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2 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICKo�-the-shelf processors loosely coupled via a fast network (e.g., TMC CM-5, MeikoCS-2, Cray T3D, Intel Paragon, IBM SP-1). In this paper, we demonstrate the pro-cess of adapting a PRAM algorithm to execute e�ciently on a distributed memorymachine. We start with the PRAM algorithm for �nding the connected componentsof a graph, and, through a gradual process of re�nement, we develop an e�cienthybrid parallel algorithm.Labeling the connected components of a graph has a wide range of uses, in-cluding applications in computer vision and condensed matter physics. Groupingadjacent pixels of similar intensity to identify edges and planes, for example, helpsto analyze images for object recognition. By creating a graph in which adjacentpixels of equal intensity are connected and then �nding the connected componentsof the graph, we �nd the homogeneous regions of the image. Connected componentlabeling is used in Physics to implement clustering in Monte Carlo algorithms suchas that of Swendsen and Wang [13], which simulates physical systems near criticaltemperatures by repeatedly grouping particles into clusters (connected components)and choosing a new state for each cluster.The graphs used for these applications have underlying grid topologies in eithertwo or three dimensions. Because of the underlying topology, the graphs decomposeeasily into smaller fragments with only a small fraction of edges crossing betweenfragments, allowing much of the work in �nding connected components to be per-formed locally. For our results, we use the graphs typical of Physics problems.These graphs are generated randomly, using a �xed probability for the presenceof each edge from an underlying lattice graph. For problems in vision and imagerecognition, the presence of an edge from the underlying grid is not independent ofthe presence of other edges.Although we are primarily interested in graphs from actual problems, we alsoconsider an arti�cial graph type. The graph, denoted AD3 for \average degreethree," is generated by having each node pick zero to three other random nodes asneighbors. AD3 is a variant of the Tertiary graph used by Greiner [7] for bench-marking connected components algorithms.1 Graphs corresponding to physicalsystems usually exhibit locality in their structure. However, the AD3 graph ex-hibits almost no locality, and could therefore be viewed as an extreme input to ouralgorithm.Previous parallel implementations of connected components algorithms have fo-cused primarily on shared-memory machines [7]. For distributed memorymachines,a straightforward implementation of a PRAM algorithm is generally of little use be-cause of the high cost of remote accesses and the frequency of such accesses in mostPRAM algorithms. A more sophisticated approach employs a PRAM algorithmin conjunction with a standard sequential algorithm, using the latter to manageoperations local to each processor and the former to manage the interaction be-tween processors. This hybrid approach is illustrated in Figure 1 for the connectedcomponents problem. The two algorithms are merged, then the result is optimized.In this paper, we present a hybrid algorithm for �nding the connected compo-nents of a graph on a distributed memorymachine. We implemented and optimizedthe algorithm on a CM-5 using the Split-C language developed at Berkeley [4].1Each node in an instance of Greiner's Tertiary graph randomly selects three other nodes asneighbors, resulting in an average degree of six and a graph that has only one connected componentwith high probability.
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Figure 1. Hybrid algorithm strategy. We combine a PRAM algo-rithm with a sequential algorithm and optimize the result to createan e�cient algorithm for distributed memory machines.We discuss the PRAM algorithm in Section 2 and give details of the �rst hybridimplementation in Section 3. In Section 4, we describe the sequence of optimizationsthrough which we developed the �nal version of our algorithm. Section 5 discussesthe graphs used and our methodology for measuring performance. In Section 6, wepresent our results.2 Section 7 compares the results with other implementations ofthe algorithm, and Section 8 concludes.2. The PRAM AlgorithmSequential solutions for identifying the connected components of a graph aregenerally based on variants of depth-�rst search, breadth-�rst search, or union-�nd. The solutions have running times linear in the number of edges and verticesin the graph and are easy to implement. Many e�cient parallel solutions [2, 6, 12]have been devised, but these solutions are often complex and di�cult to implement.Our implementation is a hybrid of a sequential search on the subgraph local to eachprocessor and a variant of the Shiloach-Vishkin PRAM algorithm [12] on the globalcollection of subgraphs. In this section, we brie
y describe the key components ofthe PRAM algorithm.In the following discussion, we denote the vertex set of the input graph by V andthe edge set by E. Each vertex has an associated V alue attribute that is a uniquenumber at the beginning of the algorithm. When the computation terminates, allvertices within the same connected component share the same value. We use thenotation (u; v) to denote an edge between the vertices u and v.Given a graph with n vertices and m edges, the Shiloach-Vishkin algorithmrequires O(log n) parallel steps and a total of O(m log n) work. The algorithmrepeatedly groups vertices that have edges between them using two basic operations:pointer doubling and hooking. The algorithmmaintains a forest of trees, and makesprogress either by decreasing the number of trees in the forest or by decreasing theheight of the trees. The algorithm terminates when no two trees in the forest sharean edge and all trees in the forest are of height one.2A separate paper [9] presents more detailed results for the algorithm on several di�erentplatforms and demonstrates the best connected components performance seen to date.
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graph edgeFigure 3. Hooking operation. A graph edge between two treesin the forest is replaced with a parent link, merging the two treesinto a single tree.The pointer doubling operation replaces the parent of each vertex with the ver-tex' grandparent, as shown in Figure 2. This operation decreases the distance fromthe root of the tree to the leaves, and terminates when the tree becomes a star,which is a tree of height 1. During the pointer doubling operation, the algorithmalso propagates the value of the new parent to the child. By making the parent ofthe root of a tree the root itself, we simplify the operation to the form:Parent(v)  Parent(Parent(v))Value(v)  Value(Parent(v))The hooking operation hooks a star in the forest to another tree in the forestif the star contains a vertex adjacent to a vertex in the target tree, as shown inFigure 3. The operation comes in two 
avors: conditional and unconditional. Aconditional hooking operation is permitted only when the V alue attribute of the�rst vertex3 is less than that of the adjacent vertex. An unconditional hookingoperation links the two trees irrespective of their values.In order to guarantee termination, the algorithm must ensure that the par-ent relationship remains acyclic. The conditional hooking operation prevents the3Note that the V alue of every vertex in a star is the same, as the V alue propagates fromparent to child during pointer doubling.



CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 5formation of cycles by requiring that the V alue attribute monotonically increasesfrom the leaves to the root of a tree. The same is not true of the unconditionalhooking operation, however. The algorithm prevents the creation of cycles by �rstapplying the conditional hooking operation, and then applying the unconditionalhooking operation only to those stars that were not hooked in the conditional hook-ing phase. This scheme prevents two stars from linking to one another since at leastone of the stars has had an opportunity to link to the other star during the condi-tional hooking phase. Unconditional hooking is necessary to obtain log(n) boundon the running time, but is not necessary for correctness [12].The algorithm follows:1. For each vertex u, setParent(u)  u2. Repeat until no change occurs in an iteration:a. For each vertex u such that u is part of a star, pick v such that(u; v) 2 E and V alue(u) < V alue(v) and setParent(Parent(u)) v.b. For each vertex u such that u is part of a star that neither hooked toanother vertex nor had another vertex hooked to it, pick v such that(u; v) 2 E and setParent(Parent(u)) v.c. For each vertex u, setParent(u) Parent(Parent(u)) andV alue(u) V alue(Parent(u))Given one processor for each vertex and each edge in the graph, the loop re-quires O(log n) iterations to terminate. The vertex processors perform duringsteps 1 and 2c, while the edge processors perform during steps 2a and 2b. Theprocessors execute in a lock-step manner and must be able to read and write asingle memory location concurrently for each step to execute in unit time. Steps 2aand 2b, for example, require the concurrent write ability, since multiple children of avertex may attempt to change the parent. Note, however, that the algorithmmakesno assumptions about the policy for disambiguating writes to the same location.3. ImplementationIn this section, we describe our initial implementation of the connected com-ponents algorithm. We start with a hybrid algorithm, which composes the localsequential breadth-�rst search with a global PRAM-based algorithm. Althoughthis implementation proved to be ine�cient, the description introduces the generalstyle of the program and facilitates understanding of the optimizations discussedlater.The natural implementation of many algorithms on distributed memory ma-chines involves a combination of local and global phases. During the local phases,the algorithm deals only with data that reside in the processor's local memory. Inthe global phases, the algorithm must address the issues of e�cient remote dataaccess and synchronization between processors. The global phases are hence moredi�cult to program.Fortunately, we can make use of the Split-C language [4] to simplify the task.Split-C provides the abstraction of a global address space on a distributed memory
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2 3 2Figure 4. Local phase. In this phase, the algorithm processes alllocal edges to �nd local connected components, then passes thereduced graph into the global phase.machine.4 Any processor can access any location in the global address space usingglobal pointers, and each processor owns a speci�c region of the global space, itslocal region. A global pointer is used just like a local pointer, but can reference theentire global address space, while standard pointers reference only the portion localto the accessing processor. The notion of a global pointer allows us to represent agraph whose vertices are spread across processors and whose edges are representedusing global pointers. Another useful aspect of global pointers is the ability to de-termine the processor that owns the object pointed to by a global pointer withoutactually dereferencing the pointer. In our implementation, we use this ability inthe local phase to explore only those edges that point to local vertices. The distinc-tion between local and global objects provides a clear cost model for introducingoptimizations that we examine later.Having brie
y discussed the language used to code our implementation, we nowintroduce the algorithm:1. Local Phase. Perform purely local computations to decrease the size ofthe graph processed during the global phase. Figure 4 illustrates the e�ectof the local phase.a. Search Step. On each processor, �nd local connected componentsamong local nodes and edges using Breadth First Search (BFS). Ignoreremote edges.b. Star Formation Step. Assign a unique value to each node. Choosea representative node for each local connected component. Move allremote edges from nodes in the component to the representative andcollapse the component into a star. The representative node becomesthe root of the star, and the value of the representative node becomesthe value of the star.2. Global Phase. Beginning with a list of components on each processor,all of which are stars and are marked with unique values, apply a modi�edShiloach-Vishkin algorithm. Iterate over the following steps until done:4Implementations of the language exist on a variety of machines including the IBM SP-2, theIntel Paragon, the Cray T3D, and the Meiko CS-2 [1, 8, 10, 11].



CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 7
edge

remote

collapsed   edge

Processor 1 Processor 2

local nodes

representativeFigure 5. Collapsing remote edges. By collapsing remote edgesbefore entering the global phase, we reduce the amount of workrequired for each iteration of that phase.a. Termination Check. Move star components with no remaining remoteedges to a �nished component list. If all components on all processorsare �nished, quit.b. Conditional Hooking Step. Attach star components to other compo-nents if the value of the other component is larger. Remove newlyattached components from the component list.c. Pointer Doubling Step. Double parent pointers one or more times foreach node and update the node's value from the new parent.d. Star Marking Step. Determine whether each component is a star:�rst mark all components as stars, then mark the grandparent of eachnode as a non-star if it is distinct from the parent of the node.e. Edge-List Concatenation Step. For each node, pass remote edges tothe parent of the node.f. Self-Loop Removal Step. For each star, remove edges that point tonodes with the same value (nodes within the star).The initial implementation does not include an unconditional hooking phase.We introduce this phase and study its e�ect in the next section.4. OptimizationIn this section, we describe the sequence of optimizations that we used toimprove the performance of our implementation on distributed memory machines.On a CM-5, the optimized code runs roughly twenty times faster than does the basicversion described in the last section. The optimizations make use of three simpleconcepts in parallel optimization: reducing the amount of computation, reducingthe number of remote references, and balancing the workload between processors.4.1. Collapsing remote edges. The local phase leaves all local componentsin star form. We �rst consider the role of the leaf nodes of these stars, which we callthe local nodes. As the local nodes make up the bulk of the graph in most cases, wewant to eliminate any reference to them within the global phase. Although we havechosen representative nodes (which are the roots of the stars) during the local phaseof the algorithm and have moved one end of each edge to the representative nodes,the other end of each edge remains unchanged, and often refers to a local node. Toavoid creating a cycle in the graph, we must keep the unique component values forthe local nodes consistent in each iteration of the global phase. By extending the



8 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICKAvg. NodesGraph Nodes in Star2D40 10,000 4.22D60 10,000 273D20 8,000 2.33D40 8,000 14AD3 10,000 1.05Table 1. Average star size after the local phase. Graphs used inreal-world problems form large stars; arti�cial graphs might not.All measurements used a 32-processor CM-5, and the \Nodes" col-umn shows the number of graph nodes per processor.algorithm slightly, we remove edge references to the local nodes and greatly reducethe amount of work done in the global phase.The �rst extension involves collapsing the remote edges just before beginningthe �rst iteration of the global phase. For each remote edge, we replace the remotenode with the parent of the remote node, as shown in Figure 5. Since each localcomponent has the form of a star after the local phase, the parent of any node isthat node's representative. The extension adds the following step just after thelocal phase:51.c. Remote Edge Collapse Step. Replace each remote edge (u, v) with thecollapsed edge (u, Parent(v)).The local nodes can then be safely ignored during the global phase, and theircomponent values can become inconsistent without a�ecting the correctness of thealgorithm.The second extension involves updating the unique component values of thelocal nodes after the global phase completes, bringing them back into consistencywith the reduced graph. Since all representative nodes are updated in the globalphase, we need merely copy the component value of each local node from its parent,an operation requiring no remote references as the parent of a local node is alwayslocal. We add an update phase after the global phase:3. Update Phase. For each local node, update the value of the node fromthe value of its parent.How these two extensions a�ect the execution time of the algorithm dependsupon the balance between the computation and communication architectures andupon the structure of the graph. The �rst extension potentially adds an additionalremote reference for each remote edge, but allows us to forgo updating the valuesof local nodes during the global phase. We must eventually update these values atleast once, and do so in the second extension after the global phase completes. In agraph where the number of local nodes is small compared to the number of remoteedges, or on a machine on which the cost of a remote reference is large comparedto the cost of a cache miss, the changes described in this section can increase the5The new step accesses remote data and should technically not be a part of the local phase,but the numbering used indicates both the appropriate insertion point for the step and fact thatthe step is not part of the global phase iteration.
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structuresFigure 6. Postponing edge list concatenation. Race conditions inedge motion make e�cient design di�cult; waiting until the treehas collapsed into a star eliminates races and allows further opti-mization.execution time. In our case, however, they greatly reduced that time. Table 1shows the average star size for our graphs.4.2. Postponing edge list concatenation. The initial implementationmoved remote edges from leaf nodes to their parents after every pointer doubling,concatenating each leaf's list to that of its parent. Unless we are careful in de-signing the interactions for this step, races between the parent and children of anode make the code very unstable. To understand the problem, consider the treeshown in Figure 6. The edge list structures exist in the global address space, sothat accessing or modifying an edge might involve a remote access. In one correctsolution, each node maintains pointers to the �rst and last edge list structures inits list of edges. Before sending edges to its parent, a node saves copies of thesetwo pointers and zeroes the originals in an atomic fashion, protecting the edge listfrom corruption by incoming edges. The node then sends both the start and endpointers to its parent. When the parent node receives these pointers from a child,it replaces its own �rst edge with the child's �rst edge and, if the parent alreadyhad edges, modi�es the child's last edge to point to the parent's previous �rst edge.The latter operation requires a message to the processor on which the child's lastedge list structure resides, but since the parent is the only node that has a pointerto this edge list structure, no races exist.Unfortunately, the method outlined above requires too much information totake advantage of the short messages available on the CM-5, and using a slightlylonger message adds a signi�cant amount of overhead and complexity. The solutionwe chose is to delay the motion of edge lists. By postponing the edge list concatena-tion on a tree until pointer doubling has collapsed the tree into a star, we sidestepthe di�culties of designing a correct and e�cient method for this step. The costis moderate|the root of each tree must handle all of the link messages instead ofhandling one or more rounds from each immediate child (a very small cost whenthe height of the trees is small)|and the change allows us to take advantage of amore signi�cant optimization, as we discuss in the next section. We modify step 2eto a�ect only stars:2.e. Edge-List Concatenation Step. For all leaf nodes of star components, passremote edges to the star root.
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Processor 1 Processor 2Figure 7. Removing duplicate edges before concatenation. Push-ing duplicate edges to the root of a star forces the root to handlethe destruction of all duplicates. Eliminating the duplicates �rstimproves load balance.4.3. Removing duplicate edges before concatenation. After the localphase completes, many components are left with duplicate edges in their edge lists.The graph segment depicted in Figure 7, for example, gives rise to a set of fourduplicate edges in both local components. Detecting duplicate edges at this pointrequires sorting the edge lists and fails to catch duplicate edges created in the globalphase (when two local components are collapsed into a single component). For thisreason, the original algorithm checked for duplicate edges at the end of each globalphase iteration, when they appear as edges in a star that point to other nodeswithin the star.The problem with such an approach is that the root of the star must performall of the remote references needed to detect duplicate edges. The upper righthandsection of the �gure shows the two representative nodes and their edge list structuresafter one node has been hooked to the other (eliminating one edge). In this �gure,all of the edge list structures reside on the same processor as the associated node,and all of the edges point to remote nodes. The lower righthand section shows thenodes after edge list concatenation; in this case, three of the edge list structures areremote, and the complementary structures (the other four) point to remote nodes.In both cases, each edge list structure requires one remote access to determineits duplicate nature, but in the upper �gure, the cost of these accesses is sharedbetween two processors, while a single processor must perform all remote accessesin the lower �gure. By checking for duplicate edges before concatenating the edgelists, we create a better load balance between the processors. We swap the twosteps:2.e. Self-Loop Removal Step. For each star, remove edges that point to nodeswith the same value (nodes within the star).2.f. Edge-List Concatenation Step. For all leaf nodes of star components, passremote edges to the star root.Since the root of a star must perform a remote reference for each edge whenscanning the list for duplicates, the bene�ts of this optimization outweigh the smallcosts incurred by delaying concatenation in the earlier section, where the root of astar need make only one remote reference per edge list.



CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 11Graph Nodes Iteration Components Stagnant Percentage2D40 2,000,000 1 472,538 425 0.090%2D60 2,000,000 1 70,141 157 0.22%3D20 4,000,000 1 1,673,284 1,915 0.11%3D20 4,000,000 2 1,627,463 15 0.00092%3D40 4,000,000 1 251,734 823 0.33%3D40 4,000,000 2 228,101 2 0.00088%AD3 1,600,000 1 1,525,032 47,560 3.1%AD3 1,600,000 2 252,240 6,624 2.6%AD3 1,600,000 3 100,671 25 0.025%Table 2. Usefulness of unconditional hooking. The stagnant com-ponents make up a small fraction of the total, but lead to additionaliterations of the global phase. All measurements in the table weremade on a 32-processor CM-5.4.4. Unconditional hooking. Certain pathological graphs require uncondi-tional hooking to prevent the possibility of requiring one iteration per node to �ndconnected components. But the stagnation information needed for unconditionalhooking requires extra work and extra remote references, and the unconditionalhooking phase itself adds still more overhead. As we are not concerned with thesepathological cases, we chose not to implement unconditional hooking in our initialimplementation.We found, however, that unconditional hooking serves a practical purpose,as demonstrated by the data in Table 2. For each graph type, the table showsthe number of components left stagnant during each iteration of the global phase.Although the stagnant fraction is generally small, the number is large enough toincrease the number of iterations required in the global phase. Adding unconditionalhooking results in fewer iterations, and the time gained by eliminating iterationsoutweighs the overhead costs.We modify the conditional hooking step and add the new step as follows:2.b.1) Conditional Hooking Step. Mark all stars as stagnant. Attach starcomponents to other components if the value of the other componentis larger. Remove each newly attached component from the componentlist and remove the stagnant marker from the component to which itattached.2.b.2) Unconditional Hooking Step. Attach stagnant star components to othercomponents. Remove each newly attached component from the compo-nent list.4.5. Asynchronous pointer doubling. The standard approach to pointerdoubling, as shown in Figure 8, requires that each processor iterate over its localset of nodes and double the parent link for each vertex (replace the parent withthe grandparent). The processors then synchronize and repeat the doubling pro-cedure some number of times. The synchronization guarantees that each doublingdecreases the height of all trees by a factor of two.An alternative approach reverses the loop structure and eliminates the syn-chronization; each processor iterates over vertices and replaces the parent of each
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the tree is a starFigure 8. Asynchronous pointer doubling. Synchronized pointerdoubling guarantees fully collapsed trees in time logarithmic in theheight of the trees. Asynchronous doubling o�ers no such guaran-tee, but requires much less overhead.vertex with the node found by following the parent link some number of times.This second approach has much less overhead than the �rst: not only does it lackmultiple synchronizations between processors, but it requires only one loop througha processor's vertices. However, the approach does not guarantee that the depth ofthe tree decreases exponentially.We implemented both schemes and compared the results. Surprisingly, execu-tion times were very close. The extra overhead of synchronization and multiple listtraversals compensated for the bene�ts of guaranteed exponential decrease. Keep inmind, however, that barrier synchronization is relatively inexpensive on the CM-5.On machines with more heavyweight barriers, asynchronous pointer doubling ismore bene�cial.4.6. Maximal pointer doubling. The last optimization we discuss involvestuning the number of doublings performed in each pointer doubling phase. Westudied the e�ect of the number on execution time and found the the optimalnumber varied from three to seven, depending on the structure of the graph. Wenext tried maximal pointer doubling, in which pointer doubling continues untilevery tree is reduced to a star. Although execution times were slightly worse,maximal pointer doubling enabled numerous other optimizations. Since every treeentering an iteration of the global phase was a star, we removed the star-markingphase entirely and eliminated all conditionals that checked a tree's star property.The resulting program ran faster than the one that performs an optimal numberof pointer doublings. The algorithm outlined below re
ects the numerous minorchanges made with maximal pointer doubling.4.7. Final Algorithm. The optimized algorithm follows:1. Local Phase. Perform purely local computations to decrease the size ofthe graph processed during the global phase.a. Search Step. Each processor �nds local connected components amongits nodes using Breadth First Search (BFS). The search ignores remoteedges.b. Star Formation Step. Assign a unique value to each node. Choosea representative node for each local connected component. Move allremote edges from nodes in the component to the representative and



CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 13collapse the component into a star. The representative node becomesthe root of the star, and the value of the representative node becomesthe value of the star. Make a list of star roots for each processor.c. Remote Edge Collapse Step. Replace each remote edge (u, v) withthe collapsed edge (u, Parent(v)).2. Global Phase. Beginning with a list of components on each processor,all of which are stars and are marked with unique values, apply a modi�edShiloach-Vishkin algorithm. During this phase, ignore any nodes not on thelocal star root list. Iterate over the following steps until done:a. Termination Check. Move components with no remaining remoteedges to a �nished component list. If no components need still beprocessed on any processor, quit.b. Hooking Steps. Merge components into larger components.1) Conditional Hooking Step. Mark all components as stagnant.Attach components to other components if the value of the othercomponent is larger. Remove each newly attached componentfrom the component list and remove the stagnant marker fromthe component to which it attached.2) Unconditional Hooking Step. Attach stagnant components toother components. Remove each newly attached componentfrom the component list.c. Pointer Doubling Step. Double parent pointers for each node untilthe parent and the grandparent are the same; that is, collapse allcomponents into stars. Update the node's value from the new parent.d. Self-Loop Removal Step. For each component, remove edges that pointto nodes with the same value (nodes within the component).e. Edge-List Concatenation Step. For all leaf nodes of components, passremote edges to the component root.3. Update Phase. For each node with a local parent, update the value of thenode from the value of its parent.5. Graphs and MethodologyWe begin this section with a description of the graphs used to measure theperformance of our optimized implementation. We then discuss our measurementmethodology.5.1. Graph construction. As our results depend fairly heavily upon thetypes of graphs studied, we �rst describe those graphs. We used �ve separate typesof graphs; four are drawn directly from the work of Greiner [7], and the �fth is amodi�ed form of another graph used in that work.The �rst two graphs are built on a two-dimensional toroidal mesh. Each edgein the mesh is present with some �xed probability, either 40% or 60% in our mea-surements. Since one expects a graph with average degree below two to be fairlydisconnected and a graph with average degree above two to be fairly connected,these two percentages outline the boundary region for the two dimensional grid. Wecall these graphs 2D40 and 2D60, following the notation given by Greiner. We di-vide the underlying rectangular mesh into P square chunks, where P is the numberof processors.



14 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICK
2Dp 3Dp AD3

Figure 9. Graph types. The left and middle graphs correspondto real problems; p is the probability of presence for each edge onthe underlying grid. The right graph is arti�cial; each node selectszero to three other nodes as neighbors.The second two graphs are built in the same fashion on a three dimensionaltoroidal mesh. The boundary between fairly connected and fairly disconnectedgraphs falls near 33% in the three dimensional case, so our measurements use edgepresence probabilities of 20% and 40%. We call these graphs 3D20 and 3D40. Theunderlying mesh again provides the best method of partitioning the graph amongprocessors.The last type of graph, AD3, is a randomly generated graph of average degreethree. Each node randomly selects zero to three other nodes as neighbors, resultingin a graph with average degree three (although the degree of a particular node mayvary from zero to 3n + 3). The lack of an underlying coordinate space and thenature of the generation method for AD3 lead to extremely poor locality.5.2. Methodology. Except where noted, all measurements were averagedover several runs of the algorithm using distinct random seeds. Variation in execu-tion time between multiple runs arises from three sources. In decreasing order ofsigni�cance, these sources are the random nature of the graph, the non-deterministicbehavior of the algorithm, and irreproducible timing 
uctuations on the CM-5.An unforeseen side e�ect of our random number generation led to a graphindependent of the random seed on one processor, introducing some amount ofsystematic error into our measurements. Although the error is practically irrelevantfor large numbers of processors, the advantage of averaging is nulli�ed in the singleprocessor data. We blame this problem in several cases for bumps in our data,where the runs with many processors found graphs from both the high and low endof the execution time distribution, but the single processor runs found only a singlegraph.Table 3 shows variation in execution time for large samples of all graph typesrunning on 32 processors. Twenty seeds were chosen at random and fed into thealgorithm for each graph type. The table shows the size of the graphs, the averagetime, and the standard deviation in seconds and as a percentage of the average. Thevariations are larger for more strongly connected graphs and tend to rise aroundthe boundary regions between mostly connected and mostly disconnected graphs.



CONNECTED COMPONENTS ON DISTRIBUTED MEMORY MACHINES 15Graph Nodes Edges Avg. Time (sec) Std. Dev. (sec) SD/Avg.2D40 2,000,000 1,600,000 1.13 0.064 5.69%2D60 2,000,000 2,400,000 1.63 0.12 7.59%3D20 4,000,000 2,400,000 2.59 0.14 5.52%3D40 4,000,000 4,800,000 4.83 0.97 20.1%AD3 1,600,000 2,400,000 9.29 2.8 30.3%Table 3. Variation in execution time. The random nature of thegraph proved to be the most signi�cant factor in execution timevariance. Size Nodes Time (sec) Per Node (usec)18x18x18 5,832 0.1451 24.8819x19x19 6,859 0.1711 24.9520x20x20 8,000 0.1960 24.5021x21x21 9,261 0.2319 25.0422x22x22 10,648 0.2559 24.0323x23x23 12,167 0.2900 23.8324x24x24 13,824 0.3308 23.93Table 4. Variation in execution time per node as a function ofgraph size. Measurements of a 3D20 graph on a 32-processor CM-5show only minor variations in cost per node, validating our scalingof measurements.The largest variation occurs in the AD3 graphs, where the variation in number ofreferences is ampli�ed by the higher average cost of each reference.In addition to averaging, some of the results are scaled linearly from graphsclose to the same size. As the graph creation section of the program allowed only forsquare (cubic) sections on each processor for the 2D (3D) graphs, we were unableto obtain graphs with exactly the same number of nodes when doubling the numberof processors. To justify our choice of linear scaling, we investigated the e�ect ofgraph size on execution time for various graphs. Since the number of nodes in theactual graphs measured are quite close to the desired number of nodes, we requireonly that the e�ect be reasonably approximated by a line. The data in Table 4show the results for 3D20 graphs. The cost does not vary by more than 5% overthe range shown, and demonstrates no clear trend.6. Performance MeasurementsIn this section, we discuss our measurements of the optimized algorithmrunningon a 32-processor CM-5 and on a 512-processor CM-5 (we were able to obtain onlyone set of data on the latter). We �rst explore the e�ciency of the parallel algorithmby comparing execution times for graphs of �xed size running on a variable numberof processors. Next, we scale the graph size with the number of processors todemonstrate scalability for large graphs. Finally, we look at two performance factorsin detail: convergence and load balance.
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AD3Figure 11. E�ciency for a problem size of 256K nodes.6.1. Speedup. Speedup of the parallel version is measured by comparing toa sequential implementation that contains only step 1a of the algorithm. Althoughthe algorithm requires no communication on a single processor, it takes a signi�cantamount of time that is not relevant to the sequential execution time of the program.Figure 10 shows the speedup for a �xed problem size (262,144 nodes) on between1 and 32 processors of a CM-5. Ignoring AD3 for the moment, the speedups areroughly linear after discounting the overhead in moving from one processor to two.The exception is 3D40, for which the chunk owned by each processor has becomesmall enough that the fraction of remote edges rises signi�cantly and limits thespeedup. AD3 never regains a speedup of 1, because the nonlocal structure of the
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atter because the fraction of remoteedges remains roughly constant across the graph, except between 1 and 2 processors.6.2. Convergence and load imbalance. Most runs of the algorithm con-verged in about 2 or 3 iterations for the 2D and 3D graphs. AD3 graphs took afew more iterations, averaging about 3 or 4. In Figure 15, we see the number ofremote edges remaining after each iteration normalized by the number of remoteedges existing immediately after the local phase (iteration 0). The rate at whichedges are removed depends on the degree of graph connectivity: the mostly uncon-nected graphs, 2D40 and 3D20, lose over 95% of their edges in the �rst iteration;the mostly connected graphs, 2D60 and 3D40, lose between 75% and 90% of theiredges in the �rst iteration; and the most strongly connected graph, AD3, loses just6Note that this method underestimates the speedup on large graphs|the larger chunks haverelatively fewer remote edges and should therefore have better speedup than the smaller chunks.
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AD3Figure 14. Scaled e�ciency. The problem size per processor is�xed: 62,500 nodes for 2D40 and 2D60, 125,000 for 3D20 and3D40, and 50,000 for AD3.over half of its edges in the �rst iteration, retaining nearly 40% after the second aswell.For all but AD3, the number of components after completion of the local phaseis within 10% of the �nal number, and decreases rapidly in the �rst two iterations.For AD3 (with 1,600,000 nodes), the data appears in Table 5.One of the biggest problems with most graph algorithms on distributed memorymachines lies in managing to partition the graph across processors in such a way
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Figure 15. Percentage of remote edges remaining after each it-eration. 100% corresponds to the state at the completion of thelocal phase.Iteration Components Percent of Final Value0 1,525,032 1602%1 252,240 265%2 100,671 106%3 95,191 100%4 95,190 100%Table 5. Number of components remaining. For an AD3 graphwith 1.6 million nodes, the table lists the number of componentsremaining after each iteration of the global phase.that each processor has an approximately equal amount of work at each stage. Forthe 2D and 3D graphs, the natural partitioning provided by the underlying meshperforms quite well, keeping the variance across processors small except during thevery last iteration (for which the time spent is much smaller anyway).For AD3 graphs, however, there is no underlying topology, but the randomnature of the graph helps to create a fair load balance. Unfortunately, the methodsused for hooking in this algorithm tend to cause load imbalance fairly early in theAD3 processing, with a factors as high as 2.25 between some processors and theaverage arising while a signi�cant fraction of edges and components remain. Weplan to further optimize the solution of this type of graph as time permits.7. Comparison with Earlier WorkThough a lot of research has been done in proposing theoretically optimalalgorithms for �nding connected components of a graph, not much work has beendone in implementing these algorithms e�ciently on parallel machines. Greiner [7]implemented the connected components algorithm on the Cray C-90 and on the



20 A. KRISHNAMURTHY, S. S. LUMETTA, D. E. CULLER, AND K. YELICKConnection Machine 2. However, the C-90 is a shared bus multiprocessor system,and the CM-2 is a SIMD machine. These machines are easier to program thandistributed memory machines, which are however more scalable. Therefore, ourwork on implementing the connected components algorithm on the CM-5 exposesa new set of concerns and optimizations that were non-issues on the C-90 and theCM-2. By introducing the optimizations described in Section 4, we have created ahighly e�cient implementation of the connected components algorithm. For someof the graphs that we studied (e.g., the 2D40 graphs), the execution time of ourimplementation is comparable to the results obtained by Greiner on the C-90. Thisis highly encouraging considering that our results were obtained on a 32-processorCM-5 without vector units, which is a much cheaper machine.Another piece of related work is the implementation of the parallel clusteringalgorithm by Flanigan and Tamayo [5] on a CM-5 using CMMD, which is a messagepassing library provided by Thinking Machines Corporation. As mentioned earlier,the clustering algorithm requires a connected components labeling on a 2D mesh.Their implementationachieves a peak performance of �nding connected componentsfor about 12M nodes in a second on a 256-processor CM-5, a result comparable toour own. However, their implementation is optimized to labeling a 2D graph, whichallows a compact representation of the edge list. As a result, they are able to greatlyreduce the storage requirements for their algorithm. Bader and J�aj�a [3] adopt asimilar strategy for identifying components of 2D images such that each componentis a maximal collection of adjacent pixels with the same intensity. Our algorithm ismore general-purpose since the input graph can have arbitrary connectivity, and westill obtain similar performance results. Also, our implementation is more portablethan Flanigan and Tamayo's implementation since Split-C runs on a variety ofparallel machines including the Paragon, the IBM SP-1 and SP-2, the Cray T3D,the Meiko CS-2, and a network of workstations. In fact, we were able to run ourconnected components program on a network of workstations without any change.8. ConclusionsWe have implemented the connected components algorithms on a distributedmemory machine. We used a hybrid algorithm that combines the important as-pects of the sequential and the PRAM algorithms. By using the Split-C language,which exposes the underlying machine to the programmer, we were able to enhancethe performance of our implementation by treating local and global subgraphs sep-arately, by paying attention to locality, and by tolerating remote memory accesslatencies. The resulting implementation is very e�cient and obtains speedups onthe order of 20 on a 32-processor CM-5 and 238 on a 256-processor CM-5. In relatedwork [9], we demonstrate that our algorithm is the fastest in the world.References[1] R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. Steinberg, K. Yelick, \Empirical Evaluationof the Cray T3D: A Compiler Perspective," Proceedings of the International Symposium onComputer Architecture, 1995.[2] B. Awerbuch, Y. Shiloach, \New connectivity and MSF algorithms for Ultracomputer andPRAM," International Conference on Parallel Processing, 1983, pp. 175-179.[3] D. Bader and J. J�aj�a, \Parallel Algorithms for Image Histogramming and Connected Com-ponents with an Experimental Study," Journal of Parallel and Distributed Computing, June1996.
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