Programming Models for Irregular Applications
Katherine A. Yelick !

Computer Science Division
University of California at Berkeley

The difficulty of parallelizing a given program is strongly correlated to the degree of irregularity in
the program’s structures. The applications that have been parallelized most successfully on large scale
multiprocessors are those with a high degree of regularity. The goal of our research is to provide languages
and libraries that will simplify parallel programming for irregular applications, and consequently increase the
class of applications that can be effectively parallelized. We have approached this problem by implementing
irregular applications on a CM5, while at the same time developing layers of system level software to provide
a common base for the applications.

In this abstract we describe the structure of some irregular applications, focusing on the ways in which
irregular structures arise. We then point out common features of the applications, feature which should
therefore be supported by languages and systems for these problems. Finally, we describe some basic pieces
of systems support and evaluate them based on their usefulness in the applications.

Parallel programs may exhibit at least three different kinds of irregularity. The first kind of irregularity
appears as trreqular control structures, namely conditional statements, which make 1t inefficient to run on
synchronous programming models such as that provided by an SIMD machine. A second kind appears in
the form of irregular data structures, which include unbalanced trees, graphs, and unstructured grids. These
data structures lead to dynamic scheduling and load balancing requirements, since it is often impossible to
predict the amount of computation that will be associated with a given data structure. The third type of
irregularity is irregular communication patterns, which lead to nondeterminism, since one cannot predict the
order in which communication events will occur. Communication irregularity is typically caused by either
data or control irregularity, and the three together define the most challenging class of irregular problems.

Our conclusions are based on experience with the following applications: a Grobner basis computation, an
event-based timing circuit simulator [6], a Cholesky factorization algorithm for sparse matrices, a BDD-based
circuit verifier, an automatic theorem prover, a symmetric eigenvalue computation, a toy ocean simulator,
and an electromagnetics model. All of these have at least one kind of irregularity, and most of them display
good speedups. The performance of the Grobner basis program, for example, is comparable to the best
shared memory implementation [10] on small numbers of processors, and it scales past a hundred processors
when the inputs are large enough. The performance of Cholesky is disappointing, probably due to the lack of
blocking in our implementation [2]. However, some of the lessons learned about programming models are still
relevant, since they would apply to blocked algorithms as well. The circuit simulator is, again, competitive
with shared memory implementations on a small number of processors, and the speedup on 128 processors
is as high as 50, with potential for further scaling. The last three applications in the list are more regular,

and have nearly linear speedups.

1This work was supported in part by AT&T, the Semiconductor Research Corporation, Lawrence Livermore National
Laboratory, a National Science Foundation Infrastructure Grant (number CDA-8722788), the Advanced Research Projects
Agency of the Department of Defense monitored by the Office of Naval Research under contract DABT63-92-C-0026, and the
University of California Committee on Research. The information presented here does not necessarily reflect the position or
the policy of the Government and no official endorsement should be inferred.



The Grobner basis problem is used in a wide variety of application areas, including Robotics and Com-
puter Aided Design, when working with a system of polynomial equations [8]. Given a set of multivariate
nonlinear polynomials, the ideal defined by the polynomials has a particular basis called the Grobner basis.
The Grobner basis is useful in finding roots of polynomials and in related problems. The parallel algorithm,
which is based on Buchberger’s sequential one, is very irregular: the communication patterns are non-local,
and the basic computation steps are unpredictable [10]. Not only do the polynomials vary in size, but the
time to perform basic polynomial operations varies even for polynomials of the same size. As a result, it
1s difficult to schedule the algorithm in advance. The Cholesky factorization is used to factor symmetric
positive definite matrices; the irregularity in this case comes from the irregularity in the sparse matrix itself
[2]. The computation is divided into an ordering phase, a symbolic factorization phase, and a numeric phase;
in our current implementation only the numeric phase runs in parallel.

While the current implementations are written at a low level of abstraction, using C with various levels
of system support, the common features of the applications suggest higher level language constructs that
would be useful. The first such feature is nondeterminism. For Grobner basis and Cholesky, the most efficient
implementations we have are nondeterministic: depending on the timing of communication and computation,
different executions may occur. The Grobner basis computation proceeds by choosing a pair of polynomials
from a set and computing a third polynomial, which is then added to the set. Any order of choosing pairs is
correct, but the choice can significantly affect performance. Cholesky performs updates on submatrices (by
addition), which are determined by operations on columns to the left of the submatrix. The order in which
updates occur may vary, depending on the density of columns producing the updates. We believe this kind of
nondeterminism is essential to performance in irregular applications, since any deterministic schedule would
have to choose an evaluation order which may result in poor performance for some input. This observation
suggests that parallelizing compilers alone cannot produce these parallel programs, since a compiler does not
have sufficient information to determine which alternate behaviors are correct.

The second common feature of the applications is the need for distributed data structures, as well as
layout directives for placing the data. Analogous to the the Fortran D constructs for laying out arrays [4],
data structures such as trees may be layed out in a blocked fashion, with subtrees placed on a single node,
or cyclic pattern, with neighboring nodes spread among processors. In a tree where the edges represent
dependencies between computations, a cyclic layout results in more parallelism, while a blocked one has less
communication overhead. Both layouts are useful for other structures, including graphs, bags (multisets),
and sets.

The final observation about the applications relates to global control operators that are specific to the
data structures. A common control construct is iteration over the elements of a distributed data structure,
but unlike data parallel constructs, these iterations overlap with one another, and unlike array iterations,
the iteration space may not be explicit. Different iteration semantics are needed in different contexts: in
Grobner basis, an individual iteration must be serializable, although there is no fixed order and multiple
iterations may run in parallel; in Cholesky, individual iterations may be executed in parallel.

At the system level, we have developed software layers that simplify programming, and are evaluating
these for both performance and added ease of programming. At the lowest level, most of our software
was written on top of CMAM, the Connection Machine Active Message layer [11]. On top of this, we have

implemented a distributed work queue for scheduling tasks, along with some basic synchronization primitives



and a mobile object layer. One of our immediate goals is evaluate the programming model provided by each
system, although we are also comparing our distributed memory implementations with shared memory
implementations done elsewhere.

Work queues are common component of many shared memory applications, particularly when there
is irregularity in the computational cost of the tasks. On shared memory machines, the communication
cost of moving tasks from one processor to another is negligible, and therefore ignored in the work queue
implementations. The work queue was used in the shared memory versions of both Grobner basis and
Cholesky and was retained for the distributed memory versions. However, in the distributed memory program
there 1s a trade-off between load balance and locality that must be carefully evaluated. In addition, a new
class of tasks arise from the distributed nature of the program; these typically handle the iteration over
a distributed data structure and should only be scheduled on that processor that holds the corresponding
partition of the structure. We therefore divide tasks into two classes: anyone computes, which correspond
to the tasks from the shared memory program, and owner computes, which are the tasks to handle data
that is local to a particular processor and too expensive to move. The decision of whether a task should
be scheduled using owner computes or anyone computes depends on the relative cost of communication and
computation of the task, and also on the need at a global level to balance the load.

A related piece of system software is a mobile object model, a version of the Tarmac system [7] for the
CMb. This system provides the programmer with a global address space as well as location transparency
for objects, and is useful when objects must be relocated for better load balance. The abstraction provided
by Tarmac is similar to that of the Emerald system [1], although an important aspect of Tarmac on the
CMS5 is that object communication is highly tuned to the architecture. The use of some global address
space proves to be important in many of our codes, but the location transparency has been less useful than
originally anticipated. In our applications, an object is relocated only if it is the local data of a task on the
work queue. These tasks are typically independent of one another, so the local data of one is not needed by
another. In short, no one cares that the data has been moved. Nevertheless, location transparency may be
useful for load balancing applications like the circuit simulator, in which tasks contain a large local states
with dependencies between them.

Along with these run-time facilities, we have also developed language support that provides the program-
mer with a hierarchical shared memory model. The key language extension is that of a global pointers, and
the compiler, called DGCC, is an modification of the GCC compiler. A global pointer can be dereferenced
and its target read and written using usual C syntax. Thus, a global pointer is semantically equivalent to
normal (local) pointer, but has much higher access cost. Our goal in implementing DGCC was to compare
the expressive power of the shared memory model and message passing. For some applications the differences
are striking: one application with a distributed graph is roughly three times smaller in the shared memory
style supported by DGCC than in an asynchronous message passing style. In spite of this expressiveness
advantage, DGCC is not a reasonable implementation of shared memory, because the performance overhead
is severe. To be true to the semantics of sequentially consistent shared memory [5], our implementation
simply waits on every read and write to a global pointer. The dependence analysis that would be required to
prefetch reads and buffer writes is non-trivial [9], and we know of no practical implementations that do this,
particularly for C. As part of a joint project with David Culler’s group, the DGCC compiler has recently
been extended to hand the Split-C language, which allows the programmer to specify split-phase read and



write operations. The full Split-C language has other features described in [3].

We are currently working on increasing the set of irregular applications, as well as developing different
versions that will enable the comparison of other programming models. Qur applications efforts have already
demonstrated that hierarchical shared memory model is more expressive than explicit messages, but that
further language and compiler work is needed to match the performance. We have also identified some of
the distributed data structures that appear in irregular applications, as well as the need for multiple layouts
and high level control constructs. We will be using these ideas in the development of a distributed data
structure library, called Multipol, along with new language mechanisms for layout and control.
Acknowledgements

Most of the projects described here were class projects. The students involved were: David Bacon,
Soumen Chakrabarti, Patrick Delano, Etienne Deprit, Inderjit Dhillon, Seth Goldstein, Joey Hellerstein,
Arvind Krishnamurthy, Xiaoye Li, Chu-Cheow Lim, Steve Lucco, John Tse, Chih-Po Wen, and Su-Lin Wu.

References

[1] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and abstract types in emerald.
IEFEE Transactions on Software Engineering, pages 65-76, January 1987.

[2] M. Heath, E. Ng, and B. Peyton. Parallel algorithms for sparse linear systems. Parallel Algorithms for
Matriz Computations, 1990.

[3] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, T. von Eicken, K. Yelick. Introduction to Split-C.
In preparation.

[4] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler optimizations for Fortran D on MIMD
distributed-memory machines. In Proceedings of the 1991 International Conference on Supercomput-
g, 1991.

[6] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Transactions on Computers, C-28(9):690-691, September 1979.

[6] S.Lin, E. Kuh, and M. Marek-Sadowska. A New Accurate and Efficient Timing Simulator. In proceedings
of VLSI Design. January, 1992.

[7] S. Lucco and D. Anderson. Tarmac: A language system substrate based on mobile memory. In Interna-
tional Conference on Distributed Computing Systems. IEEE, 1990.

[8] B. Mishra and C. Yap. Notes on Grobner bases. Information Sciences, 48:219-252, 1989.

[9] D. Shasha and M. Snir. Efficient and correct execution of parallel programs that share memory. ACM
Transactions on Programming Languages and Systems, 10(2):282-312, April 1988.

[10] J.-P. Vidal. The computation of Grobner bases on shared memory multiprocessors. Technical Report
CMU-CS-90-163, School of Computer Science, Carnegie Mellon University, Pittsburg, PA, 1990.

[11] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages: a mechanism
for integrated communication and computation. In International Symposium on Computer Architecture,

1992.



