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Abstract—Aligning a set of query sequences to a set of target
sequences is an important task in bioinformatics. In this work
we present merAligner, a highly parallel sequence aligner that
implements a seed–and–extend algorithm and employs paral-
lelism in all of its components. MerAligner relies on a high
performance distributed hash table (seed index) and uses one-
sided communication capabilities of the Unified Parallel C to
facilitate a fine-grained parallelism. We leverage communication
optimizations at the construction of the distributed hash table
and software caching schemes to reduce communication during
the aligning phase. Additionally, merAligner preprocesses the
target sequences to extract properties enabling exact sequence
matching with minimal communication. Finally, we efficiently
parallelize the I/O intensive phases and implement an effective
load balancing scheme. Results show that merAligner exhibits
efficient scaling up to thousands of cores on a Cray XC30
supercomputer using real human and wheat genome data while
significantly outperforming existing parallel alignment tools.

I. INTRODUCTION

Recent advances in sequencing technology have made the
redundant sampling of genomes extremely cost effective. Such
a sampling consists mostly of short reads with low error
rates that can generally be aligned to a reference genome
in a straightforward way. However, the increasing depth of
coverage makes the alignment of the reads to a reference
sequence a computationally expensive task, requiring high
degrees of parallelism for efficient execution.

The community has therefore developed several approaches
for parallelizing the alignment of multiple reads (queries) to
a set of reference sequences (targets). Such a class of map-
ping methods include the seed–and–extend algorithms (e.g.
BLAST [1]). In this paradigm, the reference sequences are first
indexed by constructing a seed index, and this data structure
is then used to locate candidate query–to–target alignments by
extracting seeds from the queries and performing seed index
lookups. Finally, an extension algorithm is applied to extend a
found seed, where a local alignment is returned as the result.

In some applications of this methodology, the reference
genome is known a priori, thus allowing an off-line seed index
construction that can then be exploited for multiple read data
sets. This scenario allows for straightforward parallelization,
where the seed index is replicated across a set of computational
nodes, which can then independently and concurrently align
their subset of the reads. Indeed, there are existing frame-
works (e.g. pMap [2]) that automate the process of (1) index
replication, (2) distribution of reads across nodes and (3) local
alignment computation.
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Fig. 1: End-to-end strong scaling of merAligner on Cray XC30 for the
human and the wheat genome. The plotted curves exhibit the performance
of merAligner while the single data points show the performance of BWA-
mem and Bowtie2 used in pMap parallel framework.

However, this approach can suffer from two major lim-
itations. First, the seed index of very large genomes (e.g.
wheat [3], pine [4]) may exceed the memory capacity of a
singe node, thereby preventing the use of a simple seed index
replication scheme. More significantly, there are important
applications where the reference sequence is not known ahead
of time, thus obviating the off-line approach, and requiring
a high-performance implementation of the seed index con-
struction phase to ensure efficient execution of the end-to-
end parallel alignment algorithm. A well-known example of
this requirement is present in most de novo genome assembly
pipelines.

De novo genome assemblers reconstruct an unknown
genome from a collection of short reads. Typically these
assemblers first process the input reads and generate contigs,
which are genome sequences significantly longer than the
input reads. Next, contigs are oriented and gaps are closed
during the scaffolding phase. The key first stage of the general
scaffolding algorithm is aligning the reads onto the generated
contigs [5]. Thus, parallel de novo genome assemblers rely on
efficient aligner algorithms, where the seed index construction
must be efficiently parallelized and distributed to allow high
concurrency solutions for grand-challenge genomes.

The parallel alignment work presented in this paper is mo-
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Fig. 2: An example of a seed index data structure that indexes two target
sequences. Note that the seed index is distributed and stored in shared memory.
Also, the target sequences are stored in shared memory such that any processor
can access them. Here the seed GGC is extracted from both target sequences,
thus the value in the corresponding hash table entry is a list of pointers to
the corresponding sequences. For simplicity we do not show here additional
stored information, such as the seed’s offsets in the targets.

tivated by our ongoing effort to parallelize the Meraculous [6]
genome assembly pipeline [7]. Our study makes numerous
contributions including:
• A highly optimized sequence alignment algorithm that par-

allelizes all its components from end to end, including I/O
and seed index construction.

• Scalable seed index implementation that leverages soft-
ware caching to extend our high-performance lock-free and
communication-optimized distributed hash table.

• An efficient method to preprocess the target sequences that
enables exact sequence matching with minimal communi-
cation and computation without sacrificing accuracy.

• Techniques to efficiently parallelize the I/O intensive stages
and address load imbalance via randomization.

• Close-to-ideal scaling (with 0.7 - 0.78 parallel efficiency)
up to 15K cores on NERSC’s Cray XC30 supercomputer,
using real data sets from the human and the grand-challenge
wheat genomes.

• Comparisons with existing alignment solutions, showing the
significant advantage of our end-to-end parallel approach.
Overall, our work shows that efficient utilization of dis-

tributed memory architectures enables effective parallelization
of sequence alignment in terms of both high scalability and
reduced per-node memory requirements. An overview of our
efficient end-to-end scalability with performance comparisons
to BWAmem [8] and Bowtie2 [9] can be seen in Figure 1;
detailed performance analysis is presented in Section VI.

II. THE MERALIGNER ALGORITHM

Algorithm 1 describes the parallel algorithm we employ
to align a set of query sequences (reads) to a set of target
sequences. We choose Unified Parallel C (UPC) [10] for our
implementation to reduce programming complexity of global
data structures and facilitate a fine-grained parallelism.

A. Extracting Seeds from Target Sequences

First, each processor pi reads a distinct portion of the target
sequences (line 4) and stores them in shared memory such that
any other processor can access them. Every target sequence
of length L contains L − k + 1 distinct seeds of length k.
The first bases 1 . . . k of a target form the first seed, the bases
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Fig. 3: Locating query-to-target candidate alignments. First the processor
extracts a seed from the query sequence (CTG seed). Next the processor looks
up the distributed seed index (arrow 1) and finds that a candidate target
sequence is Target 0 (arrow 2). Finally, the Smith-Waterman algorithm is
executed using as inputs the query and the Target 0 sequences.

2 . . . k + 1 form the second seed, etc. We extract seeds from
the target sequences and associate with every seed the target
from which it was extracted (line 5) – we also keep track of
the exact offset of the seed in the target. Note that a given
seed s might appear in two or more target sequences.

B. Indexing Target Sequences

Once the seeds are extracted from the target sequences,
they are stored in a global hash table, henceforth referred to
as the seed index (line 6), where the key is a seed and the
value is a pointer to the target sequence from which this seed
has been extracted. If a seed is extracted from multiple target
sequences, its value in the hash table is a list of pointers to
those targets. The seed index is distributed and stored in global
shared memory such that any processor can access and lookup
any seed. Essentially the seed index data structure provides a
mapping from seed to targetSequences (see Figure 2).

C. Locating Query-to-Target Candidate Alignments

Given a seed s from a query sequence q and an index
seedIndex , we perform a lookup and locate the candidate tar-
get sequences that have length(s) consecutive bases matching
with q (line 10). Thus, each one of the query-to-target candi-
date alignments can be located in O(1) time (see Figure 3).

D. Identifying Alignments via Smith-Waterman

Finally, after locating a candidate target sequence t that has
length(s) consecutive bases matching with a query sequence

Algorithm 1 Parallel sequence alignment
1: Input: A set of queries and and a set of targets
2: Output: Alignments of queries with targets
3: for all processors pi in parallel do
4: targetSeqs ←READTARGETSEQUENCES(targets)
5: seedsInTargets ←EXTRACTSEEDS(targetSeqs)
6: seedIndex ←BUILDGLOBALSEEDINDEX(seedsInTargets)
7: myQuerySequences ←READQUERYSEQUENCES(queries)
8: for each query sequence q ∈ myQuerySequences do
9: for each seed s ∈ q do

10: candidateTargets ←LOOKUP(seedIndex , s)
11: for each target t ∈ candidateTargets do
12: alignmentsSet ←SMITHWATERMAN(t , q)
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q (where s is a common seed in both sequences), the Smith-
Waterman [11] algorithm is executed with input the sequences
t and q in order to perform local sequence alignment (line 12).

III. DISTRIBUTED SEED INDEX OPTIMIZATIONS

In order to make this paper self-contained we describe
our distributed hash table implementation previously used for
contig generation [7], and demonstrate that this idea can be
extended to the alignment problem.

A. Distributed Seed Index Construction

A straightforward algorithm for constructing the distributed
seed index would process each seed s that a processor pi
encounters in its target sequences by hashing s and invoking a
(potentially) remote-node access to the distributed hash table
(seed index), in order to store that entry to the appropriate
location. Unfortunately this approach suffers from both fine-
grained communication and fine-grained locking, necessary to
ensure atomic accesses to the buckets. To address this per-
formance deficiency, we mitigate fine-grained communication
overhead by leveraging a communication optimization called
aggregating stores, shown in Figure 4. Here, a processor pi
has n−1 local buffers corresponding to the other n−1 remote
processors, where the size S of each local buffer is a tuning
parameter. Every processor hashes one if its targets’ seed s
and calculates the location in the hash table where s has to be
stored. Instead of incurring a remote access to the distributed
hash table, the processor computes the processor ID owning
that remote bucket in the hash table and stores the seed entry
to the appropriate local buffer.

In our implementation, when a local dedicated buffer for
processor pj becomes full, a remote aggregate transfer is
initiated to processor pj . A processor pj has a pre-allocated
local-shared stack shared space, where other processors store
seed entries destined for that processor. Once all target seeds
are computed, each processor iterates over its local-shared
stack and stores each seed entry to the appropriate local
bucket in the distributed hash table, without any communi-
cation. Thus, the optimization trades an S × (n− 1) memory

Reads 
(queries) 

Genome 

depth d 

s s

s s

s s

s s

s s

s s

Fig. 5: A genome sampled at some depth of coverage d.

increase for an S-fold reduction in the number of messages
relative to the unoptimized approach. At the same time, our
optimization solves the problem of fine-grained locking. Since
each processor iterates over its local-shared stack and stores
the received seeds in the appropriate local buckets of the hash
table, there in no need for locks, thus allowing the resulting
distributed hash table to be lock free.

We manipulate local-shared stacks atomically in order to
ensure that processors pi and pk trying to store seed entries
simultaneously at the local-shared stack of another processor
pj do not overwrite the same locations. When processor pi
stores S entries to the local-shared stack of pj , it needs to
locate the position in pj’s stack that these entries should
go to. Thus, every local-shared stack is associated with its
stack ptr pointer that indicates the current position in the
local-shared stack. These stack ptr variables are shared and
accessible to all processors. Therefore, if processor pi is about
to store S entries to processor pj , it (a) reads the current value
of pj’s stack ptr, called cur pos, (b) increases the value of
pj’s stack ptr by S and (c) stores the S entries in pj’s local-
shared stack into the locations cur pos · · · cur pos+S-1
with an aggregate transfer. Steps (a) and (b) need to be exe-
cuted atomically to avoid data hazards, for which we use the
global atomic atomic fetchadd(). Without this aggregating
optimization, one would have to access a single remote bucket
at a time and consequently would have to obtain one lock
at a time. On the other hand, this optimization reduces the
number of atomic operations by a factor of S and highlights
the advantage of being lock-free.

B. Software Caching Schemes

The nature of the alignment problem enables data reuse in
both the seeds and target sequences, allowing us to exploit this
insight for a more efficient implementation. High throughput
sequencing allows genomes to be sampled redundantly at a
depth d, as visualized in Figure 5. Let k be the length of a seed
s and L be the read length. Any seed s of the genome (yellow
region) is expected to be found f = d·(1−(k−1)/L) times in
the read data set (f is the mean of the Poisson distribution of
key-frequencies [12]), thus resulting in f lookups for that seed
within the distributed seed index. Additionally, targets are in
general sequences that are significantly longer than the reads.
Thus, multiple reads are expected to be aligned with the same
target and a given target t is expected to be reused multiple
times in the seed extension procedure.

Given this potential for data reuse, we developed a soft-
ware cache architecture to reduce communication overhead as
shown in Figure 6. In UPC, the address space of every node
is logically divided into private memory and shared memory.
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Fig. 6: Software cache architecture for the distributed seed index and the
target sequences. Node i has stored in its seed index cache a seed s (yellow
block) from Node j. Any lookup for the seed s by processors of Node i will
be served by the seed index cache. Similarly, Node i has stored in its target
cache a sequence t (red block) from Node j. Any processor of Node i that
needs to align a query with respect to t will fetch t from the target cache.

The private memory is thread local and can only be accessed
by the UPC thread (which maps to a processor in our case) to
which it has affinity. On the other hand, a location of the shared
memory can be accessed by any UPC thread in the system. It is
much faster to access locally stored data than to access shared
memory residing on a remote node. Thus, on every node, a
portion of the shared memory is dedicated for software caches
that can store either remote parts of the distributed seed index
(seed index cache) or target sequences owned by remote nodes
(target cache). In Figure 6 consider Node i which has stored
in its seed index cache a seed s (yellow block) that belongs
to the part of the distributed seed index local to Node j. Any
lookup for the seed s by processors of Node i will be served
by the seed index cache resulting in much faster lookup time
than accessing the original yellow block on the remote Node
j. Similarly, consider a target sequence t (red block) which
has been stored to the target cache of Node i. Processors of
Node i that need to align a query in respect to t will fetch t
from the target cache and thus avoid the expensive off-node
communication.

The expected seed data reuse naturally depends on the
seed distribution among processors. As discussed later in
Subsection IV-B, for load balancing reasons reads are assigned
to processors in a uniformly random fashion. Consider a
parallel system with p total processors, with ppn processors
per node and a seed s with frequency f in the read data set
residing on node i. Following the reasoning in the previous
paragraph, there are f − 1 additional occurrences of that seed
s in the read data set or equivalently there are f − 1 locations
in the reads that include that seed.

We can then ask the question: What is the probability that
at least one such read is assigned to node i? This problem can
be reduced to the well known “bins and balls” experiment. In
this case, given f−1 balls (remaining occurrences of the seed
s) and m = p/ppn bins (nodes), we toss the balls (reads)
uniformly at random — the probability that at least one of
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Fig. 7: Probability of any seed being reused as a function of cores. We have
picked values of d = 100, L = 100, k = 51, f = 50 and ppn=24.

these balls falls in bin i (node i) is 1−(1−1/m)f−1. Therefore,
with probability 1−(1−1/m)f−1 our approach will perform at
least one seed index lookup of s resulting in a software cache
hit, since there are at least two occurrences of that seed in the
same node i. In order to assess the limits of this optimization,
consider the case of a read data set with d = 100, L = 100,
k = 51, f = 50 and a system with ppn = 24 cores per node.
Figure 7 shows the probability of any seed being reused at
least one time given the previous values of f and ppn. Note,
however, that this is the behavior in the ideal case of “infinite”
cache. In practice, we dedicate a fraction of the nodes’ memory
for software caching, and tradeoff memory for increased data
reuse. For typical experimental values of d and ppn, we expect
a significant benefit from our cache optimization strategy, as
demonstrated in the experimental results of Section VI.

IV. ALIGNMENT OPTIMIZATIONS

We now discuss our alignment optimizations and theoretical
proofs of expected behavior.

A. Optimizing exact read matches

Here we devise a method to preprocess the target sequences
to identify properties enabling exact sequence matching with
minimal communication. The property we describe is based
on the Lemma 1.

Lemma 1. Let k be the length of the seeds, q be a query
sequence and t be a target sequence where all the seeds
extracted from t are uniquely located in t (i.e. this seed
cannot be found in any other target sequence). Assume that
s is a subsequence in q with length(s) ≥ k and t is a
candidate target to be aligned with q that also includes the
subsequence s. Then, q is uniquely aligned to t with respect
to the subsequence s, in essence there is no other target t′

that matches with q in the subsequence s.

Proof. Since q matches with t in length(s) bases, then all
length(s) − k + 1 seeds in s belong to both q and t. Since
all seeds in t are uniquely located in t we conclude that
also these length(s) − k + 1 seeds are uniquely located in
t and therefore there are no other targets that include those
seeds. Consequently, there are no other targets that include
the subsequence s.



Consider a subsequence s ≡ q, and assume that the first
candidate target t0 is to be aligned with q and it is known
that all the seeds extracted from t0 are uniquely located in t0
(we detail in the subsequent paragraph how to identify such
a property). With a fast check we can determine if q and t0
match in exactly length(s) bases. Given this scenario, then
via Lemma 1 with s ≡ q it holds that q is uniquely aligned to
t0. Thus it is not necessary to look for more candidate targets
and additional seed lookups in the distributed seed index can
be avoided. It is thus assured that all possible alignments of q
are found (to the set of the targets) by simply performing
a single seed lookup — thereby only requiring minimal
communication. Further speedups can also be achieved by
recognizing that a seed extension algorithm is not necessary in
this case, instead a simple and fast string comparison between
q and the appropriate location of t0 can be executed.

We now explain how to identify, efficiently for all target
sequences, whether the seeds extracted from t0 are uniquely
located in t0. During the distributed seed index construction
described in Subsection III-A, when a processor adds the
received seeds in its local buckets of the hash table, it
counts the number of occurrences of each seed — a cheap
and local operation. We additionally associate a boolean
single copy seeds flag that is initialized as true for
all targets. After inserting the seeds into the seed index, a
processor pi can visit all the local seeds and if the count of
an encountered seed s′ is greater than 1, pi sets the flags
single copy seeds of the targets that s′ was extracted from
as false. This indicates that those targets do not have seeds
uniquely located in them. At the end of this step, all the
remaining targets with single copy seeds set to true are
guaranteed to have all their seeds uniquely located in them.

To maximize the impact of this optimization, we add an
additional strategy. Given the seed length k, the longer a
target sequence t is, the more probable it is that t contains at
least one seed that is not uniquely located in t, thus negating
the potential of leveraging the described lookup optimization
(even if some reads uniquely match to t). Now consider
the case where a target sequence t′ has all but one seed a
uniquely located in t′. If we fragment t′ in two equal-length
subsequences t′1 and t′2 (that overlap to some degree but have
disjoint sets of seeds), then the non-uniquely located seed a in
t′ should be found (by construction) in either t′1 or t′2. Thus
the subsequence not containing the seed a consists of uniquely
located seeds, thereby enabling our described optimization.

The same reasoning can be applied recursively to address
the general case where a target t′ contains multiple non-
uniquely located seeds. The idea is to fragment the sequence t′

into m equal-length subsequences t′1, t
′
2, ..., t

′
m that overlap to

some degree — however the subsequences have disjoint sets
of seeds and the union of their sets of seeds is exactly the set
of seeds in the original sequence t′. This approach increases
the probability of applying the previous optimization. Note
that some additional information must be stored for each one
of the subsequences t′1, t

′
2, ..., t

′
m, to allow quick locating of

these subsequences later in the alignment.

B. Load Balancing

Load balancing the queries might initially seem trivial:
given n queries and p processors each processor should
process n/p queries. Unfortunately, queries may differ in their
processing requirements.

For instance, consider a query q′ that perfectly aligns with
a single target sequence. Let textractSeed be the required time
to extract a seed from a query, tlookupSeed the time to lookup
a seed in the seed index, tfetchTarget the time to fetch a target
sequence, and tmemcmp() the time to perform a memcmp()
operation on length(q′) bytes. Then, the time Algorithm 1
takes (after applying the previous optimization) to process q′

is tq′ = textractSeed+ tlookupSeed+ tfetchTarget+ tmemcmp().
On the other hand, consider a query q′′ that can be aligned
with C targets. Assume that tSW is the time to execute
the Smith-Waterman algorithm. Then, processing q′′ takes
tq′′ = L·(textractSeed+tlookupSeed)+C ·(tfetchTarget+tSW )
time, where L = length(q′′) − length(seed) + 1. Given
tmemcmp() ≤ tSW , it must hold that tq′′ ≥ min(C,L) · tq′ ,
thus the processing times of two queries can vary significantly.

Assume that the n queries can be divided in two categories:
“fast” and “slow” (depending on their required processing
time). The goal is to evenly distribute the slow queries to
the available p processors. However, because it is unknown a
priori if a query is fast or slow, we implement the following
load balancing strategy. Before executing Algorithm 1 the
order of the queries is randomly permuted in the input file
and each processor is assigned a chunk of n/p consecutive
queries from the corresponding file. As proven in Theorem 1,
if there are h “slow” queries, p available processors and
p log p � h ≤ p polylog(p)1, then with high probability the
load imbalance (distance of maximum “slow” load from the
average “slow” load h/p) is at most: 2

√
2h
p log p.

Theorem 1. Let h be the number of “slow” queries and p be
the number of available processors and assume that p log p�
h ≤ p polylog(p). After assigning the h queries randomly
to the p processors (or equivalently randomly permuting the
order of the queries in the input file) then with high probability
the load imbalance (distance of maximum “slow” load from
the average “slow” load h/p) is at most: 2

√
2h
p log p.

Proof. We formulate the process of randomly permuting the
order of the queries in the input file as the uniformly random
tossing of h balls into p bins. Let M be the random variable
that counts the maximum number of balls (“slow” queries)
in any bin. It therefore holds that Pr[M ≤ k] = 1 − o(1)

where k = h
p + 2

√
2h
p log p [13], i.e. with high probability

the load imbalance (distance of maximum “slow” load from
the average “slow” load h/p) is at most: 2

√
2h
p log p.

C. Restricting the Maximum Alignments per Seed

Even after applying the described load balancing scheme,
there may be a few seeds that can be aligned with too many

1polylog(p) is some polynomial in log(p)



targets, causing a high processing time for the corresponding
queries. Additionally, finding those numerous alignments may
not be relevant to many genome alignment applications. Thus,
a threshold can be set for the maximum number of align-
ments per seed, after which the candidate alignment queries
are stopped. This threshold determines the sensitivity of our
aligner and it can be used to trade off accuracy for speed when
appropriate.

V. ADDITIONAL OPTIMIZATION

We now describe the additional set of I/O, SIMD, and
compression optimizations utilized in our work.

A. Parallel I/O

A standard format to represent DNA short reads is the
FASTQ format, a text file that includes one read per line
with another line of the same length encoding the quality
of each base pair. Unfortunately, there is no scalable way to
read a FASTQ file in parallel due to its text-based nature.
As previously described [7], our work has therefore been
leveraging SeqDB [14], a binary format for storing DNA short
reads that is implemented on HDF5 [15]. Although SeqDB was
not originally designed with parallelism in mind, its HDF5
format allowed us to utilize parallel input data reading using
Parallel HDF5 via the MPI-IO with modest modifications, thus
enabling a portable solution. Note that the compression from
FASTQ to SeqDB is a one-time lossless conversion, where
the resulting file is typically 40-50% smaller than the original
FASTQ file. While this compression ratio is less compact
than other competing formats, SeqDB is significantly faster
during the decompress phase. Overall, the SeqDB format is
well suited for parallel sequence processing, and we envision
it being used more widely by the community.

B. SIMD Optimized Striped Smith-Waterman

MerAligner spends a significant portion of its runtime using
the Smith-Waterman (SW) algorithm for seed extension. Due
to the critical role of SW, many efforts have been made to
accelerate it by taking the advantages of special hardware
SIMD (Single Instruction Multiple Data) instructions. In this
work we incorporate such an implementation from the Striped
Smith-Waterman (SSW) library [16] which has been shown to
be orders of magnitude faster than reference implementations
of SW in C.

C. DNA Sequence Compression

Given the {A,C,G,T} vocabulary of a DNA sequence, only
two-bits per base are required for binary representations.
We thus use a high-performance compression library that
transforms the DNA sequences from text format into a binary
format [7]. This approach reduces the memory footprint by
4×, while also reducing the bandwidth by 4× for communi-
cation events that involve seeds or DNA sequence transfers.

VI. EXPERIMENTAL RESULTS

We now discuss our experimental testbed and runtime
results across a variety of input sets, concurrencies, and
optimization schemes, as well as comparison with competing
approaches.

A. Experimental Testbed

High-concurrency experiments are conducted on Edison, a
Cray XC30 supercomputer at NERSC[17]. Edison has a peak
performance of 2.57 petaflops/sec, with 5576 compute nodes,
each equipped with 64 GB RAM and two 12-core 2.4 GHz
Intel Ivy Bridge processors for a total of 133,824 compute
cores, and interconnected with the Cray Aries network using
a Dragonfly topology.

Our experiments utilize real data sets for human and wheat
genomes. The human data set contains 2.5 billion reads (252
Gbp of sequence) for a member of the CEU HapMap popula-
tion (identifier NA12878) sequenced by the Broad Institute,
and our goal is to align those reads onto a set of target
sequences (contigs) that are generated in the Meraculous de
novo genome assembly pipeline. The reads are 101 bp in
length from a paired-end insert library with mean insert size
238 bp. The wheat data set, contains 2.3 billion reads (477 Gbp
of sequence) for the homozygous bread wheat line ’Synthetic
W7984’ sequenced by the JGI and again we want to align
those reads onto a set of target sequences (contigs) that are
generated in the Meraculous pipeline. The reads are 100-250
bp in length from 5 paired-end libraries with insert size 240-
740 bp. For all experiments the seed length is set to 51, as
used in the actual scaffolding step of the Meraculous pipeline.

B. Strong Scaling of End-to-End merAligner

Figure 1 (page 1) shows the merAligner end-to-end strong
scaling performance with all optimizations applied. This sum-
marizes the main result of this study, and demonstrates the
efficient utilization of distributed memory architectures for
enabling scalable high performance sequence alignment. More
specifically when scaling from 480 to 15,360 cores the total
execution time drops from 4,147 seconds to 185 seconds (a
22× speedup), which translates to 0.7 parallel efficiency at
the extreme scale for the human dataset (red curves). At
the scale of 15,360 cores our approach performs alignment
at 15,499,718 reads/sec. For the larger wheat data set (blue
curves), scaling from 960 to 15,360 cores achieves 0.78
parallel efficiency. Note the super-linear speedup in the range
of 960 — 7,680 cores, which we speculate is due to reduced
congestion on the NIC since the communication is spread to
even more nodes while we scale. This will be the subject of
future investigation.

C. Anatomy of the Optimizations’ Benefits

We now examine the individual effect our optimization
schemes, by selectively turning them off and measuring the
resulting performance impact.
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the “aggregating stores” optimization for the human data set.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

no cache         w/ cache no cache         w/ cache no cache         w/ cache

tim
e 

(s
ec

)

 

Communication time during aligning phase

seed lookup - no cache
fetching targets - no cache
seed lookup w/ cache
fetching targets w/ cache

7680 cores1920 cores480 cores

2.3× 

1.7× 
1.8× 
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the human data set.

1) Distributed Seed Index Construction: Figure 8 illustrates
the scaling of the distributed seed index construction before
and after applying the “aggregating stores” optimization, given
an S = 1000. Observe that the reduction in the communication
via our optimization dramatically decreases the construction
time. At 480 cores the time spent decreases from 1,229
seconds to 262 seconds (4.7× improvement), and similarly
at 7,680 cores we achieve an improvement of 4.8×. For the
optimized construction phase, increasing concurrency from
480 cores to 7,680 (16× core increase) results in a near-
linear speedup speedup of 12.7×. These results show that our
algorithm efficiently parallelizes the seed index construction
in a distributed memory and enables end-to-end scaling of
merAligner. These scalable seed index construction results are
in contrast to serial approaches of competing alignment codes
as detailed in Subsection VI-D. Also, the algorithm achieves
almost perfect load balance in terms of the number of distinct
seeds assigned to each processor, thanks to our use of the djb2
hash function to implement the seed to processor map.

2) Software Caching: In Figure 9 we depict the bene-
fits of software caching on the communication time during
the alignment phase (in all experiments 16 GB/node and
6 GB/node are allocated for the seed index and the target
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Fig. 10: Impact of “exact matching optimization” on the aligning phase of
the human data set.

cache respectively). The red bars indicate the communication
time for the seed lookups and the blue bars represent target
sequence fetching overhead. Observe that the target cache
is extremely efficient at all concurrencies and it essentially
obviates all the communication involved with target sequences.
Results also show that the seed index cache is effective at
small concurrencies, where lookup time is decreased from
4,839 seconds to 3,130 seconds (∼35% reduction) at 480 cores,
whereas larger concurrencies see small benefits — validating
our analysis in Subsection III-B. Overall, the caching scheme
decreases communication overhead by 2.3×, 1.7× and 1.8×
at concurrencies of 480, 1,920 and 7,680 cores respectively.

3) Exact Read Matching Optimization: Figure 10 shows
the significant performance benefits of exact read matching,
validating the theoretical analysis of Subsection IV-A. Here the
optimization results in runtime improvement of the alignment
step by factors of 2.8× and 3.1× for 480 cores and 7,680 cores
respectively. Note that these gains come from both decreased
communication (since in exact matching just one seed lookup
is sufficient) and reduction of computation time (by avoiding
Smith-Waterman execution). For example, at 480 cores our
approach improves computation by 2.48× and communication
by 2.82×. Finally we emphasize that ∼59% of the aligned
reads took advantage of this optimization, thus enabling these
impressive performance gains. For the optimized aligning
phase, increasing concurrency from 480 cores to 7,680 (16×
core increase) results in a near-linear speedup of 15.9×.

4) Load Balancing: In order to assess the effectiveness of
the load balancing scheme, we conducted experiments with
and without permuting the input read files and measured
the maximum, minimum and average computation time as
well as alignment times (computation plus communication).
Results for 480 cores for the human data set are shown in
Table I. Although our load balancing scheme effectively helps
reduce the maximum computation time by almost 2.5×, the
total alignment time is only improved by ∼5%. A closer
investigation of the original data set reveals that the reads
mapping to the same genome region are grouped together.
Since some groups of reads did not map to any target, they



Load Computation time Total Alignment time
Balancing Min Max Avg Min Max Avg

Yes 678 800 740 2700 3885 3277
No 515 1945 690 1512 4092 2073

TABLE I: Effect of load balancing scheme on the human data set, showing
the reduction of the maximum compute time

do not require Smith Waterman execution, and thereby cause
an imbalanced computing load. However, this locality made
our seed index cache extremely effective and substantially
decreased the communication time. Therefore, our load bal-
ancing scheme alleviates the computational load imbalance,
while making the seed index cache less effective as seen
in Table I. Nonetheless, our approach improves the overall
execution time. We note that the read grouping in the original
data set is not the common case, and thus expect our load
balancer to be even more effective in the general case.

D. Comparison with Existing Parallel Aligners

To assess our optimized merAligner in the context of
existing solutions, we compare human data performance with
BWA-mem [8] and Bowtie2 [9] using the pMap [2] frame-
work. Note that pMap was modified to use the latest versions
of the alignment software. Our experiments are configured
using 4 instances of 6 threads per Edison node, since it is
not possible to run one instance per core due to memory
requirements of BWA-mem and Bowtie2 (each node contains
64GB of memory, which is insufficient to hold 24 instances of
the seed index). BWA-mem is run with minimum seed length
equal to 51 (like merAligner) since alignments with smaller
seeds are not applicable to the scaffolding computation. For
Bowtie2, we set the minimum seed length to the maximum
possible value (31) and we execute the experiment with the
--very-fast option in order to achieve the best mapping
runtime. It is important to highlight that the seed index
construction for BWA-mem and Bowtie2 is performed serially.
For both cases, pMap partitions the reads to the available
instances, then the seed index is loaded into each instance’s
memory and finally the corresponding instance is called on
the set of reads assigned to it.

Table II presents comparative end-to-end performance re-
sults at 7,680 cores, and notes which computing phases are
performed in serial (S) or parallel (P). As expected, the serial
seed index construction is a major bottleneck for the compet-
ing codes, compared with our parallel merAligner approach.
Also, pMap spends a significant amount of time in read
partitioning by having a single process sending the appropriate
portion of the input read files to the corresponding node (4,305

Aligner Seed Index Mapping Total SpeedupConstruction Time
merAligner 21 (P) 263 (P) 284 sec 1×
BWA-mem 5,384 (S) 421 (P) 5,805 sec 20.4×

Bowtie2 10,916 (S) 283 (P) 11,119 sec 39.4×

TABLE II: End-to-end performance comparison between parallel executions
of merAligner, BWA-mem and Bowtie2 using 7,680 cores on the human
data set (with all times in seconds) — highlighting serial (S) or parallel (P)
implementation of the phases.
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Fig. 11: Shared memory performance of merAligner, BWA-mem and Bowtie2
on a single node of Edison on the E. coli data set. At the scale of 24 cores,
merAligner is 6.33× faster than BWA mem and 7.2× faster than Bowtie2.

and 3,982 seconds for BWA-mem and Bowtie2 respectively).
On the contrary, merAligner does not suffer from this overhead
since all processors read in parallel the appropriate portions
of the input read files. To make though a fair comparison, we
exclude the timing of the read partitioning for the cases of
BWA-mem and Bowtie2. In total, merAligner is 20.4× and
39.4× faster than the parallel execution of BWA-mem and
Bowtie2, respectively.

A complete analysis of the accuracy of the method is
outside of the scope of this paper. The algorithm is guaranteed
to identify all alignments that share at least one identically
matching stretch of at least length(seed) consecutive bases
between query and target sequences. Whether such alignments
are sufficient is largely an application-dependent question. For
the purposes of the Meraculous de novo assembly toolkit,
these alignments are precisely those required. Here, we simply
report all alignments detected (i.e. without any percent-identity
thresholding, using a commonly employed scoring matrix) and
find that merAligner successfully aligned 86.3% of the reads,
while BWA-mem and Bowtie2 aligned 83.8% and 82.6% of
the reads respectively. The accuracy of the detailed alignments
is a function of the Smith-Waterman code, and we refer the
interested reader to that publication [16].

To further assess merAligner performance, we conduct
experiments on the smaller 4.64 Mbp E. coli K-12 MG1655
dataset, which allows single node scalability experiments using
both BWA-mem and Bowtie2 in parallel mode with threads.
The execution time of all three approaches (using a seed length
of 19) is shown in Figure 11. Observe that merAligner perfor-
mance continues to scale using all 24 available cores, while
the runtimes of BWA-mem and Bowtie2 stop improving at 18
cores. Overall, merAligner is significantly faster, exceeding
BWA-mem and Bowtie2 performance on 24 cores by 6.33×
and 7.2× respectively. Subject to the alignment correctness
discussion above, we find that merAligner successfully aligned
97.4% of the reads, while BWA-mem and Bowtie2 aligned
96.3% and 95.8% of the reads respectively.



VII. RELATED WORK

A thorough survey of sequence aligners is beyond the
scope of our work and we refer the reader to [18], [19],
[20], [21], [22], [23]. We primarily focus on parallel se-
quence mapping tools and relevant methods in this section.
CUSHAW2 [24], BWA [25], BWA-mem [8], Bowtie2 [9],
SNAP [26], SOAP [27] and GSNAP [28] are mapping tools
that employ shared memory parallelism during the aligning
phase. However, these approaches are more restrictive as
they are limited by the concurrency and memory capacity of
the shared-memory node. CUSHAW2-GPU [29] and SOAP3-
dp [30] are short read aligners that leverage GPU power on a
single compute node. pMap [2] is a MPI-based tool used to
parallelize existing short sequence mapping tools (like the ones
mentioned above) by partitioning the reads and distributing
the work among the processors. However, pMap does not
leverage any parallelism during the index table construction
and therefore a serialization bottleneck is introduced in the
mapping pipeline. PBWA [31] employs MPI in order to
execute BWA on distributed memory machines, however the
index table construction and its replication are serial processes.
Also, the sequence distribution is done by a single master
process. Therefore, pBWA suffers from the same limitations
as pMap. Menon et al. [32] parallelize the genome indexing
with MapReduce, however the scaling they obtain is poor.

Bozdag et al. [33] evaluate different methods of distributed
memory parallelization of a mapping pipeline. These methods
fall basically in three categories: (i) partitioning the reads only,
(ii) partitioning the genome (and consequently the index table)
and (iii) hybrid method of (i) and (ii) that partitions both
reads and the genome (and the index table). One conclusion of
this study is that method (i) suffers from the serialized index
table construction, method (ii) does not scale in the mapping
phase, and regarding method (iii), even though it exhibits
improved scalability, its scaling is not close to linear. The main
reason is that in the hybrid method, the index table creation is
parallelized among subgroups of processes and the reads are
also partitioned among subgroups of processes. Therefore, the
hybrid method does not exploit the highest possible level of
concurrency. Our work does fully parallelize the index table
creation and partitions the reads using all available processors.

pFANGS [34] also tries to parallelize both the index table
construction and the alignment phase. It distributes the index
table among the processors but the processors can not look
up the distributed index in arbitrary locations. Therefore, the
index lookup tasks are localized first, then an all-to-all person-
alized communication step is performed, the local lookups take
place, and finally the lookup results are redistributed such that
they are placed with the relevant queries (this redistribution is
done with all-to-all personalized communication). The authors
identify that the communication becomes a bottleneck because
of the all-to-all communication and therefore they divide the
processes in disjoint subgroups where each subgroup works
independently by creating its own copy of the index table.
However, in this approach the scaling of the index table con-

struction is limited by the size of each subgroup. Orion [35] is
an improvement over mpiBLAST [36] and scales the sequence
matching with fine-grained parallelization. However, Orion
uses mpiBLAST’s mpiformatdb tool to format and to shard
the database and this process is serial.

Our previous study [7] investigated the building of dis-
tributed hash tables for the contig construction phase of Merac-
ulous [6]. This work extends the algorithm for our distributed
seed index optimizations, which now allows multiple seeds to
map onto a given target. Also, in this work we enhance the
distributed hash table with software caching support. Finally,
Kassens et al [37] employed a PGAS language called UPC++
to parallelize Genome-Wide Association Studies and showed
that this programming model is suitable for data-intensive
bioinformatics applications.

VIII. CONCLUSIONS

This work presents a highly scalable sequence alignment
algorithm that effectively parallelizes all computational phases,
including seed index construction. Achieving our solution
required numerous innovations including software-caching,
accelerated exact sequence matching, I/O optimization, and
load balancing via randomization. Overall we achieved near
perfect scaling on up to 15K cores using real human and
wheat data sets, while significantly exceeding the end-to-end
performance of existing approaches by factors of 20-39×.

The approach described here was initially developed as
part of a UPC adaptation of the Meraculous genome assem-
bler [3], since aligning reads to a reference set of contigs
was rate limiting after other stages of the assembler had
been parallelized. Other shotgun assemblers have comparable
steps, and adaptations of our method (perhaps using different
detailed alignment scoring after identifying and extending
seed matches) would also likely be useful as modules in
other assembly settings. The Striped Smith-Waterman local
alignment engine could easily be replaced with any other
local alignment software tool; more broadly any seed-and-
extend algorithm could be implemented with minor changes to
the underlying protocols, including protein-DNA and protein-
protein alignments. Importantly, for the case of alignment
of read sets from multiple individuals against a reference
genome, the cost of building an index can be amortized across
the individuals. In contrast, for de novo assembly of a new
genome a new index needs to be built for each new assembly.
Therefore, the parallelization of index construction is a key
element of our approach relative to existing short-read aligners.

While we have focussed on the DNA-alignment problem,
and in particular its application in the context of whole-
genome shotgun assembly, the work presented here is of
sufficient generality that we envision merAligner providing a
framework for a generic, distributed hash platform for a variety
of applications. In the DNA sequence domain, large genomes
(e.g., wheat or pine) may require indices that, unlike human,
may not fit in the memory on a single node; our parallel
approach avoids this limitation by constructing the index
in parallel across distributed memories. Because merAligner



is strongly scalable, it supports the exponential growth and
complexity of genome references, in addition to the rapid
throughput needed to align massive numbers of genomes.

Other large sequence collections, like the GenBank [38]
collection of all known genomic data, are not feasible to index
using the methods of existing tools such as BWA and Bowtie;
in principle, our approach is scalable to allow short reads from
any source to be rapidly aligned against the complete GenBank
collection. Extending our approach to other alphabets, one can
also use the same methods to align protein sequences (strings
of 20 characters, each corresponding to one of the 20 amino
acids) against protein datasets. Finally, more general text based
queries outside of the biological sequence domain may also
be facilitated by our new parallel approach.
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marking short sequence mapping tools,” BMC bioinformatics, vol. 14,
no. 1, p. 184, 2013.

[19] H. Li and N. Homer, “A survey of sequence alignment algorithms for
next-generation sequencing,” Briefings in bioinformatics, vol. 11, no. 5,
pp. 473–483, 2010.

[20] N. A. Fonseca, J. Rung, A. Brazma, and J. C. Marioni, “Tools for
mapping high-throughput sequencing data,” Bioinformatics, p. bts605,
2012.

[21] M. Ruffalo, T. LaFramboise, and M. Koyutürk, “Comparative analysis
of algorithms for next-generation sequencing read alignment,” Bioinfor-
matics, vol. 27, no. 20, pp. 2790–2796, 2011.

[22] M. Holtgrewe, A.-K. Emde, D. Weese, and K. Reinert, “A novel
and well-defined benchmarking method for second generation read
mapping,” BMC bioinformatics, vol. 12, no. 1, p. 210, 2011.

[23] S. Schbath, V. Martin, M. Zytnicki, J. Fayolle, V. Loux, and J.-F. Gibrat,
“Mapping reads on a genomic sequence: an algorithmic overview and
a practical comparative analysis,” Journal of Computational Biology,
vol. 19, no. 6, pp. 796–813, 2012.

[24] Y. Liu and B. Schmidt, “Long read alignment based on maximal exact
match seeds,” Bioinformatics, vol. 28, no. 18, pp. i318–i324, 2012.

[25] H. Li and R. Durbin, “Fast and accurate short read alignment with
Burrows–Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–
1760, 2009.

[26] M. Zaharia, W. J. Bolosky, K. Curtis, A. Fox, D. Patterson, S. Shenker,
I. Stoica, R. M. Karp, and T. Sittler, “Faster and more accurate sequence
alignment with SNAP,” arXiv preprint arXiv:1111.5572, 2011.

[27] R. Li, Y. Li, K. Kristiansen, and J. Wang, “SOAP: short oligonucleotide
alignment program,” Bioinformatics, vol. 24, no. 5, pp. 713–714, 2008.

[28] T. D. Wu and S. Nacu, “Fast and SNP-tolerant detection of complex
variants and splicing in short reads,” Bioinformatics, vol. 26, no. 7, pp.
873–881, 2010.

[29] Y. Liu and B. Schmidt, “Cushaw2-gpu: empowering faster gapped short-
read alignment using gpu computing,” Design & Test, IEEE, vol. 31,
no. 1, pp. 31–39, 2014.

[30] R. Luo, T. Wong, J. Zhu, C.-M. Liu, X. Zhu, E. Wu, L.-K. Lee, H. Lin,
W. Zhu, D. W. Cheung et al., “Soap3-dp: fast, accurate and sensitive
gpu-based short read aligner,” PloS one, vol. 8, no. 5, p. e65632, 2013.

[31] D. Peters, X. Luo, K. Qiu, and P. Liang, “Speeding up large-scale next
generation sequencing data analysis with pBWA,” J Appl Bioinform
Comput Biol, vol. 1, p. 2, 2012.

[32] R. K. Menon, G. P. Bhat, and M. C. Schatz, “Rapid parallel genome
indexing with MapReduce,” in Int. workshop on MapReduce and its
applications. ACM, 2011, pp. 51–58.

[33] D. Bozdag, C. C. Barbacioru, and U. V. Catalyurek, “Parallel short
sequence mapping for high throughput genome sequencing,” in IPDPS.
IEEE, 2009.

[34] S. Misra, R. Narayanan, W.-k. Liao, A. Choudhary, and S. Lin,
“pFANGS: Parallel high speed sequence mapping for next generation
454-roche sequencing reads,” in IPDPSW. IEEE, 2010, pp. 1–8.

[35] K. Mahadik, S. Chaterji, B. Zhou, M. Kulkarni, and S. Bagchi, “Orion:
Scaling genomic sequence matching with fine-grained parallelization,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’14), 2014.

[36] A. Darling, L. Carey, and W.-c. Feng, “The design, implementation,
and evaluation of mpiBLAST,” Proceedings of ClusterWorld, vol. 2003,
2003.

[37] J. C. Kassens, J. Gonzalez-Dominguez, L. Wienbrandt, and B. Schmidt,
“Upc++ for bioinformatics: A case study using genome-wide association
studies,” in Cluster Computing (CLUSTER), 2014 IEEE International
Conference on. IEEE, 2014, pp. 248–256.

[38] D. A. Benson, M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. J.
Lipman, J. Ostell, and E. W. Sayers, “GenBank,” Nucleic acids research,
p. gks1195, 2012.


