
Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse
Matrix-Vector Multiply

Benjamin C. Lee, Richard W. Vuduc, James W. Demmel, Katherine A. Yelick
University of California, Berkeley

Computer Science Division
Berkeley, California, USA

{blee20, richie, demmel, yelick}@cs.berkeley.edu

Abstract

We presentoptimizationsfor sparse matrix-vector multi-
ply SpMV and its generalization to multiple vectors, SpMM,
when the matrix is symmetric: (1) symmetric storage, (2)
register blocking, and (3) vector blocking. Combined with
register blocking, symmetry saves more than 50% in ma-
trix storage. We also show performance speedups of2.1×
for SpMV and2.6× for SpMM, when compared to the best
non-symmetric register blocked implementation.

We present an approach for the selection of tuning pa-
rameters, based onempirical modeling and searchthat
consists of three steps: (1) Off-line benchmark, (2) Run-
time search, and (3) Heuristic performance model. This
approach generally selects parameters to achieve perfor-
mance with 85% of that achieved with exhaustive search.

We evaluate our implementations with respect toupper
boundson performance. Our model bounds performance
by considering only the cost of memory operations and us-
ing lower bounds on the number of cache misses. Our opti-
mized codes are within 68% of the upper bounds.

1 Introduction

We present optimizations, an approach for tuning param-
eter selection, and performance analyses for sparse matrix-
vector multiply (SpMV),y ← y + A · x, whereA is a
symmetric, sparse matrix (i.e., A = AT ) andx,y are dense
column vectors called thesourceanddestination. We also
consider the generalization of SpMV to multiple vectors
wherex,y are replaced by matricesX,Y , referring to this
kernel as SpMM. Symmetry is traditionally exploited to re-
duce storage, but performance gains are also possible since
the cost of memory accesses dominates the cost of flops on
most modern cache-based superscalar architectures.

The challenge in efficient performance tuning for sparse

computational kernels is the considerable variation in the
best choice of sparse matrix data structure and code trans-
formations across machines, compilers, and matrices, the
latter of which may not be known until run-time. This pa-
per describes a new implementation space for the symmet-
ric case, considering symmetric storage (Section 3), register
blocking (Section 3), and vector blocking (Section 4).

We present an empirical modeling and search proce-
dure to select optimal tuning parameters that characterize
a SpMM code for a given matrix and machine (Section
5). Our approach extends models of the SPARSITY sys-
tem [7, 5]. To evaluate the measured performance of our
best implementations, we formulate upper bounds on per-
formance (Section 6). We bound execution time from be-
low by considering only the cost of memory accesses and
by modeling data placement in the memory hierarchy for a
lower bound on cache misses.

The following summarizes experimental results from
four different computing platforms (Table 1) and a test suite
of twelve sparse symmetric matrices (Table 2):

1. Symmetric register blocking achieves up to2.1×
speedups for SpMV and2.6× speedups for SpMM
over non-symmetric register and vector blocking.

2. Combiningsymmetry, register and vector blocking
achieves up to9.9× speedups for a dense matrix in
sparse format and up to7.3× for a true sparse matrix
when compared to a naı̈ve code (no optimizations).

3. Theempirical modeling and search proceduregen-
erally selects parameters that yield within 85% of the
best performance achieved by an exhaustive search
over all possible parameter values.1

4. Measured performance achieve 68% of theperfor-
mance upper bound, on average.

1“All possible values” subject to constraints that consider the charac-
teristics of practical applications and architectural parameters.



Sun Intel Intel IBM
Property Ultra 2i Itanium 1 Itanium 2 Power 4

Clock rate (MHz) 333 800 900 1300
Peak Main Memory 664 2.1 6400 8000
Bandwidth (MB/s)
Peak Flop Rate (Mflop/s) 667 3200 3600 5200

DGEMM 425 2200 3500 3500
n = 1000 (Mflop/s)
DGEMV 58 345 740 915
n = 2000 (Mflop/s)

DSYMV 92 625 1400 1600
n = 1000 (Mflop/s)
DSPMV 62 115 356 1700
n = 2000 (Mflop/s)
DSYMM 383 1900 3400 3500
n = 2000 (Mflop/s)

STREAM Triad 250 1100 3800 2100
Bandwidth (MB/s)

L1 total size (KB) 16 16 32 32
L1 line size (B) 16 32 128 128
L1 latency (cy) 2 2 (int) 0.34 0.7

L2 total size (KB) 2048 96 256 1536
L2 line size (B) 64 64 128 128
L1 latency (cy) 7 6-9 0.5 12

L3 total size (KB) n/a 2 1.5 16
L3 line size (B) n/a 64 128 512
L3 latency (cy) n/a 21-24 3 45

Memory latency (cy,≈) 36 36 11 167

Compiler Sun C Intel C Intel C IBM XLC
v6.1 v5.0.1 v7.0

Table 1. Evaluation platforms.

This paper summarizes the key findings of a recent tech-
nical report [3]. We refer the reader to the report for further
details. The empirical modeling and search procedure for
tuning parameters does not appear in the report.

2 Experimental Methodology

We conducted experiments on machines based on the mi-
croprocessors in Table 1. Latency estimates were obtained
from a combination of published sources and experimental
measurements using the Saavedra-Barrera memory system
microbenchmark [10] and MAPS benchmarks [11].

Table 2 summarizes the size and application of each
symmetric matrix in the matrix benchmark suite used for
evaluation. Most of the matrices are available from either
the collections at NIST (MatrixMarket [12]) or the Univer-
sity of Florida [13]. The size of these matrices exceed the
largest cache size for the evaluation platforms.

We use the PAPI v2.1 library for access to hardware
counters on all platforms [14] except Power 4; not all PAPI
counters are available for the Power 4 and HPM counters
overcount memory traffic. We use the cycle counters, re-
ported as the median of 25 consecutive trials, as timers.

Presented performance in Mflop/s always uses “ideal”
flop counts. That is, if a transformation of the matrix re-
quires filling in explicit zeros (e.g.register blocking), arith-

Name Application Area Dimension Nonzeros

1 dense1600 Dense Matrix 1600 1280800
2 bcsstk35 Stiff matrix automobile frame 30237 1450163
3 crystk02 FEM Crystal free vibration 13965 968583
4 crystk03 FEM Crystal free vibration 24696 1751178
5 nasasrb Shuttle rocket booster 54870 2677324
6 3dtube 3-D pressure tube 45330 3213332
7 ct20stif CT20 Engine block 52329 2698463
8 gearbox ZF aircraft flap actuator 153746 4617075
9 finan512 Financial portfolio optimization 74752 596992

10 pwt Structural engineering problem 36519 326107
11 vibrobox Structure of vibroacoustic problem 12328 342828
12 gupta1 Linear programming matrix 31802 2164210

Table 2. Matrix benchmark suite. 1 is a dense
matrix stored in sparse format; 2–8 arise in
finite element applications; 9–11 come from
assorted applications; 12 is a linear program-
ming example. For each matrix, we show the
number of non-zeros in the upper-triangle.

metic with these extra zeros arenot counted as flops when
determining performance.

3 Optimizations for Matrix Symmetry

The baseline implementation stores the full matrix in
compressed sparse row (CSR) format and computes SpMV
using a non-symmetric kernel.

3.1 Symmetric Storage

Matrix symmetry enables storing only half of the matrix
and, without loss of generality, our implementation stores
the upper-triangle. Although the symmetric code requires
the same number of floating point operations as the base-
line, symmetry halves the number of memory accesses to
the matrix: a symmetric implementation simultaneously ap-
plies each element and its transpose, processing only the
stored half of the matrix. In both cases, stores to the desti-
nation are indirect and potentially irregular.

3.2 Symmetric Register Blocking

SPARSITY’s register blockingis a technique for improv-
ing register reuse [7]. The sparsem× n matrix is logically
divided into alignedr × c blocks, storing only those blocks
containing at least one non-zero. SpMV computation pro-
ceeds block-by-block. For each block, we can reuse the
correspondingc elements of the source by keeping them in
registers to increase temporal locality to the source, assum-
ing a sufficient number are available.

Register blocking uses the blocked variant of com-
pressed sparse row (BCSR) storage format. Blocks within



Figure 1. Square diagonal blocking. A 10 × 10
matrix with 2× 3 register blocks.

the same block row are stored consecutively, and the ele-
ments of each block are stored consecutively in row-major
order. Whenr = c = 1, BCSR reduces to CSR. BCSR
potentially stores fewer column indices than CSR imple-
mentation (one per block instead of one per non-zero). The
effect is to reduce memory traffic by reducing storage over-
head. Furthermore, SPARSITY implementations fully unroll
ther × c submatrix computation, reducing loop overheads
and exposing scheduling opportunities to the compiler.

A uniform block size may require filling in explicit zero
values, resulting in extra computation. We define thefill
ratio to be the number of stored values (original non-zeros
plus explicit zeros) divided by the number of non-zeros in
the original matrix. The profitability of register blocking
depends highly on the fill and the non-zero pattern of the
matrix.

In our symmetric implementation ofr×c register block-
ing, we use the followingsquare diagonal blockingscheme
(Figure 1). Given a row-oriented storage scheme andr × c
register blocks, the diagonal blocks are implemented as
squarer × r blocks. We align the register blocks from the
right edge of the matrix, which may require small degener-
ater × c′ blocks to the right of the diagonal blocks, where
c′ < c andc′ depends on the block row.

4 Optimizations for Multiple Vectors

The baseline implementation, givenk vectors, applies
the unblocked symmetric SpMV kernel once for each vec-
tor. This implementation requiresk accesses to the en-
tire matrix and, for large matrices, brings the entire matrix
through the memory hierarchy once for each vector.

Vector blocking is a technique for reducing memory traf-
fic for the SpMM kernel,Y = Y + A · X, whereA is a
symmetric sparsen× n matrix, andX, Y are densen× k
matrices.2 Thek vectors are processed in

⌈
k
v

⌉
groups of

2X, Y are collections ofk dense column vectors of lengthn.

thevector widthv and multiplication of each element ofA is
unrolled byv. The computation of SpMM proceeds sequen-
tially across matrix elements or register blocks, computing
results for the corresponding elements in each of thev des-
tinations in the vector block. Whenv = 1, the subroutine is
effectively a single vector implementation of SpMV.

Thus, the matrix is accessed at most
⌈

k
v

⌉
+ 1 times in

contrast to thek times required by the baseline. The effect
is to reduce memory traffic and increase temporal locality
to A by amortizing the cost of accessing a matrix element
for v vectors. Furthermore, unrolling the multiply for thev
vectors reduces loop overhead and exposes scheduling op-
portunities to the compiler.

5 Automated Empirical Tuning

A register and vector blocked SpMM code is character-
ized by the parameters(r, c, v), indicating optimal register
block sizer×c and vector widthv. The optimal parame-
ters vary significantly across machines and matrices and are
difficult to choose by purely analytic modeling [2].

Our approach to selecting(r, c, v) is based onempirical
modeling and search, executed partly off-line and partly at
run-time. Given a machine, a symmetric matrixA, and a
number of vectorsk, our tuning parameter selection proce-
dure consists of the following 3 steps:

1. Off-line benchmark: Once per machine, measure the
performance (in Mflop/s) of symmetric SpMM for a
dense matrix stored in sparse format, for all(r, c, v)
such that1 ≤ r, c ≤ bmax and1 ≤ v ≤ vmax, where
k is set equal tov. In practice, we usebmax = 8 and
vmax = 10. Denote thissymmetric register profileby
{Prcv (dense) |1 ≤ r, c ≤ bmax, 1 ≤ v ≤ vmax}.

2. Run-time “search” : When the matrixA is known at
run-time, compute an estimatêfrc (A) of the true fill
ratio for all 1 ≤ r, c,≤ bmax. Estimating this quantity
is a form of empirical search over possible block sizes,
and depends only on the matrix non-zero structure.

3. Heuristic performance model: Choose(r, c, v) that
maximizes the followingestimateof register blocking
performancêPrcv (A),

P̂rcv (A) =
Prcv (dense)

f̂rc (A)
, (1)

for all 1 ≤ r, c ≤ bmax and1 ≤ v ≤ min{vmax, k}.
Intuitively, Prcv (dense) is an empirical estimate of ex-
pected performance, and̂frc (A) reduces this value ac-
cording to the extra flops per non-zero due to fill.

The key idea is to decouple machine-specific aspects of
performance which can be measured off-line (Step 1) from



matrix-specific aspects determined at run-time (Step 2),
combining these aspects with a heuristic model of perfor-
mance evaluated at run-time (Step 3). This procedure adapts
our prior technique for non-symmetric SpMV [1, 2, 4].

Trying all or even a subset of block sizes is infeasible
if the matrix is known only at run-time, due to the cost of
converting the matrix to blocked format. In contrast, the fill
can be estimated accurately and cheaply [2], while the total
run-time cost of executing Steps 2 and 3, followed by a sin-
gle conversion tor×c blocked format, is not much greater
than the cost of only the conversion [2].

6 Bounds on Performance

We present performance upper bounds to estimate the
potential payoff from low-level tuning given a matrix and a
data structure, but independent of instruction mix and order-
ing. These bounds extend prior bounds for non-symmetric
SpMV [4]. The performance model consists of a lower
bound model of execution time and a lower bound model
on cache misses at each level in the memory hierarchy. The
following are underlying assumptions for these bounds:

1. Our lower bound model of execution time considers
only the cost of memory operations, taking SpMV and
SpMM to be memory bound. Assuming write-back
caches and sufficient store buffer capacity, we account
only for the cost of loads and ignore the cost of stores.

2. For a hit in cache leveli, we assign a costαi to access
the data at that level, as determined by microbench-
marks on streaming workloads likely to represent the
fastest memory access patterns.

3. We further bound time from below by obtaining a
lower bound on cache misses that considers only com-
pulsory misses, accounts for cache line sizes, and as-
sumes full associativity.

4. We further bound time from below by ignoring TLB
misses. This assumption is justified by the predomi-
nantly streaming behavior of SpMV [2], but may lead
to an optimistic bound in the multiple vector case.

6.1 Lower Bound Execution Time Model

If the total execution time isT seconds, the performance
P in Mflop/s is

P = 4kv
T ×10−6 (2)

wherek is the number of stored non-zeros in then × n
sparse matrixA (excluding any fill) andv is the vector

width in the vector blocked implementation. To get an up-
per bound on performance, we require a lower bound onT .

Consider a machine withκ cache levels, where the ac-
cess latency at cache leveli is αi in cycles, and the memory
access latency isαmem. Let Hi andMi be the number of
cache hits and misses at each leveli, respectively. Also, let
L be the total number of loads. The execution timeT is

T =
∑κ

i=1
αiHi+αmemMκ

= α1L+
∑κ−1

i=1
(αi+1−αi)Mi+(αmem−ακ)Mκ (3)

whereH1 = L − M1 and Hi = Mi−1 − Mi for 2 ≤
i ≤ κ. According to Equation (3), we can minimizeT by
minimizingMi, assumingαi+1 ≥ αi.

6.2 Counting Load Operations

Let A be anm × m symmetric matrix withk stored
non-zeros. LetDr be the number ofr × r non-zero di-
agonal blocks,Brc be the number ofr× c non-zero register
blocks, andfrc be the fill ratio given these blocks. Let‖Dr‖
and‖Brc‖ denote the total number of matrix elements (in-
cluding filled zeros) stored in the diagonal and non-diagonal
blocks, respectively.

The upper bound onDr is
⌈

m
r

⌉
with at most‖Dr‖ =⌈

m
r

⌉
· r(r+1)

2 ≈ m(r+1)
2 diagonal blocked elements in

the matrix, since a diagonal block has at mostr(r+1)
2 el-

ements. Furthermore, we estimate the number of non-
diagonal blocksBrc by counting the stored elements ex-
cluded from the diagonal blocks so thatBrc = ‖Brc‖

rc where

‖Brc‖ ≈ kfrc − m(r+1)
2 and each register block con-

tainsrc elements. In the case of1 × 1 register blocking,
‖Dr‖+ ‖Brc‖ = k.

The matrix requires storage of‖Dr‖ + ‖Brc‖ double
precision values,Dr + Brc integer column indices, and⌈

m
r

⌉
+ 1 integer row indices. Since the fill ratio is defined

as the number of stored elements (fill included) divided by
the number of non-zeros (fill excluded),frc ≈ ‖Dr‖+‖Brc‖

k
and is always at least 1.

Every matrix element, row index, and column index
must be loaded once. We assume that SpMM iterates over
block rows in the stored upper triangle and that allr en-
tries of the destinations can be loaded once for each ofDr

block rows and kept in registers for the duration of the block
row multiply. We also assume that allc destination el-
ements can be kept in registers during the multiplication
of a given transpose block, thereby requiringBrcc addi-
tional loads from the destination. A similar analysis for the
block columns in the transpose of the stored triangle yields
rDr + cBrc loads. Thus, the number of loads, scaled for
multiple vectors, is3

3whereDr andBrc can be represented in terms offrc, m, r, c, andk.



Loads(r,c,v) = Brcrc+Dr

(
r2+r

2

)
+Brc+Dr+dm

r e+1︸ ︷︷ ︸
matrix

+

vrDr+vcBrc︸ ︷︷ ︸
source

+ vrDr + vcBrc︸ ︷︷ ︸
destination

(4)

6.3 Lower Bounds on Cache Misses

Beginning with the L1 cache, letl1 be the L1-cache line
size, in double-precision words. One compulsory L1 read
miss per cache line is incurred for every matrix element
(value and index) and each of themv destination elements.
In considering the vectors, we assume the vector size is less
than the L1 cache size, so that in the best case, only one
compulsory miss per cache line is incurred for each of the
2mv source and destination elements. Thus, a lower bound
M(1)

lower on L1 misses is

M
(1)
lower(r,c,v) = 1

l1
[kfrc+

1
γ (Dr+Brc+dm

r e+1)+2mv] (5)

where the size of one double precision floating point value
equalsγ integers. In this paper, we use 64-bit double-
precision floating point data and 32-bit integers, so that
γ = 2. The factor of 1

l1
accounts for the L1 line size. An

analogous expression applies at other cache levels by sub-
stituting the appropriate line size.

7 Evaluation

Figures 2–5 summarize the performance of our optimiza-
tions on the four platforms in Table 1 and the matrices in
Table 2. We compare the following nine implementations
and bounds.

1. Non-Symmetric Unoptimized Reference: The un-
blocked(1, 1) single vector implementation with non-
symmetric storage. Represented bycrosses.

2. Symmetric Reference: The unblocked(1, 1) single
vector implementation with symmetric storage. Rep-
resented byfive-pointed stars.

3. Non-Symmetric Register Blocked: The blocked sin-
gle vector implementation with non-symmetric storage
wherer andc are chosen by exhaustive search to max-
imize performance. Represented byasterisks.

4. Symmetric Register Blocked: The blocked single
vector implementation with symmetric storage where
r andc are chosen by exhaustive search to maximize
performance. Represented byplus signs.

5. Non-Symmetric Register Blocked with Multiple
Vectors: The blocked multiple vector implementation
with non-symmetric storage wherer, c, andv are cho-
sen by exhaustive search to maximize performance.
Represented byupward pointing triangles.

6. Symmetric Register Blocked with Multiple Vec-
tors: The blocked multiple vector implementation
with symmetric storage wherer, c, andv are chosen
by exhaustive search to maximize performance. We
refer to these parameters asropt, copt, andvopt. Rep-
resented bysix-pointed stars.

7. Tuning Parameter Selection Heuristic: The blocked
multiple vector implementation with symmetric stor-
age wherer, c, andv are chosen by the tuning parame-
ter selection heuristic described in Section 5. We refer
to these parameters asrheur, cheur, andvheur. Repre-
sented byhollow circles.

8. Analytic Upper Bound: The analytic upper bound on
performance implementation 6. We use Equation (4)
and Equation (5) to compute the numbers of loads and
cache misses. Represented bysolid lines.

9. PAPI Upper Bound: An upper bound on performance
for implementation 6. The number of loads and cache
misses are obtained from PAPI event counters. Repre-
sented bydashed lines.

7.1 Effects of Symmetry on Performance

Considering all four platforms, the maximum perfor-
mance gain from symmetry is2.08× for register blocked
SpMV over the non-symmetric register blocked kernel (4
versus 3). The median speedup is1.34×. The maximum
performance gain from symmetry is2.58× for register and
vector blocked SpMM over the non-symmetric register and
vector blocked kernel (6 versus 5). However, the median
speedup of1.09× is appreciably slower. Furthermore, sym-
metry can reduce performance in the rare worst case. The
chosen register block sizes, shown in the appendices, sug-
gest these performance decreases are due to block sizes in
the symmetric case that lead to significantly more fill than
those in the non-symmetric case.

An implementation optimized for symmetry, register and
vector blocking achieves maximum, median, minimum per-
formance gains of7.32×, 4.15×, and1.60× compared to
the näıve code (6 versus 1) over all platforms and matrices.
Given symmetric storage, the other two optimizations al-
most always improve and never reduce performance. The
increasing performance gains as optimizations are incre-
mentally applied suggest cumulative performance effects of
these optimizations.



Figure 2. Performance Summary – Sun Ul-
tra 2i. Performance (MFlop/s) of various op-
timized implementations compared to upper
bounds on performance.

Figure 3. Performance Summary – Intel Ita-
nium 1. Performance data and upper bounds
shown in a format analogous to the format in
Figure 2.

Figure 4. Performance Summary – Intel Ita-
nium 2. Performance data and upper bounds
shown in a format analogous to the format in
Figure 2. The model predicts machine peak
(3.6 Gflop/s) for matrices 1–7.

Figure 5. Performance Summary – IBM Power
4. Performance data and upper bounds
shown in a format analogous to the format in
Figure 2. The analytic upper bound is omitted
due to the unavailability of hardware coun-
ters.



Overall Ultra 2i Itanium 1 Itanium 2 Power4

I. Symmetry Register Blocking

minimum -9.89 35.48 -9.89 -9.89 31.97
median 58.33 60.94 47.64 57.98 61.09

maximum 64.79 64.79 64.79 64.79 64.79

II. Symmetry Register and Vector Blocking

minimum -4.17 28.57 -4.17 12.28 28.57
median 53.70 53.70 50.25 59.51 53.70

maximum 64.79 57.08 64.79 64.79 64.79

Table 3. Percentage savings in matrix storage.

7.2 Accuracy of Automatic Tuning Parameter Se-
lection

On the Ultra 2i, Itanium 1, and Itanium 2, the block size
selection procedure generally chooses(r, c, v) whose per-
formance is 93% or more of the best by exhaustive search.
On Power4, the predictions are somewhat less accurate, at
85% of the best or greater. Nevertheless, in nearly all cases
the selected implementation yields at least some speedup
over the symmetric register blocked single vector case (7
versus 4).

The heuristic does not select near-optimal implementa-
tions in the case of Matrix 12 (a linear programming ma-
trix). We discuss this case in detail in the full report [3].

7.3 Proximity of Performance to Upper Bounds

To evaluate our performance models, we consider the
proximity of the upper bounds to the measured performance
of the symmetric, register and vector blocked code. The fi-
nite element matrices (FEM Matrices 2–8) achieve 72% to
90% of the PAPI bound, but only 53% to 73% of the ana-
lytic bound on the Ultra 2i and Itanium 1 . This difference
suggests that further performance improvements on these
platforms will require reducing the gap between the num-
ber of predicted and measured cache misses. The measured
performance of these matrices on the Itanium 2 and Power
4 were 38% to 63% of the analytic bound.4

The non-FEM matrices realize relatively lower measured
performance, achieving 65% to 120% of the PAPI bound
and 44% to 62% of the analytic bound on the Ultra 2i and
Itanium 1. Cases in which the measured performance ex-
ceeds the PAPI upper bound (Matrix 12 on Ultra 2i and Ma-
trix 1 on Itanium 1) may be caused by limitations in the
PAPI counters. The realized performance of these matrices
on the Itanium 2 is 29% to 38% and 23% to 32% of the
PAPI and analytic bounds, respectively, and 38% to 54% of
the analytic bound on the Power 4.

4Note that no PAPI data was available for a bound on the Power 4.

7.4 Effects of Symmetry on Storage

Symmetry can significantly save storage . We show max-
imum and median savings of 64.79% and 56.52%, respec-
tively, for symmetric register blocking (Table 3, I). Symme-
try may also use almost 10% more memory in the case of
matrix 12 on the Itanium 1 and 2. We show maximum and
median savings of 64.79% and 53.70%, respectively, when
adding multiple vectors (Table 3, II).

A large register block size in a symmetric code can save
more than 50% of storage because the memory for matrix
indices decreases by up to a factor ofr × c, augmenting
the savings from storing half the matrix. An increase in
storage from symmetric storage is also possible, however,
if the chosen register block size results in significant fill.

8 Related Work

Temam and Jalby [18] and Fraguela,et al., [19] devel-
oped probabilistic cache miss models for SpMV, but as-
sumed a uniform distribution of non-zero entries. In con-
trast, our lower bounds account only for compulsory misses.
Gropp,et al., use similar bounds to analyze and tune a com-
putational fluid dynamics code [17] on Itanium 1. However,
we tune for a variety of architectures and matrix domains.
Work in sparse compilers (e.g. Bik et al. [20], Pugh and
Spheisman [21], and the Bernoulli compiler [22]) comple-
ments our own work. These projects consider expressing
sparse kernels and data structures for code generation. In
contrast, we use a hybrid off-line, on-line model for select-
ing transformations.

9 Conclusions and Future Directions

Symmetry significantly reduces storage requirements,
saving as much as 64.79% when combined with reg-
ister blocking. Symmetry, register and vector block-
ing, improves performance by as much as7.3× (median
4.15×) over a näıve code,2.08× (median1.34×) over
non-symmetric register blocked SpMV, and2.6× (me-
dian1.1×) over non-symmetric register and vector blocked
SpMM. Moreover, the performance effects of these opti-
mizations appear to be cumulative, making the case to com-
bine these techniques.

Our heuristic, based on an empirical performance mod-
eling and search procedure, is reasonably accurate, particu-
larly for matrices arising from FEM applications. Heuristic
chosen tuning parameters yield performance within 85% of
the performance achieved from exhaustive search. Addi-
tional refinements may improve the accuracy on matrices
with little or no block structure.

The performance of our optimized implementations are,
on average, within 68% of the performance bounds, smaller



than previously observed for non-symmetric SpMV. Addi-
tional refinements to explictly model low-level code gener-
ation and employing automated low-level tuning techniques
(e.g., ATLAS/PHiPAC [8, 9]) may close the gap.

Sparse kernels may be optimized for other forms ofsym-
metry (e.g. structural, skew, hermitian, skew hermitian).
Symmetriccache blockingmay mitigate the effects of in-
creasing matrix dimensions and vectors that do not fit in
cache, grouping the matrix into large blocks whose sizes are
determined by cache size. Optimizations for sparse kernels
may also be implemented and evaluated forparallel sys-
tems, such as SMPs and MPPs [6]. Lastly, performance op-
timized kernels will be distributed toapplication end-users.

References

[1] E.-J. Im., K. Yelick, R. Vuduc. SPARSITY: Framework
for Optimizing Sparse Matrix-Vector Multiply. Interna-
tional Journal of High Performance Computing Applica-
tions,18(1), 2004.

[2] R. Vuduc. Automatic Performance Tuning of Sparse Matrix
Kernels. PhD thesis, U.C. Berkeley, Dec. 2003.

[3] B. Lee, R. Vuduc, J. Demmel, K. Yelick, M. de Lorim-
ier, L. Zhong. Performance Optimizations and Bounds for
Sparse Symmetric Matrix-Multiple Vector Multiply. Tech-
nical Report UCB/CSD-03-1297, University of California,
Berkeley, November 25, 2003.

[4] R. Vuduc, J. Demmel, K. Yelick, S. Kamil, R. Nishtala,
B. Lee. Performance Optimizations and Bounds for Sparse
Matrix-Vector Multiply. In Supercomputing,Baltimore, MD,
November 2002.

[5] E.-J. Im. Optimization the Performance of Sparse Matrix–
Vector Multiplication. PhD thesis, U.C. Berkeley, May 2000.

[6] E.-J. Im and K. Yelick. Optimizing sparse matrix vector mul-
tiplication on SMPs. InProc. of the 9th SIAM Conf. on Par-
allel Processing for Sci. Comp., March 1999.

[7] E.-J. Im and K. A. Yelick. Optimizing sparse matrix–vector
multiplication for register reuse. InProceedings of the Inter-
national Conference on Computational Science, May 2001.

[8] J. Bilmes, K. Asanovíc, C. Chin, and J. Demmel. Opti-
mizing matrix multiply using PHiPAC: a Portable, High-
Performance, ANSI C coding methodology. InProc. of the
Int’l Conf. on Supercomputing, Vienna, Austria, July 1997.

[9] C. Whaley and J. Dongarra. Automatically tuned linear al-
gebra software. InProc. of Supercomp., 1998.

[10] R. H. Saavedra-Barrera.CPU Performance Evaluation and
Execution Time Prediction Using Narrow Spectrum Bench-
marking. PhD thesis, U.C. Berkeley, February 1992.

[11] A. Snavely, N. Wolter, and L. Carrington.Modeling Appli-
cation Performance by Convolving Machine Signatures with
Application Profiles. In Proceedings of the IEEE 4th An-
nual Workshop on Workload Characterization, Austin, TX,
December, 2001.

[12] R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and
J. J. Dongarra. The Matrix Market: A web resource
for test matrix collections. In R. F. Boisvert, editor,
Quality of Numerical Software, Assessment and Enhance-
ment, pages 125–137, London, 1997. Chapman and Hall.
math.nist.gov/MatrixMarket .

[13] T. Davis. UF Sparse Matrix Collection.
www.cise.ufl.edu/research/sparse/matrices.

[14] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci.
A scalable cross-platform infrastructure for application per-
formance tuning using hardware counters. InSupercomput-
ing, November 2000.

[15] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato,
J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der
Vorst.Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition. SIAM, Philadel-
phia, PA, 1994.

[16] K. Remington and R. Pozo. NIST Sparse BLAS:
User’s Guide. Technical report, NIST, 1996.
gams.nist.gov/spblas .

[17] W. D. Gropp, D. K. Kaushik, D. E. Keyes,and B. F. Smith.
High performance parallel implicit CFD.Parallel Comput-
ing, 27(4), March 2001.

[18] O. Temam and W. Jalby. Characterizing the behavior of
sparse algorithms on caches. InProceedings of Supercom-
puting9́2, 1992.

[19] B.B. Fraguela, R. Doallo, and E.L. Zapata. Memory hier-
archy performance prediction for sparse blocked algorithms.
Parallel Processing Letters, 9(3), March, 1999.

[20] A.J.C. Bik and H.A.G. Wijshoff. Automatic nonzero struc-
ture analysis. SIAM Journal on Computing,28(5):1576-
1587, 1999.

[21] W. Pugh and T. Spheisman. Generation of efficient code
for sparse matrix computations. InProceedings of the 11th
Workshop on Languages and Compilers for Parallel Com-
puting, LNCS, August 1998.

[22] P. Stodghill.A Relational Approach to the Automatic Gener-
ation of Sequential Sparse Matrix Codes.PhD thesis, Cornell
University, August 1997.


