bandwidth

being the most common measure of network quality. Ven-
dors have accordingly tuned and optimized their systems for
bandwidth, while software overhead and message latency
have generally received less attention.

At the same time, however, there is ongoing interest in
the scientific application community in using irregular data
structures and communication patterns. To improve solu-
tion time, accuracy, and/or memory usage, developers often
move from dense matrices to sparse ones, from structured
meshes to unstructured ones, and from static algorithms to
ones that adapt in space or time. These algorithms natu-
rally involve communication of small amounts of data in a
demand-driven style, such as retrieving ghost nodes in an
unstructured mesh, filling in boundaries in an adaptive rect-
angular mesh, or sending events in an event-driven simu-
lation. Bulk-synchronous programming models with two-
sided communication can be used for these algorithms, but
at a significant cost in programming complexity, since small
messages are packed into large ones and point-to-point syn-
chronization is replaced by global synchronization.

In this paper we evaluate both small and large mes-
sage performance on five contemporary supercomputing
networks. Using the LogP [3] model (and its extension for
large messages, LogGP [1]) as a starting point for our tests
and analysis, we offer a number of contributions:

• We describe a set of network benchmarks for measur-
ing bandwidth, latency, and software overhead, which
we have implemented over a wide variety of network
APIs, including MPI [17], VIPL [12], SHMEM [6],
LAPI [13], E-registers [6], and GM [7].

• We provide data from these benchmarks for both small
and large message performance on many of the super-
computer networks in use today, and compare the per-
formance of MPI to that of lower-level network APIs.

• Using our results, we examine various application
speedups that can be achieved via network-related
optimizations, such as overlapping computation with

System Network
Bus to NIC &

bandwidth
One-sided, reliable
network hardware

CPU type
Non-MPI network
APIs benchmarked

Cray T3E Proprietary
Proprietary
(330 MB/sec)

Yes
450 MHz

Alpha
SHMEM, E-registers

IBM RS/6000 SP SP Switch 2
GXX bus
(2 GB/sec)

No
375 MHz
Power 3+

LAPI

Compaq Alphaserver
ES45

Quadrics
PCI 64/66

(532 MB/sec)
Yes

667 MHz
Alpha

SHMEM

IBM Netfinity cluster Myrinet 2000
PCI 32/66

(266 MB/sec)
Yes

866 MHz
Pentium III

GM

PC cluster
Gigabit Ethernet

(SysKonnect)
PCI 64/66

(532 MB/sec)
No

1.2 GHz
Pentium III

VIPL

Table 1. Systems Evaluated

communication, pipelining messages, and the use of
message packing.

• We provide a historical portrait of the trends in small
message performance over the past 10 years.

Our interest in these issues grows out of our work imple-
menting compiler and runtime support for global address
space (GAS) languages, such as Unified Parallel C [22], Ti-
tanium [23], and Co-Array Fortran [2]. These languages
combine the convenience of a shared memory style of pro-
gramming with the control over performance of message
passing. Programmers have full control over how their data
is laid out across processors, and can access this data via
standard mechanisms such as pointer dereferences, array in-
dexing, ormemcpy-style bulk copy calls. This allows serial
programs (including irregular, adaptive programs that are
hard to program using explicit, two-sided messaging APIs)
to be parallelized incrementally (with the caveat that initial
versions will rely heavily on small message performance).
Compilers for GAS languages should be able to minimize
some of the costs associated with the use of small messages:
as we show in this paper, latency can be hidden by overlap-
ping communication with computation or other communi-
cation. It may also be possible to perform a certain amount
of message aggregation automatically. Application devel-
opers can then assess whether (and to what degree) they
wish to hand-code further optimizations at the source code
level, using standard techniques like message packing. The
tradeoffs that this GAS model presents between program-
ming complexity and performance will vary between ap-
plications, and will also depend on network performance.
Our work in this paper is a first step toward understanding
the likely performance of GAS languages for various appli-
cations on different supercomputing architectures, and the
methods by which they may be optimized.

While our motivation is the performance of GAS lan-
guages, the information in this paper should also be of gen-
eral interest to parallel application developers, particularly

those who wish to know how large their messages need to
be in order for their communication costs to be primarily
bandwidth-driven. We also hope this work may influence
benchmarking trends to focus more attention on software
overhead and latency, and encourage vendors to minimize
them in future systems. As our data shows, the current level
of support for these parameters in the marketplace is quite
varied, and their historical trends are not nearly as encour-
aging as those for most other aspects of computer perfor-
mance.

2. Systems evaluated

The systems and networks measured for this paper in-
clude many of those in production use in parallel comput-
ing today, including the Cray T3E, the IBM SP, Quadrics,
Myrinet 2000, and Gigabit Ethernet (GigE). Table 1 gives
a high-level summary of the platforms tested, and some of
their key attributes.

The machines range from custom-designed, tightly inte-
grated systems like the T3E to loosely coupled commodity
PCs connected via network cards running on industry stan-
dard PCI buses. Reflecting the predominant trend in the
supercomputing marketplace, most of the systems follow
the cluster of workstations approach. The T3E is the ma-
jor exception, with a network interconnect designed around
custom ‘E-registers’ integrated into the memory controller.
The IBM SP uses a proprietary bus to its network card that
is faster than the industry-standard PCI bus, but otherwise
resembles the remaining systems in its high-level design.

All of the systems provide one or more user APIs for
performing one-sided remote memory accesses, in which
the remote CPU does not need to be explicitly programmed
by the user to handle remote ‘get’ or ‘put’ requests. How-
ever, not all of the systems support this natively in the net-
work hardware. Those that do mainly use an RDMA (Re-
mote Direct Memory Access) approach, in which the CPU
sends the parameters for a transfer (including its length and
remote memory address) to the network card, which then

2

handles the transfer. Again, the T3E is an exception in that
it transfers data remotely via its fixed-length E-registers. In
both the RDMA and T3E approaches the remote CPU is
not involved, as the network hardware entirely handles ser-
vicing the memory request at the remote end. The systems
that lack hardware support for remote memory operations
instead service requests in software at the network library
layer: while the programmer does not need to insert receive
calls, the remote CPU is still involved. One of the networks,
Myrinet 2000, currently performs remote ‘put’ operations
in hardware but implements remote ‘gets’ in software: for
this paper we only benchmark ‘puts’, so it is placed in the
hardware supported category.

The networks also differ in whether their hardware pro-
vides reliable delivery of messages (this includes networks
where firmware is used on the NIC to provide reliability).
Those without such support implement it in software, again
at the network library layer. All of the systems that provide
hardware support for remote memory accesses also provide
reliable delivery in hardware as well, and vice versa, so
these features are perfectly correlated in our sample.

All the networks measured support kernel bypass: user
programs are allowed to directly access the network hard-
ware to avoid the cost of performing one or more system
calls for each message. The Gigabit Ethernet cluster ac-
complishes this by using a brand of card (manufactured
by SysKonnect) that has MVIA [18] drivers supporting the
VIPL API, which avoids the system calls incurred by more
commonly used IP-based protocols like TCP and UDP. The
latency and overhead numbers reported here are thus likely
to be better than those of most cluster systems running
Gigabit Ethernet (furthermore, our SysKonnect machines
were directly connected together, and so our numbers also
do not reflect the delay of going through a GigE hub or
switch).

3. Performance parameters

The parameters of our performance evaluation are based
on those of the LogP [3] model, which is a well-established
approach to modeling small message performance, and its
extension to capture large message performance, LogGP
[1]. Our model is quite close to LogGP, but contains certain
differences in order to better reflect the observed behaviors
of the networks tested. The parameters of our version are:

EEL End-to-end latency, i.e., the total time for a message,
from the beginning of the send function call to the
receipt of the data on the remote end.

os Send overhead, defined as the amount of time during
a message send that the sending CPU is busy with
transmission-related activity, and is thus unavailable
for other work.

or Receive overhead. The same as send overhead, but
for the receiving side of a message transmission.

g The gap, defined as the average time between mes-
sages of minimum size during a large sequence of
message transmissions. Inverting this parameter
gives the maximum number of messages that can be
sent during a given interval.

G Additional gap per byte as messages increase in size.
The reciprocal of this parameter is the effective max-
imum bandwidth of the network.

P The number of processors.

Most of our parameters are either identical to or only
trivially different from those in the LogP/LogGP models.
We have split their single software overhead parameter into
separate send and receive components, since these are typi-
cally quite different on networks with hardware support for
servicing remote memory operations, in which case CPU
receive overhead is close to zero (one of the original LogP
authors makes this same extension to the model in [4]). Our
gap parameters are identical to those in LogGP. TheP pa-
rameter is also identical, but since this paper is not con-
cerned with communication patterns whose performance
depends on number of processors (such as tree-based broad-
casts, etc.), it does not appear in the remainder of this paper.

We make a more substantive departure from the original
LogP/LogGP models in our choice to measure total end-
to-end latency (EEL) instead of the traditional LogP la-
tency termL, which refers only to the transport latency of
the network hardware. The LogP/LogGP models assume
that the send overhead, transport latency, and receive over-
head components of a message transmission are performed
serially, so that theEEL = os + L + or (or, in LogGP,
EEL = os + L + or + G ∗ bytes). This assumption, de-
picted in Figure 1, is untenable on some of the networks
examined in this paper, at least when nonblocking messag-
ing functions are used (since nonblocking functions are cru-
cial to any parallel program that wishes to overlap compu-
tation with communication, we have used them throughout
our benchmarks). The call on the initiator’s side to asyn-
chronously complete a send is likely to overlap with the
transport of the message, and/or with the call on the re-
ceiver’s side to asynchronously begin the receive, as shown
in Figure 2. On several networks, when MPI is used, we ob-
serve that the combined time for the send and receive over-
heads exceedsEEL, so the derived value forL is negative.
It is not clear how to measureL if one relaxes the seri-
alization assumption and allows for overlap in the model.
Accordingly, the latency measurements in this paper use
only EEL, with no attempt made to measure the traditional
LogP network transport latency parameter.

3

Figure 1. Traditional LogP model Figure 2. Observed behavior on several cur-
rent networks

4. Benchmarks used

A set of three benchmarks was used to capture our pa-
rameters. On each system we ran at least two versions of
these benchmarks: a common, portable MPI version, and
one or more versions written using the lower-level network
API(s) exposed on the machine. The APIs tested for each
machine are listed in Table 1. Though the low-level bench-
marks all used the same messaging logic, they did not share
a common code base, so each implementation was free to
adjust its logic to maximize performance for the given API
within the parameters of the benchmark’s semantics.

Tests were run over 10,000 messages, to amortize the
cost of timer calls. Certain systems generated results that
were noisy, with outliers skewing strongly on the side of
longer message timings. Since we are interested in the be-
havior of these networks under optimal conditions, we used
the minimum observed timings over 10 runs or more on
each system. In practice these minimums tended to be close
to the median on all but the noisiest networks (the high vari-
ance of such networks generally appeared to be the result
of process contention caused by very relaxed scheduling of
parallel jobs). When tests called for a minimum sized mes-
sage, one eight bytes in size was used, rather than one of
zero bytes, to avoid having the network APIs potentially
optimize away messages. For the reasons discussed in the
previous section, nonblocking ‘put’ operations were used
for all tests.

We now discuss the logic and design of the three bench-
marks, and how they were used in combination to measure
our parameters.

4.1. Ping-pong test

This test sends a message of minimal size (8 bytes) to
a remote processor, which receives it and replies with an-
other such message. The first processor blocks for the reply,
and then initiates the back-and-forth cycle again. This is re-
peated 10,000 times. The resulting total time, divided by
the number of iterations, gives the average round trip time

for a minimal message. Dividing that in half gives the aver-
age time taken to get from a send call on one processor to
the end of the receive call on its remote counterpart, i.e., the
end-to-end latency (EEL) of the network.

4.2. Flood test

The flood test measures how often messages of a given
size can be injected into the network in a sustained fashion.
The results provide theg andG parameters, and by impli-
cation the network bandwidth. The flood test was run over
message sizes ranging from 8 bytes to 128 kilobytes, using
powers of 2. We hypothesized that some networks might
perform better when given multiple messages at once: de-
pending on the network hardware and software stack, han-
dling groups of messages can reduce locking and various
other sources of overhead. To measure this, we ran the
flood test with various ‘queue depths.’ The basic idea of a
queue depth is that the benchmark program attempts to keep
a certain number of sends outstanding at any given time by
using non-blocking send calls: the number chosen is the
queue depthq. To achieve this, the benchmark initiatesq
sends, waits forq/2 of these messages to complete locally,
then issues anotherq/2 new sends. This pattern of wait-
ing for q/2 completions, then issuing as many new ones,
is done in a loop until all messages are issued. The lastq
worth of outstanding sends is then completed. Finally, the
sender waits for a single reply from the receiver, to guaran-
tee that all the messages it sent have actually completed at
the other end. This final message is necessary since most
non-blocking network APIs only guarantee upon comple-
tion that the buffer used to send the message is available for
reuse, not that the message has been received on the other
end of the network connection. For some APIs (such as the
SHMEM API on the T3E and Quadrics) a ‘quiet’ function
is available which provides a similar guarantee that all mes-
sages have been delivered. Regardless of which method is
used to guarantee delivery, for sufficiently largeN this final
reply or quiet call is amortized away, and dividing the total
time by the number of messages provides the gap parame-

4

terg when minimum sized messages are used. The per-byte
gap costG can then be calculated by taking the difference
betweeng and the average times for larger message sizes.

4.3. CPU overlap test

The CPU overlap test determines the amount of software
overhead involved in sending and receiving messages. The
code is identical to the flood test with a message size of 8
bytes and a queue depth of one, except that an increasing
amount of computation is gradually inserted into the pro-
gram. This computation is placed between the calls that
initiate and complete a non-blocking send operation. Suffi-
ciently small amounts of computation will not make a dif-
ference in the benchmark’s timing for most networks, since
the call to complete the send would have blocked anyway.
As the amount of computation per message is increased,
eventually the sum of the send overhead (os) and the com-
putation exceeds the gapg, and the total running time for the
benchmark is increased. By taking the maximum amount of
CPU time that can be added without increasing the bench-
mark time, and subtracting it fromg, the send overhead (os)
can be inferred. For interfaces where the send overhead is
so large as to determine the gap, even a trivial amount of in-
serted computation increases the benchmark’s time, and so
os = g. Receive side overheador is measured in a similar
manner by inserting computation in between the start and
completion of non-blocking receive calls. For APIs where
no receive calls are used on the remote side, this works dif-
ferently: the computation is done in isolation, followed by
a ‘quiet’ call to guarantee all messages have been received.

5. Results

5.1. Comparing small message latency

The total height of the bars in Figure 3 gives the end-
to-end latency (EEL) of the networks we examined for an
8-byte send. TheEEL is a good indication of how an ap-
plication will perform when it blocks for the completion of
a small message, such as during the fetch of a single value
for immediate use. However, since our tests were written
using nonblocking send APIs (as the overlapping opera-
tions we next discuss require them), a program using block-
ing functions—which typically incur less software overhead
than nonblocking APIs—might see a slightly lowerEEL
than reported here. For uniformity we report only times for
‘puts’, even for APIs which also support remote ‘gets’.

As our results clearly show, the end-to-end latency
of current high-performance networks varies considerably,
with a factor of ten separating the smallest and largest ob-
served values. These differences are not clearly correlated
to system bandwidth, nor to the tightness of integration be-
tween the CPU/memory system and the network interface:
for instance, the IBM SP has much higher latency than the

other systems despite having the fastest bus between the
memory and the network controller.

On most machines, the performance of the more special-
ized layers is better than MPI. This is most pronounced on
the Quadrics system. The exception is the IBM machine,
where LAPI is somewhat slower than MPI. This appears
to be due to higher locking overhead: we report data for a
single-threaded MPI library, but LAPI currently has only a
thread-safe implementation (if the benchmark is run on the
SP with a thread-safe version of the MPI library, its latency
is higher than LAPI’s).

5.2. Potential for overlapping computation

When optimizing communication, a standard technique
is to overlap the communication with computation. Fig-
ure 3 shows the potential for latency hiding by superimpos-
ing the send and receive overhead on the end-to-end latency
(EEL). As discussed in Section 3, several of the APIs show
a combined send and receive overhead that is higher than
theEEL, thus violating the assumptions of the traditional
LogP model.

These results show the potential benefits of overlapping
communication with computation. For example, while the
EEL of Myrinet/GM is 8.5 usec compared to 1.7 usec
on Quadrics/SHMEM, the two become much closer when
considering only send side overhead, which is 0.7 usec on
Myrinet and 0.4 usec on Quadrics. With8.5 − 0.7 =
7.8 usec of potential overlap time on Myrinet/GM, and
1.7 − 0.4 = 1.3 usec of Quadrics/SHMEM, overlapping
has much higher potential on Myrinet/GM.

The results also help explain theEEL differences be-
tween MPI and the other network layers. MPI implemen-
tations generally incur a significant software overhead, and
this tends to be reflected in higher latencies. This is not sur-
prising, given that most of the MPI implementations tested
here are built on top of the other network APIs, and can thus
only add additional costs (the one MPI implementation that
beats the alternative API’s latency is the IBM SP’s, which
is not built on top of LAPI, and which benefits from lower
locking overheads, as described above). However, networks
which depart from the classic LogP assumption of the seri-
alization of overhead costs can display much lower latencies
than LogP would predict. For example, the T3E’s relatively
low MPI latency is mainly due to the overlap of its send
and receive overheads: if these were executed serially, its
EEL would be over 12 microseconds. One side effect of
this lower latency is that very little computational overlap is
possible during messaging. On some networks, particularly
Myrinet, the cost of using MPI instead of a lower-level API
is thus a ‘hidden’ one: latencies are similar, but the oppor-
tunity for computational overlap is greatly reduced.

Another trend highlighted by the data is the significant
improvement that hardware support for one-sided remote

5

Figure 3. Send and receive software overheads (os and or) superimposed on end-to-end latency
(EEL). For MPI on the T3E and Myrinet, the sum of the overheads is greater then EEL, and so
os = S + V and or = R + V . For the other configurations os = S and or = R.

Figure 4. Software send overhead for small messages on selected supercomputers since 1990. For
systems with two data points, the larger figure is for MPI and the smaller for a lower-level API provided
by the system.

6

Figure 5. Effect of clustering 8-byte sends on
message gap

Figure 6. Gap and overheads for 8-byte mes-
sages

memory operations tends to make for both latency time and
software overhead. In particular, the receive overhead for
one-sided APIs on networks with hardware support for re-
mote operations (the T3E, Quadrics, and Myrinet) is effec-
tively zero. For an application in which processors are act-
ing equally as senders and receivers, the amount of com-
putational overlap possible is given byEEL − (os + or),
and so machines with zero receive overhead have a large
advantage.

5.3. Potential for overlapping communication

Another strategy for optimization is to overlap commu-
nication with more communication. Rather than filling idle
CPU time with computation, as in the previous section, it
can be used to send additional messages. Figure 5 shows
the gap (g) between 8-byte messages from our flood test,
which pushes multiple messages into the network as quickly
as possible. On each machine, we vary the queue depth (q)
parameter, which indicates the number of messages that are
simultaneously awaiting transmission.

As predicted, for some networks and APIs, clustering
messages results in greater efficiency, as shown by the re-
duction in the gap asq is increased. This is most notable
on Quadrics/MPI, Myrinet/GM, and both GigE layers. On
these machines, communication overlap is especially valu-
able, as it not only uses up otherwise idle CPU time, but
also reduces the amount of idle time that needs to be filled.

5.4. Combining both types of overlap

On some systems, it may be possible to combine both
forms of overlap, first initiating as large a group of clus-
tered messages as is possible, then filling any remaining
time with computation. The degree to which this strategy
is possible in practice is difficult to determine, as it may be
largely limited by an application’s structure: the number of

messages available for clustering and the amount of compu-
tation that can be performed before the messages are com-
pleted will vary with a program’s semantics. Also, the size
of the messages that are used may change the relative sizes
of the communication gap and software overhead. Nev-
ertheless, we can get a rough idea of which systems are
likely to have extra CPU time available for computation
during clustering from Figure 6, which compares the gap
between 8-byte messages with the send and receive soft-
ware overhead per message. The chart shows the bestg ob-
tained from all queue depths tested on each machine, while
the overheads were measured only withq = 1. As a re-
sult, on certain platforms (the SP, GigE, and Myrinet/MPI)
the send overhead appears to be higher than the gap: pre-
sumably clustering lowers the send overhead on these sys-
tems, much as it does the gap, but we have not measured
this. Despite this complication, it is clear from the chart
that certain platforms are more likely to have CPU time left
over for computation during clustering after the overhead
of message traffic is subtracted from the gap. Myrinet/GM,
Quadrics/SHMEM, and T3E/SHMEM are the clearest cases
of this. Since these APIs require no CPU activity to receive
a message, they are likely to support computational over-
lap even when an application is simulaneously sending and
receiving clusters of messages.

The cumulative effect of Figures 5 and 6 suggests that
using lower-level, one-sided network APIs is advantageous
for parallel applications which frequently send small mes-
sages: the latencies and software overheads incurred by
each message tend to be considerably lower than when
MPI is used. Furthermore, these APIs generally provide
more potential for reducing the cost of communication via
overlapping either communication or computation. While
the ideal strategy is probably still to coalesce small mes-
sages whenever possible, this can be difficult in applications

7

Figure 7. Per-message gap g vs. large mes-
sage per-byte gap G

Figure 8. Minimum size for ‘large’ (bandwidth-
bound) messages

where each processor is communicating with many targets.
The ability to optimize communication through overlap is
very promising in the context of optimizing GAS compil-
ers, since some of these languages allow applications pro-
grammers to explicitly indicate that overlapping or reorder-
ing accesses is legal [22].

5.5. Large message performance

A third type of communication optimization is to aggre-
gate small messages into large ones. Estimating the cost of
such a transformation involves a detailed understanding of
factors (such as memory system performance) which are be-
yond the scope of this paper. Another important factor is the
size of messages in the application, before and after pack-
ing. In the absence of such information, we can still com-
pute an upper bound on the speedup possible from packing,
by calculating the maximum bandwidth achievable for the
aggregated message size. This is given by the cost per byte
(G) in LogGP.

Figure 7 shows the two different gap values for each
network: the inverse throughput (g) for small messages,
which gives a lower bound on the per-message cost, and
the inverse bandwidth for large messages (G), which gives
a lower bound on the per byte cost. These two values dif-
fer by about three orders of magnitude, so we showG in
microseconds per kilobyte rather than per byte.

One would expect the inverse bandwidth (G) to be deter-
mined primarily by the hardware, rather than varying with
the communication layer. On most machines this is true, but
both the IBM and Myrinet show some loss of bandwidth (in-
creasedG) for MPI relative to LAPI and GM, respectively.
Ignoring these differences, the machines are roughly sorted
by theirG value, with the highest bandwidth machine being
the T3E, and the lowest being GigE. There is little correla-
tion betweenG and the per-message gapg, which varies

between 1 and 10 usecs.
One common question in performance analysis is

whether a given application is more sensitive to the latency
or the bandwidth of the network. This is the same as ask-
ing whether the average message sent by the application is
‘large’ (bandwidth-bound), or ‘small’ (bound by fixed per-
message costs). Within a context where one is clustering
messages, the relevant fixed cost per message is the base gap
g between small messages rather than the latency. Assum-
ing that the cost during pipelining of a message of sizeM is
roughlyg + M ∗G, we can determine the size at which the
two terms have equal weight, i.e., whereM = g/G. Any
message larger thang/G will be dominated by the band-
width term (M ∗G), and can thus be considered ‘large.’

Figure 8 shows that the minimum size for a large mes-
sage varies greatly in the networks under consideration: the
difference is a factor of six from the smallest to the largest
crossover size.

6. Historical trends in performance

As our benchmarks show, the level of support for small
message performance is quite disparate among contempo-
rary high-performance network architectures. Figure 4,
which shows software overheads for small message ‘puts’
on various systems over the last decade, demonstrates that
this variability is part of a historical pattern.

While most parameters in computing—from CPU speed
to memory latency to hard disk seek time—show at least
gradual improvement over time, software overheads and
message latencies for network transmissions have exhibited
a comparatively amorphous behavior whose trend is gen-
erally toward worse performance, even by absolute mea-
sures. While these parameters are unlikely to ever keep
pace with the exponential improvements in processor per-
formance, we hope that they can at least exhibit a positive

8

trend in the future, and that support for them may become
more consistent across vendors. The likely replacement in
commodity PCs of the aging PCI bus standard in favor of
newer technologies like Infiniband [10], PCI-X [20], and
HyperTransport [8] may be a positive development, for in-
stance, as the PCI bus is currently a known bottleneck for
many of the networks examined here.

7. Related work

Historically, performance assessment of communication
networks has been performed using two different method-
ologies. One school of thought is primarily interested in
round-trip latency and large message bandwidth as indi-
cators of network performance. Dongarra et al. [5] mea-
sure latency and bandwidth for a large class of multipro-
cessor systems: Convex, Cray, IBM, Intel, KSR, Meiko,
nCUBE, NEC, SGI and TMC using a ping-pong bench-
mark. Luecke et al. [14] evaluate the communication per-
formance of Linux and NT clusters, the Cray Origin 2000,
IBM SP and Cray-T3E. More recently, Petrini et al. [21] ex-
amine the performance of Quadrics networks using uni- and
bi-directional ping benchmarks.

A different school of thought adopts a more detailed
model of the network performance. In 1993, Culler et al. [3]
introduced the LogP performance model of parallel compu-
tation. Their model is built upon the realization that modern
parallel systems are essentially comprised of complete com-
puters connected by a communication fabric. Culler et al.
[4] measured the model’s parameters for the Intel Paragon,
Meiko CS-2 and Myrinet using an approach similar to our
flood and CPU overlap benchmarks. Ianello et al. [9] mea-
sure the same parameters for an implementation of Fast
Messages [19] running on Myrinet. Further research has
extended the LogP model to take into account other fac-
tors that influence application performance, and tailor the
model for different communication layers (e.g., MPI) and
architectures. Alexandrov et al. extend it withG (LogGP
[1]) to capture the cost of large messages. Moritz and Frank
further extend LogGP (LoGPC [16]) to take into account
the effects of message pipelining and network contention.
Al-Tawil and Moritz [15] use LogGP to analyze the behav-
ior of MPI under the different send protocols mandated by
the standard. Ino et al. tailor the LogGP model (LogGPS
[11]) to account for the synchronization costs hidden in MPI
implementations. Using LogGPS, they are able to deter-
mine the threshold where an MPI implementation switches
from an asynchronous to a synchronous protocol.

Our approach in this study of network performance oc-
cupies a middle ground between these methodologies. We
find the parameters of the LogP model to be very useful
in understanding program performance and also in guiding
program optimizations. However, the increased hardware
and software complexity of modern systems results in an

observable behavior that does not fit the original model. In
particular, the assumption that the one-way message latency
is given by the sumL+ os + or does not hold for some sys-
tems (T3E/MPI and Myrinet/MPI). This is the justification
for our choice of theEEL parameter as a better indication
of network performance.

8. Future work

There are many directions in which the work in this pa-
per should be extended. The current benchmarks test only
message ‘put’ operations; gathering information on the per-
formance of ‘get’ operations has obvious relevance for oper-
ations like prefetching of data. We measure software over-
head only for unclustered 8-byte messages, and it would be
interesting to know the extent to which these overheads in-
crease with message size (the answers might be different for
networks with hardware support for remote transfers ver-
sus those without it), and/or decrease with clustering (i.e.,
with the q parameter in our flood test). Also, we have run
our tests only on 2-node configurations: some of our re-
sults might vary when more nodes are used (in particular,
it would be interesting to see if the benefits of clustering
still apply when messages have different target nodes). Our
tests have all been performed either on uniprocessor ma-
chines, or on SMPs with only one processor in use. Given
that most production cluster architectures use SMP nodes,
it would be a useful contribution to measure the effect that
contention for the network and other resources has on our
parameters. As mentioned previously, our estimates for the
maximum speedup that can be attained from message pack-
ing are based only on the bandwidth figures for the vari-
ous networks. A more realistic assessment of the likely
speedups attainable would need to measure the cost of pack-
ing and unpacking aggregated messages, which add signif-
icant costs to this strategy. Finally, research needs to be
conducted into how the metrics presented here can be used
by compilers for global address space languages to perform
optimizations of programs.

9. Conclusion

Using a variant of the LogGP model, we constructed a
set of microbenchmarks to measure different aspects of net-
work performance. The results provided a comparison of
today’s networks across factors such as latency, bandwidth,
and software overheads. Hardware support for network reli-
ability and servicing of remote memory requests were found
to be key factors in attaining better small message perfor-
mance. One-sided APIs were generally found to have supe-
rior latencies and software overheads compared with two-
sided MPI implementations on the same hardware. Some
of the assumptions of the LogP/LogGP model turned out to
be untenable on existing MPI implementations.

9

We examined the relative cost of different program-
ming strategies for an application that has a fixed vol-
ume of communication to perform. Using as our starting
point a näıve model in which each read and write is done
as a blocking remote access of a single 8-byte word, we
quantified the relative benefits of three standard optimiza-
tion techniques: overlapping communication with compu-
tation, overlapping communication with other communica-
tion (pipelining), and aggregating small messages into large
ones. Our results suggest that compiler-based communi-
cation scheduling may be needed for optimal performance,
especially for programs that require the use of fine-grained,
asynchronous communication: some of the trade-offs be-
tween optimizations are highly dependent on the particular
system in use.

10. Acknowledgments

This work was supported in part by the Department
of Energy under contracts DE-FC03-01ER25509 and DE-
AC03-76SF00098, by the National Science Foundation un-
der ACI-9619020 and EIA-9802069, and by the Depart-
ment of Defense. The information presented here does not
necessarily reflect the position or the policy of the United
States Government and no official endorsement should be
inferred.

We wish to thank Oak Ridge National Laboratory for the
use of their Alpha-based Quadrics system (‘falcon’), and
the National Energy Research Scientific Computing Cen-
ter (NERSC) for the use of their T3E (‘mcurie’), IBM SP
(‘seaborg’), and Myrinet 2000 cluster (‘alvarez’). The ‘Mil-
lennium’ PC cluster at U.C. Berkeley was also used for
some preliminary Myrinet development. Thanks also go to
David Addison and Ashley Pittman of Quadrics, who pro-
vided very useful assistance at various points in our bench-
mark development.

References

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: Incorporating long messages into the
LogP model. Journal of Parallel and Distributed Comput-
ing, 44(1):71–79, 1997.

[2] Co-Array Fortran technical specification.http://www.co-array.
org/cafdef.htm.

[3] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken.
LogP: Towards a realistic model of parallel computation. In
Proceedings 4th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 1–12, 1993.

[4] D. E. Culler, L. T. Liu, R. P. Martin, and C. Yoshikawa. LogP
performance assessment of fast network interfaces.IEEE
Micro, February 1996.

[5] J. J. Dongarra and T. Dunigan. Message-passing perfor-
mance of various computers.Concurrency: Practice and
Experience, 9(10):915–926, 1997.

[6] Cray T3E C and C++ optimization guide.http://www.cray.
com/craydoc/manuals.

[7] GM reference manual. http://www.myri.com/scs/GM/doc/
refman.pdf.

[8] HyperTransport I/O Link specification, version 1.04.http:
//www.hypertransport.org/docs/Htlink104.pdf.

[9] G. Iannello, M. Lauria, and S. Mercolino. LogP perfor-
mance characterization of Fast Messages atop Myrinet. In
Proceedings of 6th Euromicro Workshop on Parallel and
Distributed Processing, 1998.

[10] Infiniband specification.http://www.infinibandta.org/specs.
[11] F. Ino, N. Fujimoto, and K. Hagihara. LogGPS: Modeling

message-passing protocols in high-level communication li-
braries. InIPSJ Transactions on High Performance Com-
puting Systems, volume 42, 2001.

[12] Intel Virtual Interface Architecture developer’s guide.http://
developer.intel.com/design/servers/vi/developer/iaimp guide.htm.

[13] Using the LAPI. http://www.research.ibm.com/actc/OptLib/
LAPI Using.htm.

[14] G. Luecke, B. Raffin, and J. Coyle. Comparing the com-
munication performance and scalability of a Linux and an
NT cluster of PCs, a SGI Origin 2000, an IBM SP and a
Cray T3E-600. InProceedings of IEEE Computer Society
International Workshop on Cluster Computing, 1999.

[15] C. A. Moritz, K. Al-Tawil, and B. Fraguela. Performance
comparison of MPI on MPP and workstation clusters. In
Proceedings of the 10th ISCA International Conference on
Parallel and Distributed Computer Systems, 1997.

[16] C. A. Moritz and M. Frank. LoGPC: Modeling network con-
tention in message-passing programs. InMeasurement and
Modeling of Computer Systems, pages 254–263, 1998.

[17] The Message Passing Interface standard.http://www-unix.
mcs.anl.gov/mpi/.

[18] M-VIA: A high performance modular VIA for Linux.http:
//www.nersc.gov/research/FTG/via.

[19] S. Pakin, M. Lauria, and A. Chien. High performance mes-
saging on workstations: Illinois Fast Messages (FM) for
Myrinet. In Proceedings of Supercomputing ’95, December
1995.

[20] PCI-X 2.0 specification.http://www.pcisig.com/specifications/
pci x 20.

[21] F. Petrini, A. Hoisie, W. Feng, and R. Graham. Perfor-
mance evaluation of the Quadrics interconnection network.
In Workshop on Communication Architecture for Clusters,
2001.

[22] UPC language specification, version 1.0.http://upc.gwu.edu.
[23] K. Yelick, L. Semenzato, G. Pike, et al. Titanium: A high-

performance Java dialect. ACM 1998 Workshop on Java for
High-Performance Network Computing, Februrary 1998.

10

