
Performance Modeling and Composition:
A Case Study in Cell Simulation

Steve G. Steinberg, Jun Yang, and Katherine Yelick
Computer Science Division

University of California at Berkeley

Abstract

We present a case study in the use of performance model-
ing for parallel application development, with a biological
cell simulation as our target application. We show that a
simple performance model is adequate for determining data
layout for arrays and linked structures, and validate our
model against experimental results for some application
kernels. We quantify the importance of optimizing across
program components using informationabout machine per-
formance and input characteristics. The cell simulation
application has two phases, one regular and one irregu-
lar. The model closely predicts actual performance within
the regular phase and allows for qualitative design com-
parisons in the irregular one. The resulting application is
written in Split-C and runs on multiple platforms.

1. Introduction

Judicious choice of data layouts to balance computation
and minimize communication is critical to the performance
of parallel programs. Even for regular computational ker-
nels, determining the optimal layout may require detailed
performance models [10] or experimentation [6]. For large
parallel programs composed of irregular and regular kernels,
experimenting with several implementations is not feasible.

In this paper, we apply a simple latency/bandwidthmodel
to the design of a cell simulation application, which has a
regular phase that computes over a two dimensional rectan-
gular grid and an irregular phase that computes over a linked
structure. We consider two variations on the model, one us-
ing constant floating point performance for the machine,
and another using a measured rate taken from the sequential

This work was supported in part by the Advanced Research Projects
Agencyof the Departmentof Defense undercontracts DABT63-92-C-0026
and F30602-95-C-0136, by the Department of Energy grant DE-FG03-
94ER25206, by NSA grant NSF FD92-20719, and by the National Science
Foundationgrants CCR-9210260,CDA-8722788,and CDA-9401156. The
information presented here does not necessarily reflect the position or the
policy of the Government and no official endorsement should be inferred.

program for each major computational kernel. We validate
the model against experimental data and use it to evaluate
several designs.

This paper is an application study for a large real-world
application, but is also used to evaluate the requirements
for systems that attempt to automate parallelism or data
distribution. We show that optimizations for parallelism and
locality must be considered simultaneously using machine
performance characteristics; that optimal performance of
a combination of program components is often obtained
using suboptimal components; and that changing the basic
order of dependencies using high-level semantics may also
be necessary. A simple abstract machine model addresses
these problems. For the regular phase of the application, we
show that the model is sufficient for deciding between a set of
parallelizations and data layouts, such as blocked, column,
or skewed, and is also effective in optimizing across program
components. For the irregular phase, we extend the model
with a small amount of information about the input, and then
use it to correctly make some basic design decisions.

The paper is organized around the cell simulation pro-
gram, implemented in Split-C [8, 17]. Section 2 provides
an overview of the application, and section 3 describes the
performance model. We explore parallelization of the reg-
ular phase in section 4, the irregular phase in section 5, and
the overall program in section 6. We present some related
work in section 7, and conclude in section 8.

2. Application Overview

Biologistsuse computational models of bodies immersed
in an incompressible fluid to help understanding blood flow
in the heart [16], the growth of embryos [18], platelet aggre-
gation during blood clotting [12], sperm motility [12], and
other biological phenomena. This simulation technique,
known as the immersed boundary method, was first devel-
oped by Charles Peskin to model blood flow in the heart
in order to aid the design of artificial heart valves. The
simulation’s key concept is to model the system as a net-
work of elastic fibers immersed in an incompressible fluid.

The fluid is modeled with a dense, rectangular, periodic grid.
Cells are modeled as polygons, whose vertices represent im-
mersed boundary points, and edges represent elastic fibers
which join these vertices.

There are six main operationsat each time step of the sim-
ulation. (1) Calculate forces on fibers according to their cur-
rent locations and elastic properties. (2) Extrapolate forces
from fibers to surrounding grid points. (3) Solve the Navier-
Stokes equations over the fluid grid. (4) Interpolate the fluid
velocity back to fibers and move them to new positions. (5)
Perform interactions between cells. (6) Compute statistics
about the simulation and produce output.

3. Performance Model Overview

Our model uses three machine parameters: MFLOPS,
millions of floating point operations per second; , the la-
tency and start-up time to send a message; and , the inverse
of bandwidth, or the cost per double word of a message.

We base most of our analysis on a CM-5 with estimated
2 0 MFLOPS per processor, 80 per message, and

1 8 per double. Communication parameters are
based on the measured performance of Split-C bulk store
operation, with message sizes greater than 16 doubles.

4. Navier-Stokes Solver

The computational core of the cell simulation is the
Navier-Stokes solver. At each time step, discrete versions of
the incompressible Navier-Stokes equations are solved over
a rectangular, periodic grid to find the fluid’s velocity and
pressure field. The solver is based on Chorin’s projection
method (a finite-difference scheme) and the Fourier-Toeplitz
fast Poisson solver [13]. The Navier-Stokes solver consists
of the following four major steps:

Tridiagonal solver (read U; read/write F)
Divergence calculation (read F; write Re(P))
FFT-based Poisson solver (read/write Re(P), Im(P))
Final step (Read F, Re(P); write U)

where U is the 2 fluid velocity array, F is the
2 force array, and Re(P) and Im(P) are the

real and imaginary components of the pressure array.

4.1. Tridiagonal Solver

The tridiagonal solver operates in a series of wave-fronts:
tridgx sweeps toward positive and then negative , and
tridgy sweeps toward positive and then negative . An
obvious choice for the grid layout in tridgx is a row layout,
which has perfect parallelism and no communication. Like-
wise, a column layout is the ideal choice for tridgy. How-
ever, when these two are combined, an expensive remap is
required. To remap an grid on processors, every
processor must send 2 2 data to each of the other 1

processors. We therefore look for a single layout to avoid
this expensive remap.

To maintain the full -degree parallelism, we consider a
skewed layout, in which each processor owns blocks of
size 2 2 arranged in diagonals. Each sweep now has
stages of communication, and in each stage every processor
sends a message of size to the next.

To further reduce communication, we consider a blocked
layout, with only blocks in each dimension. In each
sweep, a total of only data is sent across block bound-
aries, compared to for the skewed layout. However,
this layout provides only -degree parallelism for both
computation and communication.

Which layout is superior depends on the values of and
, the machine’s performance parameters, and relationship

to other program components. We build a model based on
the discussion above, along with machine constants. Fig-
ure 1 shows the results for 2 212, a typical value of the
problem size per processor. For 128, the skewed layout
is preferred, while for larger values of the row/column
layout is better. In contrast, on an IBM SP-1 with higher ,
blocked layout outperforms both skewed and row/column
for 64, because it uses fewer messages.

To confirm the results of the model, we compare the
predicted performance of blocked and skewed layouts for
tridgx against implementations. On a 64-processor CM-5,
the model underpredicts the running time by 60%, primarily
due to an overestimate of floating point performance. The
tridiagonal computation performs roughly one memory ac-
cess per floating point operation, and most of these accesses
are uncached. Replacing the MFLOPS rate with a value of
1 2, measured from the sequential code, the model comes
within 18% for the skewed layout and 30% for blocked.

4.2. Fast Fourier Transform

The dominating cost of the Navier-Stokes solver is the
time required for two 2-D FFTs. To implement the 2-D
FFT, we may choose a row-column technique [4] with 2
1-D FFTs, using a row layout for the row FFTs and a col-
umn layout for the column FFTs. Each processor performs
1-D FFTs on its local rows, followed by a global remap,
and then 1-D FFTs on its local columns. After some local
computation, the reverse is carried out with inverse FFTs.
Computation for each 1-D FFT is 1 2 log2 per proces-
sor, and the only communication is the row-to-column and
column-to-row layout transposes, in which each processor
sends 2 2 data to each of the other 1 processors.

An alternative is to let processors cooperate to
perform each 1-D FFT simultaneously. Starting with bit-
reversed data, we first use a blocked layout so that the first
log2 stages of the FFT butterfly operation are local. Then
we remap data into a cyclic layout so that the latter stages
are local as well. Inverse FFTs can be done in the reverse

0 100 200
0

5

10

x 105 COMP

0 100 200
0

1

2

3

x 105 COMM

0 100 200
0

5

10

x 105 TOTAL

row/column layout
skewed layout
blocked layout

horizontal axis: p
 vertical axis: time (us)

Figure 1. Modeled performance for the tridiagonal solver on the CM-5.

0 100 200
0

2

4
x 105 COMP

0 100 200
0

5

10
x 104 COMM

0 100 200
0

2

4

x 105 TOTAL

row/column layout
blocked/cyclic layout

horizontal axis: p
 vertical axis: time (us)

Figure 2. Modeled performance for the FFT-based Poisson solver on the CM-5.

order. The computation cost is the same as before, but the
communication cost is the cost of four blocked-to-cyclic or
cyclic-to-blocked remaps, one for each of the four 1-D FFT
phases. Each processor sends a total of 1 messages and

1 2
data. Since , each remap requires a smaller

number of messages and less bandwidth than the ones in the
row/column layout scheme.

Modeled performance of the complete Poisson solver is
shown in figure 2. Again, we fix the problem size per pro-
cessor to be 212 and vary . Because of the 1 2 log2
computation requirement for FFT, computational load per
processor increases with . For the values of avail-
able, the row/column layout scheme performs better than
blocked/cyclic because it has only two remap phases and
communicates less data overall. However, as increases,
the latency term dominates, and the blocked/cyclic layout
scheme, with its number of messages, becomes bet-
ter than row/column with latency.

To validate our model, we compare the predicted running
times with the actual times of a row/column implementation
on the CM-5. This time, 2 0 MFLOPS are too low for the
highly optimized FFTs, and the total running time for 64
is overestimated by 26%. When we replace the MFLOPS
value by 2 8,as measured on the sequential kernel, the model
closely matches the actual performance with only 5% error.

4.3. Putting Together the Navier-Stokes Solver

The rest of the Navier-Stokes solver involves mostly lo-
cal manipulations. Some are embarrassingly parallel, and
others are nearest-neighbor computations on the grid. We
use ghosts on partition boundaries and include their update
costs in our model. A blocked layout provides the lowest

communication cost in this phase, because it has only 4
ghost values, as opposed to 2 for row or column layout
and 4 for skewed.

With a reasonably accurate performance model of each
component, we now look for the most promising overall
layout strategies for the complete Navier-Stokes solver. First
of all, if we choose a blocked/cyclic layout for the FFTs, two
remaps of Re(P) are unavoidable, since only the FFTs use
bit-reversed data. To reduce communication, the blocked
layout for the tridiagonal solver is a reasonable choice. The
remap of Re(P) between bit-reversed order and normal order
can each be implemented in two phases: First each processor
row cooperates to reverse all rows; then each processor
column cooperates to reverse all columns. This remap has
an latency term, lower than most remaps of other
kinds.

If we use the row/column layout scheme for the FFTs,
there are many possibilities. The tridiagonal solver may use
a blocked or a skewed layout, with Re(P) remapped before
and after the FFTs. Although the blocked layout is not as
good as skewed for the tridiagonal solver, combining it with
row/column FFTs is less costly, since a greater number of
grid values would already be correctly positioned. If the
tridiagonal solver uses row/column layout, things become
more interesting. The remap of Re(P) after the FFTs can
be saved, since the tridgx that follows continues to use the
row layout. However, because the tridiagonal solver takes
U and F in the row layout and leaves them in the column
layout upon exit, they would need to be converted back to
the row layout before the final step. Fortunately, tridgx
and tridgy are commutative; the 1-D FFTs on rows and the
1-D FFTs on columns are also commutative. With some

0 100 200
0

5

10

15

x 105 COMP

0 100 200
0

2

4

6

x 105 COMM

0 100 200
0

1

2
x 106 TOTAL

skewed tridg; row/col fft
blocked tridg; row/col fft
row/col tridg; row/col fft
blocked tridg; blocked/cyclic fft

horizontal axis: p
 vertical axis: time (us)

Figure 3. Modeled performance for the complete Navier-Stokes solver on the CM-5.

0 20 40 60
0

2

4

x 105 COMP

0 20 40 60
0

2

4

x 105 COMM

0 20 40 60
0

5

10
x 105 TOTAL

predicted
actual

horizontal axis: p
 vertical axis: time (us)

Figure 4. Predicted vs. actual running times on the CM-5 for the complete Navier-Stokes solver.

global reorganization of these components and unrolling the
simulation loop, we obtain a scheme where the grid lay-
outs alternate every time step between row and column, and
these remaps can be avoided altogether. This is an example
of how a suboptimal layout for a component can become
advantageous when combined with other components. This
transformation would require a high-level understanding of
the algorithms.

We present the performance model for the complete
Navier-Stokes solver in figure 3 with 2 212.
Two layout schemes—row/column tridiagonal solver with
row/column FFTs, and skewed tridiagonal solver with
row/column FFTs—are close in the low range of . How-
ever, as exceeds 32, the row/column scheme begins to
demonstrate a clear advantage. For the blocked layout
schemes, the communication time they save is too small
to make up for what is lost during the tridiagonal solver.

To validate the model, we implemented skewed layout for
the tridiagonal solver and row/column layout for the FFTs.
Figure 4 compares the actual performance of the complete
Navier-Stokes solver on the CM-5 with the performance
predicted by our model, again with 2 212. The
MFLOPS value of 2 0 happens to describe the Navier-Stokes
solver quite well as a whole, and the model provides a fairly
accurate prediction of the actual running time.

5. Cell Operations

Lying on top of the grid are the elastic structures whose
motion we are simulating. The exact nature of these struc-
tures will vary depending on what is being simulated, but
in the case of blood platelet and epithelial cell simulations,
relevant structures are cells, adhesives, and walls, all built

out of segments or groups of segments linked together as
polygons. The cells, interconnected by adhesives, form a
network that is partitioned among processors, with global
pointers to link data across processors. In the following dis-
cussion, we use the term cell layout to refer to the mapping of
cells to processors according to their centers of mass. Thus,
a row layout of cells means that one processor owns all of
the cells centered in the upper fraction of the domain.

5.1. Cell/Cell Interaction

In platelet simulation, cells interact with each other by
forming and breaking adhesives. Adhesives are created for
pairs of cells whose segments are within a given formation
distance, and are broken when they move beyond a given
breaking distance. Breaking adhesives is inexpensive and
can be implemented by independently traversing local adhe-
sives. Forming adhesives requires testing pairs of cells and
segments and therefore fairly heavy computation. Our cur-
rent implementation uses a naive 2 algorithm, where
is the total number of cells.

We use a model that accepts any distribution of cells and
counts the numbers of local and remote cell pairs under
different layouts. Total running time is estimated using
the average processing cost obtained through measurement.
Althoughour model can only provide a crude estimate of the
actual running time, it is still helpful in determining layout
strategies.

Predicted running times for cell/cell interaction under
blocked, skewed, and column layouts of the cells are pre-
sented in figure 5. The input to the model is typical in a
platelet simulation, with 2 212 and 20. The
cells are randomly distributed in a blood vessel which runs

0 20 40 60
0

1

2

x 104 LOCAL

0 20 40 60
0

1000

2000

3000
REMOTE

0 20 40 60
0

1

2

x 104 TOTAL

blocked layout
skewed layout
column layout

horizontal axis: p
 vertical axis: time (us)

Figure 5. Modeled performance for cell/cell interaction on the CM-5.

horizontallyacross the center of thefluid grid. Because cells
are not uniformly distributed, skewed layout offers better
load balance than blocked. Due to the particular structure
of the vessel, column layout also provides good load bal-
ance. Blocked layout has a lower surface to volume ratio
and therefore requires less communication for typical prob-
lems, whereas skewed is the worst. The model shows that
on the CM-5, local interaction is the dominating cost, so
load balance becomes all-important. Overall, the blocked
layout is clearly inferior, while skewed and column are very
close.

5.2. Cell/Fluid Interaction

Cells interact with the underlying fluid grid during two
routines: spread and move. Spread drives the fluid flow
by extrapolating elastic forces from each cell segment to its
surrounding sixteen grid points in F, while move performs
the inverse operation, moving each segment by interpolating
the fluid velocities at the surrounding sixteen grid points
in U. Cell/fluid interaction involves the interplay between
the layouts of the irregular cell structure and the regular grid
structure. These two layouts can be aligned, i.e., a processor
that owns a section of the grid also owns all cells centered
in that section, or they can be unaligned.

Aligned layouts have lower communication costs than
unaligned, although even with an aligned layout, some of
the 16 updates/reads on the grid may be remote. By the usual
surface-to-volume-ratio argument, a blocked layout for the
fluid grid with an aligned cell layout requires less commu-
nication than other alternatives, but it does not effectively
balance the work load.

When cell and grid layouts are unaligned, computational
load may be distributed according to either the cell or the
grid distribution. In “owner-computes” terminology, either
the cell owner or the subgrid owner may perform the com-
putation. Load distribution by cells may be better balanced
with judicious choice of cell layout, but distribution by grid
requires less communication, since transferring a segment
is less expensive than accessing 16 remote grid points.

Modeled performance for cell/fluid interaction is shown
in figure 6 with 2 212 and 20. The model
reveals that load balance is, once again, the most important

factor. Blocked cells, even when aligned with a blocked
grid, perform poorly. Unaligned layouts are also costly as
shown by the plots for column cells with row grid. Not only
do the communication costs go up dramatically, but also
the computational overhead. When layouts are not aligned,
whether to distribute load by cells or by grid depends pri-
marily on the load balance they offer. In the case of column
cells and row grid, because cells are more evenly distributed
under the column layout, it is better to go by cells, despite
slightly higher communication cost.

Due to the irregular nature of cell operations, it is difficult
to validate our model quantitatively, but we can still do so
qualitatively. We have implemented spread by distributing
load by grid, and move by distributing load by cells, for
a blocked cell layout and a skewed grid. As predicted,
move is profoundly unbalanced because of the blocked cell
layout. By changing the application’s cell creation routines,
we have also experimented with situations where cells are
aligned with the grid, and found that 95% of the remote
grid point accesses can be avoided, confirming the value of
alignment.

5.3. Putting Together the Cell Operations

There are other operations in the irregular phase, such as
force calculations on the cells, which mainly involve local
data. In addition, aligned layouts require communication
to transfer cells across processors as they move during the
simulation. The cost of this communication is highly de-
pendent on the type of the simulation and the speed and
direction of the fluid flow. Once again, blocked layout has
lower communication costs but worse load balance.

According to our model, load balance is the most im-
portant factor in the performance of cell/cell interaction,
cell/fluid interaction, and most of the other cell operations.
Therefore, the preferred layout for cells would be column
(best combined with column grid) or skewed (best combined
with skewed grid), as they both offer fairly good load bal-
ance. The result may be quite different for other patterns of
cell distributionand movement. In particular, column works
well for the platelet simulation because most activities oc-
cur within a band that spans the middle rows of grid, while
skewed is generally better if cells are clumped.

0 20 40 60
0

2

4

x 105 COMP

0 20 40 60
0

1

2

x 104 COMM

0 20 40 60
0

2

4

x 105 TOTAL
skewed cells; skewed grid
blocked cells; blocked grid
column cells; column grid
column cells; row grid;
load distributed by cells
column cells; row grid;
load distributed by grid

horizontal axis: p
 vertical axis: time (us)

Figure 6. Modeled performance for cell/fluid interaction on the CM-5.

6. Putting Together the Whole Application

In this section, we finally turn to the problem of combin-
ing the Navier-Stokes solver and the cell operations to con-
struct the complete cell simulation program. First we elim-
inate blocked cells and blocked grids from consideration,
since both perform significantly worse than the alternatives.
Therefore, we are left with two candidates for the solver—
alternating row/column layout or skewed layout—and also
two candidates for the cell layout—column or skewed.

A column cell layout is better combined with an alter-
nating row/column grid than with a skewed grid, not only
because row/column is the better layout for the solver, but
also because cell and grid layouts will at least be aligned for a
half of the time, which implies lower communication costs
in the cell/fluid interaction. On the other hand, a skewed
cell layout may be better combined with a skewed grid than
with an alternating row/column grid, due to the advantage
of alignment. Thus, two candidates for the overall layout
are: (1) column cell layout with alternating row/column grid
layout; and (2) skewed cell layout with skewed grid layout.

A third layout comes into consideration when we allow
for major reorganization: (3) column cell layout with col-
umn grid layout. It is derived from a variation of (1). For (1),
cell and grid layouts are aligned for only a half of the time
in the cell/fluid interaction. In order to keep them aligned,
we need to remap U and F before and after the cell/fluid
interaction whenever the solver produces them in row lay-
out. But instead of doing these four remaps in every two
time steps, we can use just one remap per time step, noting
that cell/fluid interaction only reads U and only writes F.
First we convert U from row layout to column, then proceed
with cell/fluid interaction and obtain F in column layout.
Hence the solver always receives U and F in column layout
and produces U in row layout, instead of operating under
alternating layouts.

We present the modeled performance for these three
layout combinations in figure 7, with 2 212 and

20. With no extra cost for combining the phases, the
skewed layout offers the best overall performance.

Our implementation, which was completed before con-
sidering some cases in our model, uses a blocked layout for
the cells, and a skewed layout for the grid during the tridiag-

onal solver, which is remapped to row/column for the FFTs.
Compared to the sequential version of the platelet simulation
with 256 128 fluid grid and 16 cells, our parallel imple-
mentation achieves a total speedup of 2 83 for 4 on the
CM-5. Speedup numbers for larger values are difficult
to obtain, because it is impossible to run on one processor
a problem whose size would be meaningful for a large .
To provide an indication of scalability, we keep the amount
of memory used on each processor constant, and vary , as
we have done in previous plots. For 2 212 and

1, the average time required for one simulation time
step is 533 3 for 1 (sequential version), 726 9 for

4, and 1059 3 for 16.

7. RelatedWork in Automating Layout
Many researchers have developed compilation algo-

rithms or systems to support automatic alignment and data
distribution for data-parallel or automatically parallelized
sequential programs [11, 7, 3, 14, 1, 15]. The global opti-
mization problem for both locality and parallelism is NP-
complete, and has been addressed using heuristics [3, 11, 15]
and 0-1 integer programming techniques [5]. Some systems
are interactive [11, 1]. All of this work covers regular par-
allel programs and is applicable only to the Navier-Stokes
solver phase of our application. The tridiagonal solver is
used as a benchmark for some systems [14, 3, 15], although
none consider the skewed layout. In addition, transforma-
tions to globally rearrange FFTs and other computations
using high-level knowledge of the semantics are probably
beyond the scope of these compilers.

The problem of compiling irregular applications is typi-
cally addressed using a combination of compiler and runtime
analysis [2, 9]. The information from this analysis is useful
in eliminating redundant communication, converting small
messages into larger ones, and in generating efficient com-
munication schedules, but is not yet applicable to automatic
alignment and distributionof irregular structures across pro-
gram phases.

8. Conclusion
We have shown several instances in which the the best

design for a composition of modules uses suboptimal imple-

0 20 40 60
0

5

10

x 105 COMP

0 20 40 60
0

1

2

3

x 105 COMM

0 20 40 60
0

5

10

x 105 TOTAL

skewed cells; skewed grid
column cells; row/column grid
column cells; column grid

horizontal axis: p
 vertical axis: time (us)

Figure 7. Modeled performance for the complete simulation on the CM-5.

mentations of individual modules, and cases where optimiz-
ing for either locality or parallelism separately would result
in a poor design. This argues for better global analysis tech-
niques or interactive systems that simultaneously optimize
for locality and load balance. In addition, the problem size
and the number of processors, as well as machine-specific
performance characteristics, can sometimes lead to funda-
mentally different designs.

We have also demonstrated that a simple performance
model is useful for determining data layouts of programs
with both regular and irregular access patterns. The model
correctly predicts the relative benefits of various layouts, al-
though precise performance prediction requires either mea-
sured floating point rates for each kernel or a more detailed
model of the local memory hierarchy. The model has been
most useful in optimizing the Navier-Stokes solver, particu-
larly in narrowing the set of designs to a reasonable number.
Layouts that are clearly not suitable for our application, such
as cyclic and blocked-cyclic, are not included in this pre-
sentation. We have found a surprising advantage of using
the skewed layout, which is often overlooked in other work.
Most importantly, our parallel implementation allows biol-
ogists to simulate larger and more complex systems than
would otherwise be possible.

References
[1] V. Adve, J.-C. Wang, J. Mellor-Crummey, D. Reed, M. An-

derson, and K. Kennedy. An integrated compilation and per-
formance analysis environment for data parallel programs.
In Supercomputing, San Diego, CA, Dec. 1995.

[2] G. Agrawal and J. Saltz. Interprocedural compilation of ir-
regular applications for distributed memory machines. Tech-
nical Report CS-TR-3447, University of Maryland, College
Park, MD, June 1995.

[3] J. M. Anderson and M. S. Lam. Global optimizations for
parallelism and locality on scalable parallel machines. In
Proceedings of the ACM SIGPLAN ’93 Conference on Pro-
gramming LanguageDesign and Implementation, pages 23–
25, Albuquerque, NM, June 1993.

[4] G. Angelopoulos and I. Pitas. Two-dimensional fft algo-
rithms on hypercube and mesh machines. Signal Processing,
30, 1993.

[5] R. Bixby, K. Kennedy, and U. Kremer. Automatic data layout
using 0-1 integer programming. In Proceedings of the IFIP

WG 10.3 Working Conference on Parallel Architectures and
Compilation Techniques, pages 111–122, Montréal, Québec,
Aug. 1994.

[6] E. Brewer. High-level optimization via automated satistical
modeling. In Principles and Practice of Parallel Program-
ming, July 1995.

[7] S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng.
Automatic array alignment in data-parallel programs. In
Proceedings, 20th Annual ACM Symposium on Principles of
Programming Languages, pages 16–28, Jan. 1993.

[8] D. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel program-
ming in Split-C. In Supercomputing ’93, pages 262–273,
Portland, OR, Nov. 1993.

[9] R. Das, M. Uysal, J. Saltz, and Y.-S. Hwang. Communica-
tion Optimizations for Irregular Scientific Computations on
Distributed Memory Architectures. Journal of Parallel and
Distributed Computing, Sept. 1994.

[10] J. Demmel and S. Smith. Parallelizing a global atmospheric
chemical tracer model. In IEEE Conference for Scalable
High PerformanceComputation, May 1994.

[11] T. Fahringer, R. Blasko, and H. P. Zima. Automatic perfor-
mance prediction to support parallelization of fortran pro-
grams for massively parallel systems. In 6th ACM Inter-
national Conference on Supercomputing, pages 347–356,
Washington, D.C., July 1992.

[12] F. Fauci and A. Fogelson. Truncated newton methods and
the modeling of complex immersed elastic structures. Com-
munications onPureandAppliedMathematics, XLVI, 1993.

[13] S. Greenberg. Three-dimensional fluid dynamics in a two-
dimensional amount of central memory. WaveMotion: The-
ory, Modeling, and Computation, 1987.

[14] K. Kennedy, C. Koelbel, and U. Kremer. Automatic Data
Layout for High Performance Fortran. Technical Report
TR94498, CRPC, Rice University, Dec. 1994.

[15] D. J. Palermo and P. Banerjee. Automatic selection of
dynamic data partitioning schemes for distributed-memory
multicomputers. In Proceedingsof the 8thWorkshopon Lan-
guages and Compilers for Parallel Computing, Columbus,
OH, Aug. 1995.

[16] C. Peskin and D. McQueen. Cardiacfluid dynamics. Critical
Reviews in Biomedical Engineering, 20, 1992.

[17] S. Steinberg. Parallelizing a cell simulation: Analysis, ab-
straction, and portability. Master’s thesis, University of Cal-
ifornia, Berkeley, Computer Science Division, Dec. 1994.

[18] M. Weliky. Notochord morphogenesis in xernopus laevis:
simulation of cell behavior underlying tissue convergence
and extension. Development, 113, 1991.

