DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 19xx

Connected Components on Distributed Memory Machines

Arvind Krishnamurthy, Steven S. Lumetta, David E. Culler,
and Katherine Yelick

ABSTRACT. The efforts of the theory community to develop efficient PRAM
algorithms often receive little attention from application programmers. Al-
though there are PRAM algorithm implementations that perform reasonably
on shared memory machines, they often perform poorly on distributed mem-
ory machines, where the cost of remote memory accesses is relatively high.
We present a hybrid approach to solving the connected components prob-
lem, whereby a PRAM algorithm is merged with a sequential algorithm and
then optimized to create an efficient distributed memory implementation. The
sequential algorithm handles local work on each processor, and the PRAM al-
gorithm handles interactions between processors.

Our hybrid algorithm uses the Shiloach-Vishkin CRCW PRAM algorithm
on a partition of the graph distributed over the processors and sequential
breadth-first search within each local subgraph. The implementation uses the
Split-C language developed at Berkeley, which provides a global address space
and allows us to easily manipulate the distributed graph data structure. We
present our first version, then provide a detailed account of the optimizations
used to create the final version. For graphs from real-world problems, we
obtain speedups on the order of 20 on a 32-processor CM-5 and 238 on a
512-processor CM-5.

1. Introduction

Although the theory community has studied the asymptotic running times of
numerous PRAM algorithms, comparatively few of these algorithms are used in
practice. The implementations that do exist generally appear on small shared
memory platforms such as the Cray C90 or on SIMD machines such as the CM-2
or Maspar, where messages between processors require only a single, very long cy-
cle. Large parallel machines, however, typically have a distributed memory model:

1991 Mathematics Subject Classification. Primary 68Q22, 68R10; Secondary 68P05.

This material is based in part upon work supported by a National Science Foundation
Graduate Research Fellowship, by the National Science Foundation Infrastructure Grant numbers
CDA-8722788 and CDA-9401156, by the Lawrence Livermore National Laboratory Grant LLL-
B28 3537, by the National Science Foundation award number CCR-9210260, by the Advanced
Research Projects Agency of the Department of Defense monitored by the Office of Naval Research
under contract DABT63-92-C-0026, by the Department of Energy under grant number DE-FGO03-
94ER25206. The content of the information does not necessarily reflect the position or the policy
of these organizations.

©0000 American Mathematical Society
1052-1798/00 $1.00 4 $.25 per page

2 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICK

off-the-shelf processors loosely coupled via a fast network (e.g., TMC CM-5, Meiko
CS-2, Cray T3D, Intel Paragon, IBM SP-1). In this paper, we demonstrate the pro-
cess of adapting a PRAM algorithm to execute efficiently on a distributed memory
machine. We start with the PRAM algorithm for finding the connected components
of a graph, and, through a gradual process of refinement, we develop an efficient
hybrid parallel algorithm.

Labeling the connected components of a graph has a wide range of uses, in-
cluding applications in computer vision and condensed matter physics. Grouping
adjacent pixels of similar intensity to identify edges and planes, for example, helps
to analyze images for object recognition. By creating a graph in which adjacent
pixels of equal intensity are connected and then finding the connected components
of the graph, we find the homogeneous regions of the image. Connected component
labeling is used in Physics to implement clustering in Monte Carlo algorithms such
as that of Swendsen and Wang [13], which simulates physical systems near critical
temperatures by repeatedly grouping particles into clusters (connected components)
and choosing a new state for each cluster.

The graphs used for these applications have underlying grid topologies in either
two or three dimensions. Because of the underlying topology, the graphs decompose
easily into smaller fragments with only a small fraction of edges crossing between
fragments, allowing much of the work in finding connected components to be per-
formed locally. For our results, we use the graphs typical of Physics problems.
These graphs are generated randomly, using a fixed probability for the presence
of each edge from an underlying lattice graph. For problems in vision and image
recognition, the presence of an edge from the underlying grid is not independent of
the presence of other edges.

Although we are primarily interested in graphs from actual problems, we also
consider an artificial graph type. The graph, denoted AD3 for “average degree
three,” is generated by having each node pick zero to three other random nodes as
neighbors. AD3 is a variant of the Tertiary graph used by Greiner [7] for bench-
marking connected components algorithms.! Graphs corresponding to physical
systems usually exhibit locality in their structure. However, the AD3 graph ex-
hibits almost no locality, and could therefore be viewed as an extreme input to our
algorithm.

Previous parallel implementations of connected components algorithms have fo-
cused primarily on shared-memory machines [7]. For distributed memory machines,
a straightforward implementation of a PRAM algorithm is generally of little use be-
cause of the high cost of remote accesses and the frequency of such accesses in most
PRAM algorithms. A more sophisticated approach employs a PRAM algorithm
in conjunction with a standard sequential algorithm, using the latter to manage
operations local to each processor and the former to manage the interaction be-
tween processors. This hybrid approach is illustrated in Figure 1 for the connected
components problem. The two algorithms are merged, then the result is optimized.

In this paper, we present a hybrid algorithm for finding the connected compo-
nents of a graph on a distributed memory machine. We implemented and optimized
the algorithm on a CM-5 using the Split-C language developed at Berkeley [4].

IEach node in an instance of Greiner’s Tertiary graph randomly selects three other nodes as
neighbors, resulting in an average degree of six and a graph that has only one connected component
with high probability.

CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 3

Sequentia algorithm PRAM algorithm
for local work for global work
(BFS) (Shiloach-Vishkin)

N

Combined, dual-phase
agorithm

y

Optimized distributed
memory agorithm

FI1GURE 1. Hybrid algorithm strategy. We combine a PRAM algo-
rithm with a sequential algorithm and optimize the result to create
an efficient algorithm for distributed memory machines.

We discuss the PRAM algorithm in Section 2 and give details of the first hybrid
implementation in Section 3. In Section 4, we describe the sequence of optimizations
through which we developed the final version of our algorithm. Section 5 discusses
the graphs used and our methodology for measuring performance. In Section 6, we
present our results.? Section 7 compares the results with other implementations of
the algorithm, and Section 8 concludes.

2. The PRAM Algorithm

Sequential solutions for identifying the connected components of a graph are
generally based on variants of depth-first search, breadth-first search, or union-
find. The solutions have running times linear in the number of edges and vertices
in the graph and are easy to implement. Many efficient parallel solutions [2, 6, 12]
have been devised, but these solutions are often complex and difficult to implement.
Our implementation is a hybrid of a sequential search on the subgraph local to each
processor and a variant of the Shiloach-Vishkin PRAM algorithm [12] on the global
collection of subgraphs. In this section, we briefly describe the key components of
the PRAM algorithm.

In the following discussion, we denote the vertex set of the input graph by V and
the edge set by E. Each vertex has an associated Value attribute that is a unique
number at the beginning of the algorithm. When the computation terminates, all
vertices within the same connected component share the same value. We use the
notation (u,v) to denote an edge between the vertices u and v.

Given a graph with n vertices and m edges, the Shiloach-Vishkin algorithm
requires O(log n) parallel steps and a total of O(m log n) work. The algorithm
repeatedly groups vertices that have edges between them using two basic operations:
pointer doubling and hooking. The algorithm maintains a forest of trees, and makes
progress either by decreasing the number of trees in the forest or by decreasing the
height of the trees. The algorithm terminates when no two trees in the forest share
an edge and all trees in the forest are of height one.

2A separate paper [9] presents more detailed results for the algorithm on several different
platforms and demonstrates the best connected components performance seen to date.

4 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICK

A

A e

C D

F1GURE 2. Pointer doubling operation. The parent of each vertex
is replaced with the vertex’ grandparent. The root of a tree is
assumed to be its own parent.

P

graph edge

FIGURE 3. Hooking operation. A graph edge between two trees
in the forest is replaced with a parent link, merging the two trees
into a single tree.

The pointer doubling operation replaces the parent of each vertex with the ver-
tex’ grandparent, as shown in Figure 2. This operation decreases the distance from
the root of the tree to the leaves, and terminates when the tree becomes a star,
which is a tree of height 1. During the pointer doubling operation, the algorithm
also propagates the value of the new parent to the child. By making the parent of
the root of a tree the root itself, we simplify the operation to the form:

Parent(v) + Parent(Parent(v))
Value(v) « Value(Parent(v))

The hooking operation hooks a star in the forest to another tree in the forest
if the star contains a vertex adjacent to a vertex in the target tree, as shown in
Figure 3. The operation comes in two flavors: conditional and unconditional. A
conditional hooking operation is permitted only when the Value attribute of the
first vertex® is less than that of the adjacent vertex. An unconditional hooking
operation links the two trees irrespective of their values.

In order to guarantee termination, the algorithm must ensure that the par-
ent relationship remains acyclic. The conditional hooking operation prevents the

3Note that the Value of every vertex in a star is the same, as the Value propagates from
parent to child during pointer doubling.

CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 5

formation of cycles by requiring that the Value attribute monotonically increases
from the leaves to the root of a tree. The same is not true of the unconditional
hooking operation, however. The algorithm prevents the creation of cycles by first
applying the conditional hooking operation, and then applying the unconditional
hooking operation only to those stars that were not hooked in the conditional hook-
ing phase. This scheme prevents two stars from linking to one another since at least
one of the stars has had an opportunity to link to the other star during the condi-
tional hooking phase. Unconditional hooking is necessary to obtain log(n) bound
on the running time, but is not necessary for correctness [12].
The algorithm follows:

1. For each vertex u, set
Parent(u) < u
2. Repeat until no change occurs in an iteration:
a. For each vertex u such that u is part of a star, pick v such that
(u,v) € F and Value(u) < Value(v) and set
Parent(Parent(u)) + v.
b. For each vertex w such that u is part of a star that neither hooked to
another vertex nor had another vertex hooked to it, pick v such that
(u,v) € F and set
Parent(Parent(u)) + v.
c. For each vertex u, set
Parent(u) « Parent(Parent(u)) and
Value(u) < Value(Parent(u))

Given one processor for each vertex and each edge in the graph, the loop re-
quires O(log n) iterations to terminate. The vertex processors perform during
steps 1 and 2c, while the edge processors perform during steps 2a and 2b. The
processors execute in a lock-step manner and must be able to read and write a
single memory location concurrently for each step to execute in unit time. Steps 2a
and 2b, for example, require the concurrent write ability, since multiple children of a
vertex may attempt to change the parent. Note, however, that the algorithm makes
no assumptions about the policy for disambiguating writes to the same location.

3. Implementation

In this section, we describe our initial implementation of the connected com-
ponents algorithm. We start with a hybrid algorithm, which composes the local
sequential breadth-first search with a global PRAM-based algorithm. Although
this implementation proved to be inefficient, the description introduces the general
style of the program and facilitates understanding of the optimizations discussed
later.

The natural implementation of many algorithms on distributed memory ma-
chines involves a combination of local and global phases. During the local phases,
the algorithm deals only with data that reside in the processor’s local memory. In
the global phases, the algorithm must address the issues of efficient remote data
access and synchronization between processors. The global phases are hence more
difficult to program.

Fortunately, we can make use of the Split-C language [4] to simplify the task.
Split-C provides the abstraction of a global address space on a distributed memory

6 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICK

F1GURE 4. Local phase. In this phase, the algorithm processes all
local edges to find local connected components, then passes the
reduced graph into the global phase.

machine.* Any processor can access any location in the global address space using
global pointers, and each processor owns a specific region of the global space, its
local region. A global pointer is used just like a local pointer, but can reference the
entire global address space, while standard pointers reference only the portion local
to the accessing processor. The notion of a global pointer allows us to represent a
graph whose vertices are spread across processors and whose edges are represented
using global pointers. Another useful aspect of global pointers is the ability to de-
termine the processor that owns the object pointed to by a global pointer without
actually dereferencing the pointer. In our implementation, we use this ability in
the local phase to explore only those edges that point to local vertices. The distinc-
tion between local and global objects provides a clear cost model for introducing
optimizations that we examine later.

Having briefly discussed the language used to code our implementation, we now
introduce the algorithm:

1. Local Phase. Perform purely local computations to decrease the size of
the graph processed during the global phase. Figure 4 illustrates the effect
of the local phase.

a. Search Step. On each processor, find local connected components
among local nodes and edges using Breadth First Search (BFS). Ignore
remote edges.

b. Star Formation Step. Assign a unique value to each node. Choose
a representative node for each local connected component. Move all
remote edges from nodes in the component to the representative and
collapse the component into a star. The representative node becomes
the root of the star, and the value of the representative node becomes
the value of the star.

2. Global Phase. Beginning with a list of components on each processor,
all of which are stars and are marked with unique values, apply a modified
Shiloach-Vishkin algorithm. Iterate over the following steps until done:

4Implementations of the language exist on a variety of machines including the IBM SP-2, the
Intel Paragon, the Cray T3D, and the Meiko CS-2 [1, 8, 10, 11].

CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 7

Processor 1 Processor 2
_ collapsed | edge _
@ representative
remots local nodes
edge BN

F1cGurg 5. Collapsing remote edges. By collapsing remote edges
before entering the global phase, we reduce the amount of work
required for each iteration of that phase.

a. Termunation Check. Move star components with no remaining remote
edges to a finished component list. If all components on all processors
are finished, quit.

b. Conditional Hooking Step. Attach star components to other compo-
nents if the value of the other component is larger. Remove newly
attached components from the component list.

c. Pointer Doubling Step. Double parent pointers one or more times for
each node and update the node’s value from the new parent.

d. Star Marking Step. Determine whether each component is a star:
first mark all components as stars, then mark the grandparent of each
node as a non-star if it is distinct from the parent of the node.

e. Fdge-List Concatenation Step. For each node, pass remote edges to
the parent of the node.

f. Self-Loop Remowal Step. For each star, remove edges that point to
nodes with the same value (nodes within the star).

The initial implementation does not include an unconditional hooking phase.
We introduce this phase and study its effect in the next section.

4. Optimization

In this section, we describe the sequence of optimizations that we used to
improve the performance of our implementation on distributed memory machines.
On a CM-5, the optimized code runs roughly twenty times faster than does the basic
version described in the last section. The optimizations make use of three simple
concepts in parallel optimization: reducing the amount of computation, reducing
the number of remote references, and balancing the workload between processors.

4.1. Collapsing remote edges. The local phase leaves all local components
in star form. We first consider the role of the leaf nodes of these stars, which we call
the local nodes. As the local nodes make up the bulk of the graph in most cases, we
want to eliminate any reference to them within the global phase. Although we have
chosen representative nodes (which are the roots of the stars) during the local phase
of the algorithm and have moved one end of each edge to the representative nodes,
the other end of each edge remains unchanged, and often refers to a local node. To
avoid creating a cycle in the graph, we must keep the unique component values for
the local nodes consistent in each iteration of the global phase. By extending the

8 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICK

Avg. Nodes
Graph | Nodes in Star
2D40 | 10,000 4.2
2D60 | 10,000 27
3D20 8,000 2.3
3D40 8,000 14
AD3 | 10,000 1.05

TABLE 1. Average star size after the local phase. Graphs used in
real-world problems form large stars; artificial graphs might not.
All measurements used a 32-processor CM-5, and the “Nodes” col-
umn shows the number of graph nodes per processor.

algorithm slightly, we remove edge references to the local nodes and greatly reduce
the amount of work done in the global phase.

The first extension involves collapsing the remote edges just before beginning
the first iteration of the global phase. For each remote edge, we replace the remote
node with the parent of the remote node, as shown in Figure 5. Since each local
component has the form of a star after the local phase, the parent of any node is
that node’s representative. The extension adds the following step just after the
local phase:®

l.c. Remote Edge Collapse Step. Replace each remote edge (u, v) with the
collapsed edge (u, Parent(v)).

The local nodes can then be safely ignored during the global phase, and their
component values can become inconsistent without affecting the correctness of the
algorithm.

The second extension involves updating the unique component values of the
local nodes after the global phase completes, bringing them back into consistency
with the reduced graph. Since all representative nodes are updated in the global
phase, we need merely copy the component value of each local node from its parent,
an operation requiring no remote references as the parent of a local node is always
local. We add an update phase after the global phase:

3. Update Phase. For each local node, update the value of the node from
the value of its parent.

How these two extensions affect the execution time of the algorithm depends
upon the balance between the computation and communication architectures and
upon the structure of the graph. The first extension potentially adds an additional
remote reference for each remote edge, but allows us to forgo updating the values
of local nodes during the global phase. We must eventually update these values at
least once, and do so in the second extension after the global phase completes. In a
graph where the number of local nodes is small compared to the number of remote
edges, or on a machine on which the cost of a remote reference is large compared
to the cost of a cache miss, the changes described in this section can increase the

5The new step accesses remote data and should technically not be a part of the local phase,
but the numbering used indicates both the appropriate insertion point for the step and fact that
the step is not part of the global phase iteration.

CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 9

A

[B

—

parent link

=

C D

= edge list

E structures
FIGURE 6. Postponing edge list concatenation. Race conditions in
edge motion make efficient design difficult; waiting until the tree
has collapsed into a star eliminates races and allows further opti-
mization.

execution time. In our case, however, they greatly reduced that time. Table 1
shows the average star size for our graphs.

4.2. Postponing edge list concatenation. The initial implementation
moved remote edges from leaf nodes to their parents after every pointer doubling,
concatenating each leaf’s list to that of its parent. Unless we are careful in de-
signing the interactions for this step, races between the parent and children of a
node make the code very unstable. To understand the problem, consider the tree
shown in Figure 6. The edge list structures exist in the global address space, so
that accessing or modifying an edge might involve a remote access. In one correct
solution, each node maintains pointers to the first and last edge list structures in
its list of edges. Before sending edges to its parent, a node saves copies of these
two pointers and zeroes the originals in an atomic fashion, protecting the edge list
from corruption by incoming edges. The node then sends both the start and end
pointers to its parent. When the parent node receives these pointers from a child,
it replaces its own first edge with the child’s first edge and, if the parent already
had edges, modifies the child’s last edge to point to the parent’s previous first edge.
The latter operation requires a message to the processor on which the child’s last
edge list structure resides, but since the parent is the only node that has a pointer
to this edge list structure, no races exist.

Unfortunately, the method outlined above requires too much information to
take advantage of the short messages available on the CM-5, and using a slightly
longer message adds a significant amount of overhead and complexity. The solution
we chose 1s to delay the motion of edge lists. By postponing the edge list concatena-
tion on a tree until pointer doubling has collapsed the tree into a star, we sidestep
the difficulties of designing a correct and efficient method for this step. The cost
1s moderate—the root of each tree must handle all of the link messages instead of
handling one or more rounds from each immediate child (a very small cost when
the height of the trees is small)—and the change allows us to take advantage of a
more significant optimization, as we discuss in the next section. We modify step 2e
to affect only stars:

2.e. Edge-List Concatenation Step. For all leaf nodes of star components, pass
remote edges to the star root.

10 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICK

[B
?:_? @ representative

=

il

Processor 1 | | | Processor 2 local nodes

| | = edgelist structure > %

FIGURE 7. Removing duplicate edges before concatenation. Push-
ing duplicate edges to the root of a star forces the root to handle
the destruction of all duplicates. Eliminating the duplicates first
improves load balance.

4.3. Removing duplicate edges before concatenation. After the local
phase completes, many components are left with duplicate edges in their edge lists.
The graph segment depicted in Figure 7, for example, gives rise to a set of four
duplicate edges in both local components. Detecting duplicate edges at this point
requires sorting the edge lists and fails to catch duplicate edges created in the global
phase (when two local components are collapsed into a single component). For this
reason, the original algorithm checked for duplicate edges at the end of each global
phase iteration, when they appear as edges in a star that point to other nodes
within the star.

The problem with such an approach is that the root of the star must perform
all of the remote references needed to detect duplicate edges. The upper righthand
section of the figure shows the two representative nodes and their edge list structures
after one node has been hooked to the other (eliminating one edge). In this figure,
all of the edge list structures reside on the same processor as the associated node,
and all of the edges point to remote nodes. The lower righthand section shows the
nodes after edge list concatenation; in this case, three of the edge list structures are
remote, and the complementary structures (the other four) point to remote nodes.
In both cases, each edge list structure requires one remote access to determine
its duplicate nature, but in the upper figure, the cost of these accesses is shared
between two processors, while a single processor must perform all remote accesses
in the lower figure. By checking for duplicate edges before concatenating the edge
lists, we create a better load balance between the processors. We swap the two
steps:

2.e. Self-Loop Removal Step. For each star, remove edges that point to nodes
with the same value (nodes within the star).

2.f. Edge-List Concatenation Step. For all leaf nodes of star components, pass
remote edges to the star root.

Since the root of a star must perform a remote reference for each edge when
scanning the list for duplicates, the benefits of this optimization outweigh the small
costs incurred by delaying concatenation in the earlier section, where the root of a
star need make only one remote reference per edge list.

CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 11
Graph | Nodes | Iteration | Components | Stagnant | Percentage
2D40 | 2,000,000 1 472,538 425 0.090%
2D60 | 2,000,000 1 70,141 157 0.22%
3D20 | 4,000,000 1 1,673,284 1,915 0.11%
3D20 | 4,000,000 2 1,627,463 15| 0.00092%
3D40 | 4,000,000 1 251,734 823 0.33%
3D40 | 4,000,000 2 228,101 2| 0.00088%
AD3 | 1,600,000 1 1,525,032 47,560 3.1%
AD3 | 1,600,000 2 252,240 6,624 2.6%
AD3 | 1,600,000 3 100,671 25 0.025%

TABLE 2. Usefulness of unconditional hooking. The stagnant com-
ponents make up a small fraction of the total, but lead to additional
iterations of the global phase. All measurements in the table were
made on a 32-processor CM-5.

4.4. Unconditional hooking. Certain pathological graphs require uncondi-
tional hooking to prevent the possibility of requiring one iteration per node to find
connected components. But the stagnation information needed for unconditional
hooking requires extra work and extra remote references, and the unconditional
hooking phase itself adds still more overhead. As we are not concerned with these
pathological cases, we chose not to implement unconditional hooking in our initial
implementation.

We found, however, that unconditional hooking serves a practical purpose,
as demonstrated by the data in Table 2. For each graph type, the table shows
the number of components left stagnant during each iteration of the global phase.
Although the stagnant fraction is generally small, the number is large enough to
increase the number of iterations required in the global phase. Adding unconditional
hooking results in fewer iterations, and the time gained by eliminating iterations
outweighs the overhead costs.

We modify the conditional hooking step and add the new step as follows:

2.b.1) Conditional Hooking Step. Mark all stars as stagnant. Attach star
components to other components if the value of the other component
is larger. Remove each newly attached component from the component
list and remove the stagnant marker from the component to which it
attached.

Unconditional Hooking Step. Attach stagnant star components to other
components. Remove each newly attached component from the compo-
nent list.

2.b.2)

4.5. Asynchronous pointer doubling. The standard approach to pointer
doubling, as shown in Figure 8, requires that each processor iterate over its local
set of nodes and double the parent link for each vertex (replace the parent with
the grandparent). The processors then synchronize and repeat the doubling pro-
cedure some number of times. The synchronization guarantees that each doubling
decreases the height of all trees by a factor of two.

An alternative approach reverses the loop structure and eliminates the syn-
chronization; each processor iterates over vertices and replaces the parent of each

12 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICK

original

tree after one thetreeisastar
tree o

synchronous ter two

pointer doubling synchronous

pointer doublings

FicURE 8. Asynchronous pointer doubling. Synchronized pointer
doubling guarantees fully collapsed trees in time logarithmic in the
height of the trees. Asynchronous doubling offers no such guaran-
tee, but requires much less overhead.

vertex with the node found by following the parent link some number of times.
This second approach has much less overhead than the first: not only does it lack
multiple synchronizations between processors, but it requires only one loop through
a processor’s vertices. However, the approach does not guarantee that the depth of
the tree decreases exponentially.

We implemented both schemes and compared the results. Surprisingly, execu-
tion times were very close. The extra overhead of synchronization and multiple list
traversals compensated for the benefits of guaranteed exponential decrease. Keep in
mind, however, that barrier synchronization is relatively inexpensive on the CM-5.
On machines with more heavyweight barriers, asynchronous pointer doubling is
more beneficial.

4.6. Maximal pointer doubling. The last optimization we discuss involves
tuning the number of doublings performed in each pointer doubling phase. We
studied the effect of the number on execution time and found the the optimal
number varied from three to seven, depending on the structure of the graph. We
next tried maximal pointer doubling, in which pointer doubling continues until
every tree is reduced to a star. Although execution times were slightly worse,
maximal pointer doubling enabled numerous other optimizations. Since every tree
entering an iteration of the global phase was a star, we removed the star-marking
phase entirely and eliminated all conditionals that checked a tree’s star property.
The resulting program ran faster than the one that performs an optimal number
of pointer doublings. The algorithm outlined below reflects the numerous minor
changes made with maximal pointer doubling.

4.7. Final Algorithm. The optimized algorithm follows:

1. Local Phase. Perform purely local computations to decrease the size of
the graph processed during the global phase.

a. Search Step. Each processor finds local connected components among
its nodes using Breadth First Search (BFS). The search ignores remote
edges.

b. Star Formation Step. Assign a unique value to each node. Choose
a representative node for each local connected component. Move all
remote edges from nodes in the component to the representative and

CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 13

collapse the component into a star. The representative node becomes
the root of the star, and the value of the representative node becomes
the value of the star. Make a list of star roots for each processor.

c. Remote Edge Collapse Step. Replace each remote edge (u, v) with
the collapsed edge (u, Parent(v)).

2. Global Phase. Beginning with a list of components on each processor,
all of which are stars and are marked with unique values, apply a modified
Shiloach-Vishkin algorithm. During this phase, ignore any nodes not on the
local star root list. Iterate over the following steps until done:

a. Termunation Check. Move components with no remaining remote
edges to a finished component list. If no components need still be
processed on any processor, quit.

b. Hooking Steps. Merge components into larger components.

1) Conditional Hooking Step. Mark all components as stagnant.
Attach components to other components if the value of the other
component is larger. Remove each newly attached component
from the component list and remove the stagnant marker from
the component to which it attached.

2) Unconditional Hooking Step. Attach stagnant components to
other components. Remove each newly attached component
from the component list.

c. Pointer Doubling Step. Double parent pointers for each node until
the parent and the grandparent are the same; that is, collapse all
components into stars. Update the node’s value from the new parent.

d. Self-Loop Removal Step. For each component, remove edges that point
to nodes with the same value (nodes within the component).

e. Fdge-List Concatenation Step. For all leaf nodes of components, pass
remote edges to the component root.

3. Update Phase. For each node with a local parent, update the value of the
node from the value of its parent.

5. Graphs and Methodology

We begin this section with a description of the graphs used to measure the
performance of our optimized implementation. We then discuss our measurement
methodology.

5.1. Graph construction. As our results depend fairly heavily upon the
types of graphs studied, we first describe those graphs. We used five separate types
of graphs; four are drawn directly from the work of Greiner [7], and the fifth is a
modified form of another graph used in that work.

The first two graphs are built on a two-dimensional toroidal mesh. Each edge
in the mesh is present with some fixed probability, either 40% or 60% in our mea-
surements. Since one expects a graph with average degree below two to be fairly
disconnected and a graph with average degree above two to be fairly connected,
these two percentages outline the boundary region for the two dimensional grid. We
call these graphs 2D40 and 2D60, following the notation given by Greiner. We di-
vide the underlying rectangular mesh into P square chunks, where P is the number
of processors.

14 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICK

2Dp 3Dp AD3

Iy

FicURE 9. Graph types. The left and middle graphs correspond
to real problems; p is the probability of presence for each edge on
the underlying grid. The right graph is artificial; each node selects
zero to three other nodes as neighbors.

D—N)

The second two graphs are built in the same fashion on a three dimensional
toroidal mesh. The boundary between fairly connected and fairly disconnected
graphs falls near 33% in the three dimensional case, so our measurements use edge
presence probabilities of 20% and 40%. We call these graphs 3D20 and 3D40. The
underlying mesh again provides the best method of partitioning the graph among
Processors.

The last type of graph, AD3, is a randomly generated graph of average degree
three. Each node randomly selects zero to three other nodes as neighbors, resulting
in a graph with average degree three (although the degree of a particular node may
vary from zero to 3n + 3). The lack of an underlying coordinate space and the
nature of the generation method for AD3 lead to extremely poor locality.

5.2. Methodology. Except where noted, all measurements were averaged
over several runs of the algorithm using distinct random seeds. Variation in execu-
tion time between multiple runs arises from three sources. In decreasing order of
significance, these sources are the random nature of the graph, the non-deterministic
behavior of the algorithm, and irreproducible timing fluctuations on the CM-5.

An unforeseen side effect of our random number generation led to a graph
independent of the random seed on one processor, introducing some amount of
systematic error into our measurements. Although the error is practically irrelevant
for large numbers of processors, the advantage of averaging is nullified in the single
processor data. We blame this problem in several cases for bumps in our data,
where the runs with many processors found graphs from both the high and low end
of the execution time distribution, but the single processor runs found only a single
graph.

Table 3 shows variation in execution time for large samples of all graph types
running on 32 processors. Twenty seeds were chosen at random and fed into the
algorithm for each graph type. The table shows the size of the graphs, the average
time, and the standard deviation in seconds and as a percentage of the average. The
variations are larger for more strongly connected graphs and tend to rise around
the boundary regions between mostly connected and mostly disconnected graphs.

CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 15

Graph | Nodes Edges | Avg. Time (sec) | Std. Dev. (sec) | SD/Avg.
2D40 | 2,000,000 | 1,600,000 1.13 0.064 5.69%
2D60 | 2,000,000 | 2,400,000 1.63 0.12 7.59%
3D20 | 4,000,000 | 2,400,000 2.59 0.14 5.52%
3D40 | 4,000,000 | 4,800,000 4.83 0.97 20.1%
AD3 | 1,600,000 | 2,400,000 9.29 2.8 30.3%

TABLE 3. Variation in execution time. The random nature of the
graph proved to be the most significant factor in execution time

variance.
Size Nodes | Time (sec) | Per Node (usec)
18x18x18 | 5,832 0.1451 24.88
19x19x19 | 6,859 0.1711 24.95
20x20x20 | 8,000 0.1960 24.50
21x21x21 | 9,261 0.2319 25.04
22x22x22 | 10,648 0.2559 24.03
23x23x23 | 12,167 0.2900 23.83
24x24x24 | 13,824 0.3308 23.93

TABLE 4. Variation in execution time per node as a function of
graph size. Measurements of a 3D20 graph on a 32-processor CM-5
show only minor variations in cost per node, validating our scaling
of measurements.

The largest variation occurs in the AD3 graphs, where the variation in number of
references is amplified by the higher average cost of each reference.

In addition to averaging, some of the results are scaled linearly from graphs
close to the same size. As the graph creation section of the program allowed only for
square (cubic) sections on each processor for the 2D (3D) graphs, we were unable
to obtain graphs with exactly the same number of nodes when doubling the number
of processors. To justify our choice of linear scaling, we investigated the effect of
graph size on execution time for various graphs. Since the number of nodes in the
actual graphs measured are quite close to the desired number of nodes, we require
only that the effect be reasonably approximated by a line. The data in Table 4
show the results for 3D20 graphs. The cost does not vary by more than 5% over
the range shown, and demonstrates no clear trend.

6. Performance Measurements

In this section, we discuss our measurements of the optimized algorithm running
on a 32-processor CM-5 and on a 512-processor CM-5 (we were able to obtain only
one set of data on the latter). We first explore the efficiency of the parallel algorithm
by comparing execution times for graphs of fixed size running on a variable number
of processors. Next, we scale the graph size with the number of processors to
demonstrate scalability for large graphs. Finally, we look at two performance factors
in detail: convergence and load balance.

16 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICK

35 T T T T T T T
Linear
30 B
25 -
_ . 2D60
2 20 2D40]
0
& 15 3020 A
10 __-- 3D40 |
5 -
AD3
0 S |
0 5 10 15 20 25 30 35 40
Processors
F1GURE 10. Speedup a problem size of 256K nodes.
1 T T T T T T
0.9 -
08 | e .
0.7 _, .\\.\ \\\\‘\\\\ 2D60
g 06 Che T T SRR S 2D40 7
:8 05 o T if.\,::;,\(._ ,,,,,,,,,,,,,,,,,]
£ o4l : 3D20 |
' ~~ 3D40
03 F! -
02 I~ l\» -
01} —
e AD3
0 | | I 1 B 1- - |
0 5 10 15 20 25 30 35 40
Processors

FicUrke 11. Efficiency for a problem size of 256K nodes.

6.1. Speedup. Speedup of the parallel version is measured by comparing to
a sequential implementation that contains only step la of the algorithm. Although
the algorithm requires no communication on a single processor, it takes a significant
amount of time that is not relevant to the sequential execution time of the program.

Figure 10 shows the speedup for a fixed problem size (262,144 nodes) on between
1 and 32 processors of a CM-5. Ignoring AD3 for the moment, the speedups are
roughly linear after discounting the overhead in moving from one processor to two.
The exception is 3D40, for which the chunk owned by each processor has become
small enough that the fraction of remote edges rises significantly and limits the
speedup. AD3 never regains a speedup of 1, because the nonlocal structure of the

CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 17

250 T T T T T T
2D40

200 -

150 - -

Speedup

100 -

0 | | | | | |
0 100 200 300 400 500 600
Processors

F1GURE 12. Speedup for a 2D40 graph up to 512 processors. The
problem size is 256K nodes between 1 and 32 and 8M nodes be-
tween 32 and 512.

graph leads to unavoidable communication. Figure 11 shows the efficiency for the
same data set. Again, we see that 2D40, 2D60, and 3D20 fall rapidly to a fairly
level plateau, indicating good scalability on these problems.

Figure 12 extends the speedup for 2D40 graphs on machine sizes up to 512
processors using an 8 million node graph. Because this graph does not fit on a
small number of processors, the speedups from 1 to 32 are computed using the
smaller, 256 thousand node, graph and setting the speedup for 8 million nodes on
32 processors equal to the speedup for 256 thousand nodes on 32 processors.®

A second definition of speedup, scaled speedup, uses a problem size proportional
to the number of processors. In Figure 13, we see the results for the graphs using
this definition and varying numbers of nodes per processor (dependent upon graph
type). They follow the same pattern as did the previous set, with slightly better
values. Finally, in Figure 14, we see the scaled efficiency for the algorithm on all
graph types. The plateaus in this case are flatter because the fraction of remote
edges remains roughly constant across the graph, except between 1 and 2 processors.

6.2. Convergence and load imbalance. Most runs of the algorithm con-
verged in about 2 or 3 iterations for the 2D and 3D graphs. AD3 graphs took a
few more iterations, averaging about 3 or 4. In Figure 15, we see the number of
remote edges remaining after each iteration normalized by the number of remote
edges existing immediately after the local phase (iteration 0). The rate at which
edges are removed depends on the degree of graph connectivity: the mostly uncon-
nected graphs, 2D40 and 3D20, lose over 95% of their edges in the first iteration;
the mostly connected graphs, 2D60 and 3D40, lose between 756% and 90% of their
edges in the first iteration; and the most strongly connected graph, AD3, loses just

6Note that this method underestimates the speedup on large graphs—the larger chunks have
relatively fewer remote edges and should therefore have better speedup than the smaller chunks.

18 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICK

35 T T T T T T T
Linear
30 .
25 .
Q.
= .- 2D60
o 20 . 2D40 A
o L
@ - 3D20
o) 15 2 B
S o 3D40
®
10 .
5 -
AD3
0 |

0 5 10 15 20 25 30 35 40
Processors

FicURE 13. Scaled speedup. The problem size per processor is
fixed: 62,500 nodes for 2D40 and 2D60, 125,000 for 3D20 and
3D40, and 50,000 for AD3.

1
0.9
0.8
0.7
0.6
0.5
04
03
0.2 |\ -

0.1 Y]
- AD|3

Efficiency

0)] e == == =

0 5 10 15 20 25 30 35 40
Processors

F1GURE 14. Scaled efficiency. The problem size per processor is
fixed: 62,500 nodes for 2D40 and 2D60, 125,000 for 3D20 and
3D40, and 50,000 for AD3.

over half of its edges in the first iteration, retaining nearly 40% after the second as
well.

For all but AD3, the number of components after completion of the local phase
is within 10% of the final number, and decreases rapidly in the first two iterations.
For AD3 (with 1,600,000 nodes), the data appears in Table 5.

One of the biggest problems with most graph algorithms on distributed memory
machines lies in managing to partition the graph across processors in such a way

CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 19
100 X T T T T T T T
\\\ 2D40 —
2D60
80 | B\ 3D20 -----
‘-\Q\ ’\\ 3D40
= "{\\ \ AD3 ----
£ A
@ 60 |\
IS 5\ \'\v
(&) A \
x AR
o 40 | A
(&) A\ \
B \ \ \,
o l'u:\\\ \‘\
20 |+
~ _\
N \
0 [S RN 1 | 1
0 0.5 1 1.5 2 2.5 3 35

FIGURE 15. Percentage of remote edges remaining after each it-
eration. 100% corresponds to the state at the completion of the

local phase.

Iteration

Iteration | Components | Percent of Final Value
0 1,525,032 1602%
1 252,240 265%
2 100,671 106%
3 95,191 100%
4 95,190 100%

TABLE 5. Number of components remaining. For an AD3 graph
with 1.6 million nodes, the table lists the number of components
remaining after each iteration of the global phase.

that each processor has an approximately equal amount of work at each stage. For
the 2D and 3D graphs, the natural partitioning provided by the underlying mesh
performs quite well, keeping the variance across processors small except during the
very last iteration (for which the time spent is much smaller anyway).

For AD3 graphs, however, there is no underlying topology, but the random
nature of the graph helps to create a fair load balance. Unfortunately, the methods
used for hooking in this algorithm tend to cause load imbalance fairly early in the
AD3 processing, with a factors as high as 2.25 between some processors and the
average arising while a significant fraction of edges and components remain. We
plan to further optimize the solution of this type of graph as time permits.

7. Comparison with Earlier Work

Though a lot of research has been done in proposing theoretically optimal
algorithms for finding connected components of a graph, not much work has been
done in implementing these algorithms efficiently on parallel machines. Greiner [7]
implemented the connected components algorithm on the Cray C-90 and on the

20 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICK

Connection Machine 2. However, the C-90 is a shared bus multiprocessor system,
and the CM-2 is a SIMD machine. These machines are easier to program than
distributed memory machines, which are however more scalable. Therefore, our
work on implementing the connected components algorithm on the CM-5 exposes
a new set of concerns and optimizations that were non-issues on the C-90 and the
CM-2. By introducing the optimizations described in Section 4, we have created a
highly efficient implementation of the connected components algorithm. For some
of the graphs that we studied (e.g., the 2D40 graphs), the execution time of our
implementation is comparable to the results obtained by Greiner on the C-90. This
is highly encouraging considering that our results were obtained on a 32-processor
CM-5 without vector units, which is a much cheaper machine.

Another piece of related work is the implementation of the parallel clustering
algorithm by Flanigan and Tamayo [5] on a CM-5 using CMMD, which is a message
passing library provided by Thinking Machines Corporation. As mentioned earlier,
the clustering algorithm requires a connected components labeling on a 2D mesh.
Their implementation achieves a peak performance of finding connected components
for about 12M nodes in a second on a 256-processor CM-5, a result comparable to
our own. However, their implementation is optimized to labeling a 2D graph, which
allows a compact representation of the edge list. As a result, they are able to greatly
reduce the storage requirements for their algorithm. Bader and J4ja [3] adopt a
similar strategy for identifying components of 2D images such that each component
1s a maximal collection of adjacent pixels with the same intensity. Our algorithm is
more general-purpose since the input graph can have arbitrary connectivity, and we
still obtain similar performance results. Also, our implementation is more portable
than Flanigan and Tamayo’s implementation since Split-C runs on a variety of
parallel machines including the Paragon, the IBM SP-1 and SP-2, the Cray T3D,
the Meiko CS-2, and a network of workstations. In fact, we were able to run our
connected components program on a network of workstations without any change.

8. Conclusions

We have implemented the connected components algorithms on a distributed
memory machine. We used a hybrid algorithm that combines the important as-
pects of the sequential and the PRAM algorithms. By using the Split-C language,
which exposes the underlying machine to the programmer, we were able to enhance
the performance of our implementation by treating local and global subgraphs sep-
arately, by paying attention to locality, and by tolerating remote memory access
latencies. The resulting implementation is very efficient and obtains speedups on
the order of 20 on a 32-processor CM-5 and 238 on a 256-processor CM-5. In related
work [9], we demonstrate that our algorithm is the fastest in the world.

References

[1] R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. Steinberg, K. Yelick, “Empirical Evaluation
of the Cray T3D: A Compiler Perspective,” Proceedings of the International Symposium on
Computer Architecture, 1995.

[2] B. Awerbuch, Y. Shiloach, “New connectivity and MSF algorithms for Ultracomputer and
PRAM,” International Conference on Parallel Processing, 1983, pp. 175-179.

[3] D. Bader and J. J4ja, “Parallel Algorithms for Image Histogramming and Connected Com-
ponents with an Experimental Study,” Journal of Parallel and Distributed Computing, June
1996.

CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 21

[4] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken,
K. Yelick, “Parallel Programming in Split-C,” Proceedings of Supercomputing 93, Portland,
Oregon, November 1993, pp. 262-273.

[5] M. Flanigan, P. Tamayo, “A Parallel Cluster Labelling Method for Monte Carlo Dynamics,”
International Journal of Modern Physics C, Vol. 3, No. 6, 1992, 1235-1249.

[6] H. Gazit, “An Optimal Randomized Parallel Algorithm for Finding Connected Components
in a Graph,” STAM Journal of Computing 20(6), December 1991.

[7] J. Greiner, “A Comparison of Parallel Algorithms for Connected Components,” to appear in
the Symposium on Parallel Algorithms and Architectures 1994.

[8] L. T. Liu, D. E. Culler, “Evaluation of the Intel Paragon on Active Message Communication,”
Proceedings of the Intel Supercomputer Users Group Conference, 1995.

[9] S.S. Lumetta, A. Krishnamurthy, D. E. Culler, “Towards Modeling the Performance of a Fast
Connected Components Algorithm on Parallel Machines,” Proceedings of Supercomputing 95,
San Diego, California, December 1995, available at
http:/ /www.supercomp.org.sc95 /proceedings/465_SLUM/SC95. HT M.

[10] S. Luna, “Implementing an Efficient Portable Global Memory Layer on Distributed Memory
Multiprocessors,” U. C. Berkeley Technical Report #CSD-94-810, May 1994.

[11] K. E. Schauser, C. J. Scheiman, “Experience with Active Messages on the Meiko CS-2,”
Proceedings of the International Parallel Processing Symposium, 1995.

[12] Y. Shiloach, U. Vishkin, “An O(log n) Parallel Connectivity Algorithm,” Journal of Algo-
rithms, No. 3, 1982, pp. 57-67.

[13] J. S. Wang, R. H. Swendsen, “Cluster Monte Carlo Algorithms,” Physica A, No. 167, 1990,
pp. 565-579.

COMPUTER SCIENCE DIVISION, UNIVERSITY OF CALIFORNIA AT BERKELEY, BERKELEY, CALI-
FORNIA 94720
E-mail address: {arvindk,stevel,culler,yelick}@CS.Berkeley.EDU

