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ABSTRACT

De novo genome assembly is one of the most important and chal-
lenging computational problems in modern genomics; further, it
shares algorithms and communication patterns important to other
graph analytic and irregular applications. Unlike simulations, it
has no floating point arithmetic and is dominated by small mem-
ory transactions within and between computing nodes. In this
work, we introduce MerBench, a compact set of PGAS benchmarks
that capture the communication patterns of the parallel algorithms
throughout HipMer, a parallel genome assembler pipeline that has
been shown to scale to massive concurrencies. We also present
results of these microbenchmarks on the Edison supercomputer
and illustrate how these empirical results can be used to assess the
scaling behavior of the pipeline.

1 THE HIPMER ASSEMBLY PIPELINE

In this section we describe the basic algorithms used in the HipMer
pipeline, our parallelization strategy, and the consequent commu-
nication patterns that motivate the MerBench suite. We refer the
interested reader to our previous work for a detailed analysis of Hip-
Mer’s algorithms and performance [1-4]. HipMer is implemented
in Unified Parallel C (UPC) [5], a Partitioned Global Address Space
(PGAS) parallel programming language, and its parallel algorithms
heavily rely on the one-sided communication capabilities of UPC.

Although we focus on HipMer, the algorithms are relevant to all
de novo assembly pipelines that are based on de Bruijn graphs. We
focus on four major stages of HipMer (see Figure 1): k-mer analysis,
contig generation, read-to-contig alignment and scaffolding, as well
as gap closing, which is part of the scaffolding stage. The input to
the genome assembly pipeline is a set of reads, which are short,
erroneous sequence fragments of 100-250 letters sampled at random
from a genome. The sampling is redundant at a depth of coverage
d, so on average each position (base) in the genome is covered by
d reads. This redundancy is used to filter out errors in the first
stage (k-mer analysis). Sequencers produce reads in pairs with a
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Figure 1: The HipMer assembly pipeline.

known distance between them, a fact which is exploited later in
the pipeline (scaffolding) to improve the assembly.

1.1 k-mer Analysis

In this step, the input reads are processed to exclude errors. Each
processor reads a portion of the reads and chops them into k-mers
(strings of length k), which are formed by a sliding window of
length k. A deterministic function is used to map each k-mer to a
target processor, assigning all the occurrences of a particular k-mer
to the same processor, thus eliminating the need for a global hash
table. The k-mers are communicated among the processors using
irregular all-to-all communication, which is performed when
each processor fills up out of its outgoing buffers and is repeated
until all k-mers have been redistributed. A total of @(GTd (L—k+1))
k-mers need to be communicated, where G is the genome size and
L is the read length. Next, all the k-mers are counted, and those that
appear fewer times than a threshold are discarded as erroneous.
This filtering is enabled by the redundancy d in the read data set:
k-mers that appear close to d times are likely error-free, whereas
k-mers that appear infrequently are likely erroneous.

1.2 Contig Generation

The filtered k-mers from the pervious step are assembled into longer
sequences called contigs, which are error-free (with high probabil-
ity) sequences that are typically longer than the original reads. In
HipMer, contig generation utilizes a de Bruijn graph, which is a
special graph that represents overlaps in sequences. The k-mers are
the vertices in the graph and two k-mers are connected by an edge
if they overlap by k — 1 consecutive bases and have correspond-
ing extensions that are compatible A hash table is used to store a
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compact representation of the graph: A vertex (k-mer) is a key in
the hash table and the incident vertices are stored implicitly as a
two-letter code [ACGT][ACGT] that indicates the unique bases that
immediately precede and follow the k-mer in the read dataset.

During the parallel hash table construction, the input k-mers
are hashed and sent to the proper bucket of the hash table. We
avoid fine-grained communication and excessive locking on the
hash table buckets with a dynamic aggregation algorithm [1]. This
algorithm dynamically aggregates the k-mers in batches before
they are sent to the appropriate processors. The pattern here is sim-
ilar to k-mer analysis but is done asynchronously, where a single
processor will send an aggregation of remote hash table inserts
without waiting for other processors. The resulting de Bruijn graph
is traversed in parallel to identify the connected components, which
are linear chains of k-mers. In our specialized parallel traversal al-
gorithm [1], a processor P; chooses a random k-mer as seed and
initializes with it a new subcontig. Then P; attempts to extend the
subcontig towards both of its endpoints by performing lookups
for the neighboring vertices in the distributed hash table. The ex-
tending process continues until no more new edges can be found,
or there are forks in the graph. The access pattern in the distributed
hash table consists of irregular, fine-grained lookup operations.
If two processors work on the same connected component, race con-
ditions are avoided via a lightweight synchronization scheme [1]
based on remote atomics. The parallel traversal is terminated
when all the connected components in the de Bruijn graph are
explored. Since the size of the de Bruijn graph is proportional to
the genome size, the traversal involves accessing ©(G) vertices via
atomics and irregular lookup operations.

1.3 Read-to-Contig Sequence Alignment

The alignment phase [3] maps the original reads onto the contigs to
provide information about the relative ordering and orientation of
the contigs, which is used in the final step of the assembly pipeline.
First, each processor stores a distinct subset of the contigs in the
global address space so that any other processor can access them.
Then, substrings of length k, called seeds, are extracted in parallel
from the contigs and stored in the seed index, which is a distributed
hash table. Each hash table entry has a seed as the key and a pointer
to the corresponding source contig as the value. There are ©(G)
seeds in total, because the contigs constitute a fragmented version
of the genome. The seed index is constructed via an irregular all-
to-all communication step similar to the hash table construction
in the contig generation phase.

The seed index is then used to align reads onto contigs. Each read
of length L contains L — k + 1 seeds of length k. For each seed s in a
read, a fine-grained lookup in the global seed index produces a set
of candidate contigs that contain s. Although an exhaustive lookup
of all possible seeds would require a total of ®(GTd(L -k+1))

lookups, in practice we perform @(%' - a) lookups where a <
L — k + 1, through the use of optimizations that identify properties
in the contigs during the seed index construction [3]. Finally, after
locating a candidate contig that has a matching seed with the read
under consideration, the Smith-Waterman algorithm [6] is executed
in order to perform local sequence alignment between the contig
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and the read. The output of this stage is a set of reads-to-contig
alignments.

1.4 Scaffolding and Gap Closing

The scaffolding step aims to “stitch” together contigs into sequences
called scaffolds by assessing the paired-end information from the
reads and the reads-to-contigs alignments. A graph of contigs can
be created by generating links for all the contigs that are supported
by pairs of reads. The contig graph is stored in a distributed hash ta-
ble, which requires irregular all-to-all communication for con-
struction. A parallel traversal of the contig graph is then performed
to identify and remove “bubbles”, which are localized structures
involving divergent paths. This requires irregular lookups and
global atomics. A final traversal of the contig graph is done by
selecting start vertices in order of decreasing contig length (this
heuristic tries to first stitch together “long” contigs). The graph
of contigs (and consequently the number of links among them) is
orders of magnitude smaller that the k-mer de Bruijn graph because
the connected components in the k-mer graph are contracted to sin-
gle vertices in the contig-graph. According to the Lander-Waterman
statistics [7], the expected number of contigs is ©(dG/L-e~?), where
e is Euler’s number.

It is likely that there will be gaps between the contigs within a
scaffold. A distributed hash table is used to localize the unassembled
reads onto the appropriate gaps. Construction of the table uses an
irregular all-to-all communication pattern, but accessing the
information in the table requires irregular lookups. Assuming
that a fraction y of the genome is not assembled into contigs, this
communication step involves @(yGd/L) reads. Finally, the gaps are
divided into subsets and each set is processed by a separate thread,
in a parallel phase. The localized reads are used to attempt to close
the gaps via a mini-assembly algorithm. The outcome of this step
is a set of scaffolds (possibly with some remaining gaps), which
constitutes the result of the HipMer assembly pipeline.

1.5 Summary of Communication Patterns

Table 1 summarizes the main communication patterns along with
the corresponding volume of communication for each stage. These
communications patterns govern the efficiency of the parallel pi-
peline at large scale, where most of the stages are communication
bound. The different communication patterns have, however, vastly
different overheads. For example, the all-to-all communication ex-
change is typically bounded by the bisection bandwidth of the
system, assuming that the partial messages are large enough and
there is enough concurrency to saturate the available bandwidth.
Conversely, fine-grained, irregular lookups and global atomics are
typically latency-bound.

2 THE MERBENCH SUITE

The MerBench microbenchmarks are designed to capture the irreg-
ular access patterns in HipMer. In this section we introduce these
microbenchmarks and we also present results at different scales.
We also compare the performance of the microbenchmarks with
the empirical performance of the corresponding communication
operations in HipMer. For the results presented in this paper we
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l Concurrency (number of threads) [ 1,920 [ 3,840 [ 7,960 ‘

Stage Communication pattern Volume of data
k-mer analysis all-to-all exchange O(Gd - (L-k+1)/L)
Contig all-to-all exchange 0(G)
generation irregular lookups 0(G)
global atomics 0(G)
Sequence all-to-all exchange 0(G)
alignment irregular lookups O(Gd - a)
all-to-all exchange 0(G)
Scaffolding irregular lookups 0(G)
global atomics O(dG/L - e~?)
Gap closing all-to-all exchange O(yGd/L)
irregular lookups ©(yGd/L)

Table 1: Major communication operations in the HipMer pi-
peline. G is the genome size, L is the read length L, d is the
coverage, a is the average number of contigs that each read
aligns onto (with a < L — k + 1), and y is the fraction of reads
that are not assembled into contigs.
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Figure 2: Proxy micro-benchmark for the all-to-all exchange
in the distributed hash table construction with dynamic
message aggregation.

utilized the Edison supercomputer at NERSC [8]- a Cray XC30 sys-
tem — but the methodology is general and applicable to any other
platform. The communication system of Edison is the Cray Aries
high-speed interconnect with Dragonfly topology [9]. MerBench is
implemented in UPC and leverages its one-sided communication
capabilities.

2.1 Irregular All-to-all Exchange Benchmark

Here we describe a proxy benchmark that mimics the asynchronous
all-to-all exchange in HipMer’s distributed hash table construction
phases. In this micro-benchmark:
(1) Every processor picks a random processor id p’
(2) Performs a remote atomic fetch_and_add() on an integer vari-
able that belongs to p’

(3) Performs an aggregate remote transfer of size S to processor p’
(4) Repeat steps 1-3 multiple times

The atomic fetch_and_add() corresponds to the required ac-
tion that ensures atomicity in the data exchange (i.e. avoid overwrite
of remote data by multiple processors).

BW of proxy benchmark (GB/s) 300 | 533 | 543
BW of application code (GB/s) 87 112 109
Table 2: Comparison of communication proxy benchmark
and application code that performs the all-to-all exchange.
The message size is 6,400 bytes.

The Cray Aries interconnect on Edison has the physical infras-
tructure to provide at most 23.7 TB/s global bisection bandwidth.
However, the Edison system is shared among multiple users and
realistic use case scenarios do not involve the entire supercomputer.
As a result, the attainable bandwidth at different scales varies from
the full-system bisection bandwidth. All the experiments are per-
formed in the same allocation of 7,680 cores (320 Edison nodes).
Figure 2 illustrates the results of this microbenchmark for three
different concurrencies: 1,920, 3,840 and 7,680 threads. The x axis
shows the message size S and the y axis shows the attained effec-
tive bandwidth per thread. As we increase the message size, the
achieved per thread bandwidth is also increased and after some
point it reaches a plateau. The proxy micro-benchmark also dic-
tates the minimum required aggregate message size to saturate
the available bandwidth at each concurrency. Note though that the
dynamic message aggregation requires S X P times more memory
per thread (given P threads in total). Therefore, one should tune
the S parameter at each concurrency according to the available
memory.

Table 2 compares the aggregate bisection bandwidth perfor-
mance of the proxy benchmark to the all-to-all exchange in the
distributed hash table construction phase. The message size in these
experiments is 6,400 bytes. We emphasize that the proxy benchmark
captures only the communication cost (e.g. it ignores buffer copies,
hashing overheads, skewed data distributions, local computations)
and consequently yields a loose upper bound in performance. Nev-
ertheless, the empirical performance of the application is always
within 5% of the upper bound provided by the proxy benchmark. By
further investigating the HipMer results at the concurrency of 3,840
cores, we found that 47% of the execution time is required for local
computations. In other words, the effective bisection bandwidth of
the application considering only the communication operations is
219 GB/s, which is within 2.5 of the upper bound provided by the
proxy microbenchmark.

2.2 Global Atomics Latency Benchmark

The next aspect of the communication interconnect that is stressed
by the MerBench suite is the efficiency of global atomics. In par-
ticular, we focus on the global atomic compare_and_swap() that
is crucial for the parallel de Bruijn graph traversal described in
section 1. The proxy benchmark that models the communication
and synchronization behavior of the graph traversal algorithm is
the following:
(1) Every processor fetches a random entry from a distributed hash
table
(2) Performs a global atomic compare_and_swap() on an integer
variable of the previously selected entry in the hash table
(3) Repeat steps 1-2 multiple times
This proxy micro-benchmark represents the minimum required
latency overhead in order to visit a vertex in the distributed de
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Concurrency (number of threads)

[ 1,920 [ 3,840 [ 7,960 | |

Concurrency (number of threads) [ 1,920 [ 3,840 [ 7,960 ‘

Latency (us) in proxy to visit a vertex 9.8 | 14.78 | 21.6

Latency of remote get (us) 3.9 4.0 5.0

32.21 | 439

Latency (us) in HipMer to visit a vertex | 24.2

Latency of lookup in the hash table (us) | 11.7 | 114 | 9.81

Table 3: Comparison of proxy benchmark and application
code that performs the parallel de Bruijn graph traversal.
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Figure 3: Latency of irregular lookup.

Bruijn graph traversal. It captures only the communication cost
of this primitive operation and it does not consider any overheads
due to the high-level synchronization protocol, hashing and local
computations. Therefore, the proxy micro-benchmark provides a
loose upper bound on the performance of the parallel graph tra-
versal. Table 3 compares the performance of the proxy benchmark
and the parallel graph traversal in HipMer. We conclude that the
empirical performance of the application is always within roughly
2x and 3% of the upper bound provided by the proxy communica-
tion benchmark. The results also indicate that global atomics which
take advantage of hardware support will speedup significantly this
latency-sensitive parallel algorithm.

2.3 Irregular Lookup Latency benchmark

The last microbenchmark in MerBench measures the latency of the
one-sided get operation at scale:
(1) Every processor fetches a random entry from a distributed hash
table

(2) Repeat step 1 multiple times

This primitive is used to implement the lookup functionality
in the distributed hash table and therefore is the limiting factor
in most of the parallel algorithms with irregular lookup accesses
(e.g. the sequence alignment algorithm). Figure 3 illustrates the
remote get latency for different message sizes at three different
concurrencies. We are particularly interested in the regime of small
messages sizes because the hash table entries typically have size up
to 128 bytes; for such message sizes the latency varies between 4
to 6 microseconds. Table 4 compares the latency of a get operation
with the latency of a lookup in the distributed hash table used in
the sequence alignment algorithm (the message size is 64 bytes).
Note that the lookup operation also includes the hash computation,
overhead to validate that the fetched entry is the one with the
requested key and potential overheads to follow remote chain-
pointers at hash table buckets with conflicts. Nevertheless, the

Table 4: Comparison of get latency and latency of lookup in
the distributed hash table. The message size is 64 bytes.

empirical performance of the lookup is always within 3x of the
latency of a single get operation at all concurrencies. The fact that
the lookup latency remains almost constant at all concurrencies
justifies the efficient scaling of the parallel sequence alignment.
As we increase the number of cores, proportionally fewer lookups
are executed concurrently on the critical path and since they have
constant latency the total execution time decreases proportionally
with the number of cores. The same scaling argument applies to
all key operations in our parallel algorithms that involve irregular
accesses in the distributed hash tables.

3 CONCLUSIONS

In this paper we outlined the key communication patterns in the
HipMer de novo assembly pipeline and we introduced MerBench, a
microbenchmark suite that measures the performance of these com-
munication patterns, namely irregular all-to-all exchanges, irregular
global atomics and irregular, fine-grained lookups. We presented
results of MerBench on the Edison supercomputer and illustrated
how they are representative of the application’s empirical behavior.
Even though we developed MerBench in order to assist HipMer’s
evaluation, MerBench can be used as a tool to understand the poten-
tial of a communication infrastructure that is stressed by a highly
irregular application at scale. For an in-depth analysis of HipMer’s
scalability and its communication requirements we refer the inter-
ested reader to our previous work [4], where MerBench is used
for the benchmarking of multiple systems. MerBench is publicly
available at: https://sourceforge.net/projects/hipmer.
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