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Abstract. We present an asynchronous MIMD algorithm for Grobner
basis computation. The algorithm is based on the well-known sequential
algorithm of Buchberger. Two factors make the correctness of our algo-
rithm nontrivial: the nondeterminism that is inherent with asynchronous
parallelism, and the distribution of data structures which leads to incon-
sistent views of the global state of the system. We demonstrate that by
describing the algorithm as a nondeterministic sequential algorithm, and
presenting the optimized parallel algorithm through a series of refine-
ments to that algorithm, the algorithm is easier to understand and the
correctness proof becomes manageable. The proof does, however, rely on
algebraic properties of the polynomials in the computation, and does not
follow directly from the proof of Buchberger’s algorithm.

1 Introduction

Buchberger introduced the notion of a Grobner basis of a set of polynomials and
presented an algorithm for computing it [4]. We present an algorithm based on
his for computing Grobner bases on a MIMD distributed memory multiprocessor.

Although somewhat controversial [12], Buchberger and others believe that
interreduction (keeping the basis reduced with respect to itself) is essential to
performance. Qur algorithm executes interreduction steps concurrently with the
standard critical pair and reduction steps. We believe this is the first attempt
at computing Grobner bases in parallel in an asynchronous message passing
framework while performing interreduction. The completion method used in the
Grobner basis computation is typical of other completion procedures, so we
expect our design techniques to have wider application.

In this paper, we focus on the question of correctness of the algorithm and
how it is affected by parallelization. We identify some of the key points here.

e The proofs rely on algebraic properties of polynomials, rather than being a
direct proof that the parallel program is equivalent to the sequential one.
The parallelization is not a simple semantics-preserving transformation on
the sequential program.
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e The proofs are structured around distributed data structures. While a single
data structure may be quite complicated internally, its value is abstracted in
the proof to a single shared object which does not necessarily exist in the
computation.

e Interreduction complicates the parallel algorithm and its proof. Without in-
terreduction, the basis grows monotonically, but with interreduction, elements
may be modified and deleted. Thus the algorithm has to ensure correctness
in the presence of multiple, inconsistent copies of the basis.

¢ Finally, the design extends the transition-based approach [21] to distributed
memory machines.

We have reported on engineering issues and more extensively on performance
elsewhere [8]. The algorithm has been implemented on a CM-5 multiprocessor.
It outperforms previous parallel algorithms on shared memory machines.

This paper is organized as follows. §2 gives background definitions. §3 presents
the parallel algorithm and correctness proof, using a succession of refinements. §4
gives performance numbers, and §5 discusses the relation to the Knuth-Bendix
procedure. We finish with some concluding remarks in §6.

2 Notation

In this section we briefly introduce some notation. A more detailed treatment
can be found in [14].

Let K be a field and x4, ..., 2, be variables, arbitrarily ordered as z; >
£y > -+ > x,. Then K = K[ay,...,2,] defines a ring of polynomials under
standard polynomial arithmetic. A total order > on monomials is admissible if
for all monomials a, p, ¢ it satisfies (1) p > 1 (note that 1 = 2§ ---22) and (2)
p=q = ap>aq. Also, p>= qiff p = ¢ and p # q.

When written in decreasing order of monomials, TERM(p, i) denotes the i-th
term of polynomial p (¢ > 1). A term contains the coefficient and the monomial:
TERM(p, i) = COEF(p,%) x MoNO(p, ). The head term of a polynomial p is the
leading term: HTERM(p) = TERM(p, 1). Similarly, HcoEF(p) = CoEF(p, 1) and
Hmono(p) = MoNo(p, 1). HMoNO, HcOEF and HTERM are naturally extended
to sets of polynomials: HMoNo(S) = {HMoNo(p) : p € S}, etc. The admissi-
ble ordering = is extended to polynomials by defining p = ¢ iff HMoNo(p) >
HMmoNo(gq), and p = ¢ iff HMoNo(p) = HMONO(q).

Given polynomials p and r such that HMoNo(r) divides MoNo(p, ) for some
1, reduction of p by r is defined as:

/

TERM(p, )
P =P g

— 1
HTERM(7) )
Note that TERM(p, i) vanishes out of p’. Reduction by a set S of polynomials
is done by repeatedly reducing p by some element of S. When no element of
S can reduce p, it is irreducible or in normal form, also written NORMAL(p, S).
The collection of all possible normal forms of p when reduced by S is denoted



NFs(p). The zero polynomial, 0, is in normal form with respect to any S. The
highest common factor of two monomials is denoted

Hep(ay ol oy el = O i), (2)

Given polynomials p; and ps, with head terms kymy and koms respectively, their
s-polynomial is given by

kama kymy (3)
b1 HCF(ml, mz) b2 HCF(m1 s mz) '

SPOL(p1, p2) =

The ideal generated by a set S of polynomials is denoted by IDEAL(S).

Given a set P of polynomials, a Grobner basis of P is a set G of polynomials
satisfying the following:

e IDEAL(() = IDEAL(P) and

e For each p € IDEAL(P), NF¢g(p) = {0}.

A survey of the theory can be found in Mishra [14]. Parallel implementations

have been surveyed by Vidal [19]. Earlier network implementations have been
reported by Siegl [17], Attardi et al[1] and Hawley [13].

3 Algorithm Design

In this section we develop the parallel algorithm, starting from the sequential
algorithm. Correctness is proved at each step as part of the design process. §3.1
reviews Buchberger’s algorithm without interreduction; §3.2 gives a nondeter-
ministic version, which is essentially a parallel algorithm with atomic operations
on shared data structures; §3.3 extends the nondeterministic algorithm to handle
interreduction; §3.4 presents the distributed algorithm.

3.1 Sequential Algorithm

Figure 1(a) shows Buchberger’s sequential algorithm, called S. The two main
data structures are G (the basis) and gpq (the set of pairs for SPOL computation).
For simplicity, this version is without interreduction: polynomials entering G are
completely reduced with respect to all previous elements in G, but old basis
elements are not checked for reducibility by new entrants. The effect is that
polynomials that have entered the basis once are never modified or deleted. We
enhance the algorithm with interreduction after we refine S to a transition axiom
form.

A correctness proof of S is given by Mishra and Yap [14]; we sketch their
proof of partial correctness and give a different proof of termination. Our proof
generalizes better to the interreducing algorithm to be described later.

Theorem1 (Buchberger). G is a Gréibner basis iff for all fig € G, 0 €
NF¢(SpoL(f,g)) ([14], Theorem 5.8).

Definition 2. A ring R is defined to be Noetherian iff it has no infinite ascending
sequence Ry C Ry C R3 C ... of ideals of R.



Input: F', a finite set of polynomials.
Initially:
Input: F, a finite set of polynomials. grq=0,G=F,
Initially: gpq ={ {f,9}: f,9 € G}.
G=r |S-POLYNOMIAL
gpa={{f,9}: f,9 € G} Hp,q} € gpg =
while gpg #£ 0 { grq = gpg \ {p, ¢}
let {f,g} be any pair in gpq grq = grq U{{p, ¢, SPOL(p, q))}
gpq = gpg \ {{f,9}} IAUGMENT BAsTs
h = SpoL(f, g) Ap,q,r) € grq : NORMAL(r,G), 7 # 0 =
k' = REDUCE(h, G) grq =grg \ {{p,q, r)}
ifh #0{ gpg = gpq U { {s,7}, s€ G}
gpq = gpg U{{f,h'} : f € G} G=GU{r}
G=GUR IREDUCE
} Ap, q,r) € grqg : “NORMAL(r, ) =
} r = REDUCE(r, G)
(a) (b)

Fig.1. (a) Sequential Algorithm S [Buchberger]. ¢ is initialized to the input set F' and
grows to become a Grobner basis. Elements in G are never modified. gpg is the set of
pairs of polynomials. The function REDUCE(h, G) returns some element k' € NFg(k),
i.e., it reduces h completely to normal form. (b) G-1: Transition Axiom formulation
with one copy of . Data structures G and gpq as before. Unlike in Algorithm S,
REDUCE(r, G) need not return a normal form; a partially reduced form will do. Note
that p, ¢ are not needed in grq; they just help write cleaner invariants in the correctness
proof.

Theorem 3 (Hilbert’s Basis Theorem). If R is a Noctherian ring then so
is Rlw1, 2o, ..., &) ([15], Pages 420-425).

Lemma4. Algorithm S terminates with G a Grobner basis of F'.
Proof. For partial correctness, observe the loop invariant

Vp g€, {p,q} € gpe = 0€ NFg(SPoL(p,q)). (4)

If S terminates, gpq = 0, so G is Grobner by theorem 1. For termination, note
that REDUCE is a terminating computation [14] and consider tuples of the form
(M, p), built of an ideal M over K and integer p > 0, ordered lexicographically
as (M1, p1) 3 (Mo, pa) iff

M, C M5 or (M1 = M5 and 7 >p2) . (5)

Each loop iteration of S reduces the tuple <IDEAL(HMONO(G)), |gpq|>, as can

be verified easily by examining each axiom. (See Dershowitz and Manna [10] for
similar termination proving techniques.)



Algebraic optimizations to the basic algorithm have been developed that test
s-polynomials to quickly detect reduction to zero, without actually performing
the reduction [5]. Although our implementation includes such improvements, we
omit them from the proofs for simplicity.

3.2 Transition Axiom Specification

Transttion arioms are a means to exploit non-determinism in a sequential al-
gorithm description. Inspired by guarded command languages [9, 11], and aug-
mented by linearizable data types [21], this style was used to implement a shared-
memory Knuth-Bendix procedure [22]. Transition axioms help break the com-
putation into independently schedulable chunks, so the scheduling decisions are
deferred until late in the design process. They are written in the form ¢' = A
where C' is the enabling condition (a guard predicate) and A is the action. An
execution proceeds by repeatedly firing enabled axioms nondeterministically.
Termination occurs when none of the axioms can be fired. Parallelism results
from being able to overlap axioms in time on multiple processors.
There are two sources of non-determinism in S.

e Reduction has many degrees of freedom, since the choice of a reducer is not
specified. Also, it i1s not required to reduce the argument polynomial com-
pletely to normal form with respect to the reducing set; any positive number
of reduction steps will do.

e The choice of a pair from gpgq to compute the SPOL is not specified (although
selection heuristics affect performance). Thus one can work on several pairs
simultaneously.

Algorithm G-1in figure 1(b) is the result of rewriting S as a transition axiom
specification. There are three data structures: (G is the growing basis, gpq is the
pair set as before and grq is a temporary set of polynomials in some stage of
being reduced?. We now prove that G-1 correctly computes a Grobner basis.

Definition 5. Let S, T be finite multisets of polynomials with |S| = |T'|. Define
the irreflexive, non-symmetric and transitive ordering > between such multisets
as S 1> T iff there is a bijection ¢ : S — T such that Vs € S: s = o(s) and
ds e S: s> a(s).

Clearly, > is Noetherian. We use it to show that G-1 terminates.
Lemma6. Algorithm G-1 terminates with G a Grobner basis of F'.

Proof. For partial correctness, we give an “axiom invariant” that is true between
any two successive rules in the firing sequence, specifically, V f, g € G-

({f,g} € gpq) or (HT #0: (fg,7) € grq) or (0 € NFG(SPOL(f,g))) . (6)

2 An explanation of names: g for global, meaning they are shared by all processors; p for
pairs and r for reducts; ¢ for queues because of the heuristic ordering on monomials

in gpg and grq.



The result follows from theorem 1 and the observation that when all the guards
are false, gpg = 0 and (f, g,7) € grq = r = 0. For termination, consider tuples
of the form (M, p, R) constructed as in the proof of S, but with the additional
field R, a multiset of polynomials. Tuples are ordered lexicographically as before,
but with R ordered by >. Then the tuple <IDEAL(HMONO(G)), |gpq|,grq> is

reduced upon firing any axiom.

Input: F, a finite set of polynomials.
Initially:
grq =0, G=F, AUGMENT BASsIs
gpg ={ {f,9}: f,9 € G} Ap, q,r) € grq : NORMAL(r, G), r # 0 =
S-POLYNOMIAL grq =grqg \ {{p, ¢, )}
Hp, ¢} €9pg = gpg = gpq U{ {s,7}, s € G}
gpq = gpa \ {p, ¢} G=GuU{r}
grq = grq U {(p, q, SPOL(p, ¢q))} INTERREDUCE
REDUCE dp,q € G: ¢ reduces p =
Ap,q,r) € grq : “NORMAL(r, G) = p' = REDUCE(p, {¢})
r = REDUCE(r, G) G=(G\{phHu{p'}
gpq = gpqa U{ {p' 9} : 9 €G, g#1'}

Fig. 2. IG-1: Transition Axiom formulation for interreduction with one copy of G.
INTERREDUCE might reduce a basis element to zero; we assume for simplicity that
zero elements are left around in GG but are never considered as reducers.

3.3 Interreduction

We have parallelized and distributed S without interreduction [7]. The proof of
that algorithm is a special case of the algorithm with interreduction: interreduc-
tion introduces mutation of polynomials in the basis. We present only the more
general case here, and therefore proceed by introducing interreduction into our
nondeterministic algorithm.

Buchberger describes an elaborate way to keep track of polynomials that be-
come reducible each time the basis grows, so that after each addition the basis
i1s interreduced, 1.e., basis polynomials are sequentially reduced by each other
until nothing more can be reduced [4]. In a parallel algorithm, this global in-
terreduction could potentially change a polynomial used by any other transition
axiom, yet we cannot afford to stop other work while interreduction proceeds. We
therefore introduce a single interreduction step as a separate transition axiom.

Figure 2 shows the transition axioms IG-1 for interreducing Grobner basis
computation. The only modification is the addition of INTERREDUCE. As in G-1,
there is one shared copy of G. While the extent of reduction done in REDUCE
is not specified, in the proof we assume only a single reduction step occurs in
INTERREDUCE. It follows that correctness is preserved if INTERREDUCE were



to reduce multiple steps, which is done in the implementation. The additional
properties to be proved for IG-1 are that interreduction maintains the axiom
invariant, and does not destroy progress.

Lemma 7. Let INTERREDUCE, be invoked on Gy, resulting in Go. Then for any
polynomial p, if 0 € NFq, (p) then 0 € NFq,(p).

Proof. There must be g, h € (G; such that h reduces g for INTERREDUCE to be

enabled. Suppose ¢ N g'. Let 0 € NFg, (p). We need to show that 0 € NF¢,(p).
Consider the reduction sequence p — -+ -p; — piy1 - — 0 in Gq. If there is no
reduction by ¢ there is nothing to prove, so suppose the p; — p;41 reduction is
by ¢, denoted p; - pi+1. In G2 we can achieve the same reduction of p; to p;41
in two steps:

h 1
Pi — Pnew < Pit1- (7)
We can do this for all steps that used g as a reducer to get a reduction sequence
using only reducers from Gs. Thus, 0 € NFq,(p).

Lemma8. Let INTERREDUCE be tnvoked on Gy, resulting in Go. Then
IpEaL(HMoNO(G1)) C IDEAL(HMONO(()).

Proof. For INTERREDUCE to be enabled, 3¢9,h € (1 such that A reduces g to
¢'. If HMoNo(g) is unaffected there is nothing to prove, so suppose HMoNoO(h)
divides HMoNO(g). So, IDEAL(HMONO(G1\{¢})) = IDEAL(HMONO((G)). Thus,
IpEAaL(HMONO(G5)) = IpEAL (HMONO(Gy \ {9} U {¢'})) 2 IpEAL(HMONO(G\

{9}).

Lemma9. Algorithm IG-1 terminates with G a Grobner basis of F'.

Proof. Partial correctness is direct from lemma 6 and lemma 7. For termination,
we augment our proof for G-1. Consider tuples of the form (M, S, p, R) as in the
proof of Lemma 6, but with the additional field S, a set of polynomials. Tuples
are lexicographically ordered as before, with .S ordered by >. We can show that
firing any axiom in IG-1 reduces the tuple

<IDEAL (HMONO(G)) G, ‘gpq‘ ,grq> ) (8)

3.4 Replicating the Basis

For a distributed memory algorithm, it is not realistic to assume that processors
always have consistent copies of shared data. Replication may occur either on a
large scale by replicating an entire data structure, or on a small scale by keeping
temporary copies of individual pointers and values. A consistency problem arises
when any of the replicated values may be mutated.

In the Grobner basis computation, the most important data structure in
question is the basis, since it is shared most extensively. The basis could be dis-
tributed by partitioning or replication, but a pragmatic analysis of load balance,



granularity and communication requirements [8] favor replication. Given a repli-
cated basis, we have to address the problem of maintaining consistency without
introducing excessive overhead. Fortunately, the consistency requirement on the
basis is rather lax: a processor can do significant amounts of useful work while
having an incomplete or even inconsistent copy of the basis.

Allowing Inconsistent Copies

An example of a consistency problem that may occur is the following “race
condition” [16]. Suppose processors Py and P, both have copies of polynomials
g, h, which happen to be equal. INTERREDUCE fires on P; and P,. Say g is
reduced by h to 0 on P;. Processor P> does not modify its copy of ¢, instead it
reduces h by g to 0. Subsequent invalidation messages lead both processors to
discard their copies of ¢ and A, possibly destroying the correctness of the solution.
A solution to this special case is to impose a total order AGE on polynomials
such that if f = g, f is allowed to reduce ¢ to 0 only if the order is favorable.

In general, a stronger check is needed, namely, the total order should be used
whenever the head monomaials of the reducer and the reduced are equal, even
if they are not completely equal. It is easy to verify that this check prevents
the particular error indicated, but it is still non-trivial to show correctness in
general.

Version Sequences

To keep track of mutable basis polynomials we introduce the notion of the
version sequence of a polynomial. Suppose a polynomial p(0) enters the basis,
and is successively reduced by r1,ra, ..., to p(1),p(2),...,p(t). We represent
this life history by the notation

p=|p(0) = p(1) 2 p(2) = . S p(t)] (9)

where p represents the version sequence and p(t) represents the ¢-th version of
p. In our implementation, version sequences are identified by unique ID’s.

The Model

Let each processor ¢ have access to a (possibly inconsistent) local copy Gy of
the basis, 1 <7 < P. In addition, we have a global shadow set G’ which contains
version sequences of all polynomials that ever entered the basis. Also, for ease
of both implementation and proof, we assume each polynomial is owned by 1its
creator processor which thereafter is the only processor authorized to mutate
the polynomial3.

When processor i creates a new polynomial f and value f(0), it creates a
new version sequence (which, by abuse of notation, we also call f) f = [f(0)] in
G'. When processor ¢ modifies an owned polynomial f(¢) to f(t+ 1) (as a result
of reducing by hiq1(es41): version e;11 of polynomial hsy1) it appends the new
value to the version sequence f in G’ changing it to

F(0) " ) P gy (10)

® This is not a serious limitation. The alternative is to associate modify locks with
each polynomial.



Input: F, a finite set of polynomials.
Initially:
grqg =10,
gpg ={ {f,9}: f(0),9(0) € F}.
Vi: 1<i< PG =F
&' = {[(0)] : f(0) € F}
Processor 7, 1 <1 < P.
VALIDATE
(gpq Z 0 or grg £ 0) and Jg(t) € G': Yg({) € Gi, <t =

G = (G \ Upeoc 9(6)) U(t)
S-POLYNOMIAL
Hf 9y €gpg: ff 9" €Gi =
gpa = gpg \{ {f. 9} }
grqg = grq U{{f*, ¢*,SPoL(f*, ¢*))}
AUGMENT BASIS AND INVALIDATE
Gi={¢": g€}, Up,q,r) €grqg:r#0, and NoRMAL(r,G;) =
grg = gra \ {{p, ¢, )}
Create unique ID h for r, so that h(0) =r

G' = G U {[r(0)]} /* create new version sequence */
gpg = gpqU{ {g,h}, ¢" €Gi }
G, =G U {T}

REDUCE

Ap, q,r) € grq : “NORMAL(r, G;) =
r = REDUCE(r, G;)
INTERREDUCE AND INVALIDATE
Af* = f(t),h(e) € Gi : h(e) reduces f*, f* owned,
(Hmono(f*) # HMoNo(h(e)) or AGE(f*) > AcE(h(e))) =
F(t+1) = Repver(£(1), {h(e)})
G =(G\{fHullf he) f(t+1)]}  /* append latest version */
gpq = gpg U { {f,9}: g€ G}

Fig.3. IG-P: Transition axioms for interreduction using P copies of G. Note that
since gpg now contains ID’s, not polynomial values, we effectively generate new poly-
nomial pairs in INTERREDUCE by requiring in the guard of S-POLYNOMIAL that the
polynomials in ; are the latest.

The local copy G; consists of a selection of versions from a subset of version
sequences in G’. A validation operation either puts the first element of a new
version sequence in G; or replaces version ¢(¢) from a version sequence g by
g(t 4+ £), € > 0. The latest element in a version sequence f at a given time is
special; we call it f*.

As before, we will need to define an abstract basis G in terms of the physical
data structures. The following definition will serve our purpose.

QI{g*:gEG’}. (11)

Using this model, we now write the transition axioms IG-P in figure 3. As men-



tioned before, VALIDATE picks some polynomial in the system of which processor
¢ has no copy or a stale copy, and gets a copy or advances to a later version.
Invalidation has two forms. When AUGMENT BASIS fires, processor ¢ adds a new
version sequence in GG’; when INTERREDUCE fires, processor ¢ appends the new
version to the extant sequence. REDUCE and S-POLYNOMIAL are as before. Each
polynomial (alias version sequence) has a unique ID from a totally ordered set
(integer in our implementation) which will be used by AGE to break reduction
loops as mentioned before.

The act of copying a version from a version sequence in GG/ to (G; models
the communication step to update processor i’s copy of the basis. The value
of a polynomial cannot be used unless this is performed. However, we can still
manipulate the 1D, like putting it into ¢gpg as in INTERREDUCE. ID’s are very
lightweight (8 bytes) compared to the polynomials they represent (hundreds
to thousands of bytes). Hence communicating ID’s is faster and cheaper than
transporting polynomials. This has guided the formulation of the model.

Lemma 10. If f reduces g then g = f.

Lemmall. Let an invocation of INTERREDUCE modify the basis from Gy to
Gs. For any polynomial y, if 0 € NFg, (y) then 0 € NFg,(y).

Proof. Suppose 0 € NFg,(y). We need to show that 0 € NFg,(y). Say the
invocation of INTERREDUCE reduces fi(¢1) to fi(t1 + 1). Suppose yo = y —
Y — Yigy1--- — 0 = y;. The problem is that all reducers in the above
reduction chain, even though elements in G1, may not be in G2 (using f1(¢1) as
a reducer, for example).

We demonstrate how to replace one occurrence of a non-latest element in the
reducers by latest elements alone. Since the reduction sequence is finite, we can
replace such occurrences one by one.

We can use lemma 7 to replace old versions of reducers by new ones. Suppose
G’ contains the interreduction step

o hijled) .
fiG) =" LG+ ). (12)
Then any reduction step yi_1 f:G) yr can be replaced as in the proof of lemma
7 by the equivalent computation

hij(eqs fi(j+1
Yr—1 (—>)ynew (]—>)yk (13)

This seems closer to our goal: f;(j + 1) is closer to f* than f;(j), and we have
brought in a different element from a finite set. We can continue this until all
reducers that take x to z’ are in G5. This gives rise to a transformation tree:
latest version polynomials are leaf nodes. A non-latest reducer f;(j) has children
hij(ei;) and f;(j +1). How are we guaranteed that the tree is finite?

Define the lexicographic extension of ordering > and the ordering imposed by
AGE on polynomials as p > ¢ if p = q or HMoNo(p) = HMONO(g¢) and AGE(p) >
AGE(q). Without loss of generality, let the root of some subtree be f;, (j1). Since



the tree is heap ordered with respect to > defined above (with the root as the
greatest element), fi,(j1) cannot occur anywhere in the subtree. Since the total
number of versions of all polynomials in the system is finite, the result follows.

Lemmal2. Let an invocation of INTERREDUCE modify the basis from Gy to
Gs. Then IDEAL(HMONO(G1)) € IpEAL(HMONO(G2)).

Proof. Similar to the proof of lemma 11. Suppose INTERREDUCE performed the
reduction

filty) — filta +1). (14)

If the reducer is in G5 there is nothing more to prove. Suppose the reducer is not
a final element, i.e., there is a reduction

) " g (15)
so that HMONO(h;;(e;;)) divides HMONO(f;(j)). In that case
IDEAL (M U {HMONO(fZ'(j))}) C IDEAL (M U {HMONO(hij(eij))}) (16)

for any set of monomials M. Continue till a final version reducer is encountered.
Since versions are drawn from a finite set and AGE prevents repeating reducers,
we must reach a final version reducer.

Lemma13. [G-P terminates, computing a Grobner basis of F'.

Proof. Partial correctness follows from lemma 9 and 11. For termination, we
adapt the proof of lemma 9, using lemma 12 and replacing G by G in the tuple
in lemma 9.

4 TImplementation and Performance

Our prototype runs on the CM-5 multiprocessor [6]. Each processor is a 33 MHz
(15-20 MIPS) Sparc with about 8 MB of memory. The network is a fat-tree
supporting at most 20 MB/s point-to-point data transfer. The prototype is in
C, with the active message layer [20] for communication. For the benchmarks
we used, there was no remarkable difference in performance with and without
interreduction. The results are quoted without interreduction. Also, we reduced
only head terms in REDUCE, not all terms. This also produces a Grobner basis,
but not necessarily a unique one. In Figure 4 some of the speedups on the CM-5
multiprocessor are given. The first set (a) is done on a small number of processors
using some standards benchmarks [19].

Scalability

The standard benchmarks complete in a few seconds. Scalability is better
than some previous shared memory implementations, but is still limited by the
small total number of tasks (pairs added to the pair queue). To see if this is
a fundamental limiting factor, we synthesized problems that lead to a large
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Fig. 4. Speedups for (a) standard benchmarks on a few processors and (b) Inputs cre-
ated with multiple copies of a benchmark on many processors. X-axis: number of
processors; Y-axis: ratio of 1-processor running time and P-processor running time.
Superlinear behavior is seen in some cases.

number of tasks, using multiple copies (two and five, respectively) of the standard
benchmarks, with variables renamed between the copies. The results are shown
in figure 4(b). We also proved a geometry theorem using Groébner basis that was
too large to be run sequentially.

Even though the algorithm has good time scalability for long running prob-
lems, the indiscriminate replication makes it scale poorly in space. We came
across a few examples that are extremely long-running, but replication exhausts
memory. It is clear from our analysis [8] that time scalability is favored by
replication. Solving large real problems seems to need a compromise with par-
titioning. We are designing a general object library that permits replication as
far as memory capacity permits, thus making the compromise on a continuum.

5 Applications to Term Rewriting

Many of the parallelization techniques and correctness results in this paper could
be applied to Knuth-Bendix and other completion procedures. A precursor to
this work was a shared memory implementation of the Knuth-Bendix procedure,
which was also based on a transition axiom style [22]. See also [18] for a generic
parallel completion procedure and [3] for some related correctness results for
distributed computations. The pragmatic question of whether other completion
procedures would perform well on distributed memory machines is beyond the
scope of this paper. However, in this section we discuss the ways in which the
algorithms and proofs could be extended to a distributed memory Knuth-Bendix
procedure.

Proving partial correctness of a distributed Knuth-Bendix procedure follows
roughly the same lines as for Grobner basis. However, the completion problem



for term rewriting systems is undecidable. For some sets of rewrite rules, no
finite complete system exists. The termination requirement for Grobner basis
is therefore replaced by a liveness condition, stating that the procedure must
continually make progress towards a complete system. The procedure is usable
as a semi-decision procedure, in that any equational theorem must eventually be
provable by rewriting. In addition, the Knuth-Bendix procedure may fail. Failure
also impacts the correctness criteria for the procedure; although incorporating
it into the proofs should be straightforward. Interreduction is a performance
improvement in both procedures, and is not essential for correctness. Whereas
its value is arguable in the Grobner basis computation, it is considered essential
in Knuth-Bendix.

The basic outline of the liveness proofs could also be extended. Note that
the nontermination property of Knuth-Bendix creates a subtle distinction in
distributing the two computations. Hilbert’s Basis Theorem guarantees that all
increasing chains of ideals were finite, so we could have relaxed the guard of the
AUGMENT BASIS AND INVALIDATE axiom in Figure 3 by not requiring the local
copy G; to be up to date. This would still terminate, but would not necessarily

be practical. A Knuth-Bendix procedure must have regularly scheduled valida-
tions, since there is no analog to Hilbert’s Theorem for term rewriting systems.
Completing a subset of rewrite rules could lead to nonterminating executing,
forever missing some critical pair. Requiring validations at all add points, as our
Grobner basis algorithm does, is sufficient in either domain, and a less stringent
policy might also be possible.

In spite of these differences, the similarity between the two sequential proce-
dures carries over to the distributed case. The race condition mentioned in §3.4,
that comes with parallel interreduction, also exists for rewrite rules: two copies
of the same rule can be used to reduce one another so that both disappear. It
also has a similar solution, in that rewrite rules can be time stamped to prevent
reduction cycles. Informally, the analog to Lemma 11 says that one can reduce
using out-of-date copies of the rewrite rule set, since any reductions done there
could have been performed with the latest set. Similarly, the liveness argument
is analogous to termination for Grobner basis. However, Hilbert’s Basis Theorem
would be replaced by the proof ordering notion of Bachmair et al as the basic
measure of progress [2]. The proof ordering results are already quite general,
giving the correctness of nondeterministic algorithm with interreduction, similar
to IG-1 here.

6 Future work and Conclusion

In this paper, we have described the design and implementation of a parallel
Grobner basis procedure. We believe that current performance can be further
improved in the following ways.

e As mentioned in §4, a replicated basis favors scalability in terms of achiev-
able speedup. For large problems, it is not practical to maintain complete
copies at all processors. We are implementing a generic library for application



level caching of data structures with some weak consistency models that are
profitable for the application.

e After each interreduction step reducing p to p’, the algorithm has to add pairs
involving p’ (to maintain the correctness invariant). In the sequential algo-
rithm (where a random access on the pair “queue” is assumed), one can also
remove all pairs involving p, for efficiency reasons. This is not feasible in a
distributed memory setting with high communication expense. Are there effi-
cient techniques to reorganize the distributed pair queue? Are there algebraic
properties that obviate adding all new pairs with p’?

e In our design, the limit to granularity is a reduction step. This appeared
reasonable for the target architecture. A general parallelization recipe for a
variety of architectures will be useful. In particular, vectorizing the infinite
precision coefficient computations should improve absolute performance.

In conclusion, we have presented a distributed memory MIMD algorithm for
computing Grobner basis. Our implementation out-performs the shared memory
implementation of Vidal [19] fairly consistently, and has the additional advantage
that shared memory hardware is not assumed. The transition-based approach,
previously used for shared memory [21], is extended here for distributed memory.
The key idea is to replace the shared data structures with distributed data
structures, for which replication and partitioning of the data is hidden. The
encapsulation of distributed objects and the structure provided by the transition
axioms helps in both the algorithm presentation and in the correctness proof,
and we believe it will be useful in other problems that have irregular patterns of
communication and control.
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