Concurrency Analysis for Parallel Programs With Textual Barriers

Amir Kamil

Katherine Yelick

Computer Science Division, University of California, Berkeley
{kamil,yelick} @cs.berkeley.edu

July 17, 2005

1 Introduction

As the limits of uniprocessor machines are being approached,
application writers and system vendors alike have been turn-
ing to multiprocessor machines for performance. The major
CPU manufacturers all have recently or will shortly introduce
chips with multiple cores. Such systems, along with tradi-
tional multiprocessor machines, allow all processors to si-
multaneously access shared memory. In addition, partitioned
global address space languages give programmers the illusion
of a shared memory machine on top of distributed memory
machines and cluster. Analysis and optimization of parallel
shared memory code is therefore increasingly important.

In this paper we introduce an interprocedural concurrency
analysis for programs with barrier synchronization. The anal-
ysis determines which program statements may execute con-
currently, which can in turn be used for other analyses and
optimizations. The analysis is done by constructing an con-
currency graph, which conservatively represents the concur-
rency properties of the program: two statements may exe-
cute concurrently only if one is reachable from the other in
the graph. The analysis takes advantage of two feature of
the Titanium language parallel execution model: structural
correctness, which statically guarantees that all threads reach
the same textual instance of barriers, and single variables,
which are variables that provably have the same value on all
threads [?]. The analysis is first presented in a simplified form
which proves to be too conservative in practice. The full anal-
ysis, which we call feasbible concurrent access analysis, per-
forms a conntext-free language analysis on the concurrency
graph and proves to be quite effective. We prove the correct-
ness of both analyses and show that the total running time is
O(kn+mn), where k

We combine our concurrency analysis with a thread-aware
alias analysis to demonstrate its use in two client problems.
The first is data race analysis, which can be used to report
potential program errors to application programmers. The
second is memory consistency model enforcement, which can
be used to provide a stronger and more intuitive memory

model while still allowing the compiler and hardware to re-
order memory operations in many instances.

The memory consistency model in a language determines in
what order the memory updates on one processor appear to the
other processors. Hardware features such as write buffers, dy-
namic instruction reordering, and prefetching, as well as code
reordering performed by a compiler can all affect the mem-
ory consistency model. The memory consistency model can
be specified at the level of a programming language, which
is crucial for languages that can be used on a wide variety of
hardware. Language designers have traditionally been very
reluctant to use the simplest model, sequential consistency, in
which memory operations appear to occur in the order spec-
ified in the original program. This reluctance is due to a
perception that such a model incurs prohibitive performance
penalties, since it prevents reordering of operations and re-
quires memory fences to be inserted in order to force the un-
derlying hardware to respect ordering. Language designers
instead have used complicated models [?, ?] that aren’t well-
understood by programmers, or worse, ill-defined [?]. This is
very problematic for programmers, since many common tech-
niques such as spin-locks and presence bits depend on the de-
tails of the memory consistency model in order to function
correctly.

Various techniques have been proposed in order to decrease
the cost of sequential consistency. In this paper, we present
an interprocedural concurrency analysis for the Titanium pro-
gramming language that can increase the precision of one
such technique, cycle detection. We present both a basic al-
gorithm and a modified one that only considers program ex-
ecution paths that can occur in practice and prove that both
algorithms are correct. We then apply these algorithms to a
set of benchmarks, showing that they are effective in reducing
the number of fences required to enforce sequential consis-
tency in most of the benchmarks.

2 Motivation

Concurrency information is useful for many program analyses
and optimizations. We focus on two clients that stand to ben-
efit from this information: static race detection and enforcing
sequential consistency.

2.1 Static Race Detection

In parallel programs, a data race occurs when multiple
threads access the same memory location, at least one of the
accesses is a write, and the accesses can occur concurrently
[?]. Data races often correspond to programming errors and
potentially result in non-deterministic runtime behavior. Con-
currency analysis can be used to statically detect races at
compile-time [?, ?], particularly when combined with alias
analysis [?].

2.2 Sequential Consistency

For a sequential program, compiler and hardware transforma-
tions must not violate data dependencies: the order of all pairs
of conflicting accesses must be preserved. Two memory ac-
cesses conflict if they access the same memory location and at
least one of them is a write. The execution model for parallel
programs is more complicated, since each thread executes its
own portion of the program asynchronously and there is no
predetermined ordering among accesses issued by different
threads to shared memory locations. A memory consistency
model defines the memory semantics and restricts the possi-
ble execution order of memory operations.

Among the various models, sequential consistency [?] is
the most intuitive for the programmer. The sequential con-
sistency model states that a parallel execution must behave
as if it were an interleaving of the serial executions by indi-
vidual threads, with each individual execution sequence pre-
serving the program order [?]. For example, for the accesses
{z,y,a,b} in figure 1, the behavior in which b reads the value
1 and y reads the value O is not sequentially consistent, since
it does not reflect an interleaving in which the order of the
individual execution sequences is preserved.

In order to enforce sequential consistency, memory barriers
must be inserted to prevent reordering of memory operations
by the compiler or architecture. Memory barriers prevent op-
timizations such as prefetching and code motion, resulting in
an unacceptable performance penalty [?]. The cycle detec-
tion algorithm computes the minimal set of memory barriers
needed to enforce sequential consistency [?, ?]. Cycle detec-
tion can benefit from concurrency information, since it can ig-
nore pairs of memory operations that cannot run concurrently
[2,?].

3 Titanium Background

Titanium is a dialect of Java, but does not use the Java Virtual
Machine model. Instead, the end target is assembly code. For
portability, Titanium is first translated into C and then com-
piled into an executable. In addition to generating C code
to run on each processor, the compiler generates calls to a
runtime layer based on GASNet [?], a lightweight communi-
cation layer that exploits hardware support for direct remote
reads and writes when possible. Titanium runs on a wide
range of platforms including uniprocessors, shared memory
machines, distributed-memory clusters of uniprocessors or
SMPs (CLUMPS), and a number of specific supercomputer
architectures (Cray X1, Cray T3E, SGI Altix, IBM SP, Origin
2000, and NEC SX6). Instead of having dynamically created
threads as in Java, Titanium is a single program, multiple data
(SPMD) language, so all threads execute the same code im-
age.

3.1 Textual Barriers

Like many SPMD languages, Titanium has a barrier construct
that forces threads to wait at the barrier until all threads have
reached it. Aiken and Gay introduced the concept of struc-
tural correctness to enforce that all threads execute the same
number of barriers, and developed a static analysis that deter-
mines whether or not a program is structurally correct [?, ?].
Titanium provides a stronger guarantee of correctness, that all
threads execute the same textual sequence of barriers. Thus
the following code is erroneous:

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads
else

Ti.barrier(); // odd ID threads

The fact that Titanium barriers are textual is central to our con-
currency analysis: not only does it guarantee that code before
and after each barrier cannot run concurrently, it also guar-
antees that code immediately following two different barriers
cannot execute simultaneously.

In order to enforce that a program correctly use textual bar-
riers, Titanium makes use of single-valued expressions [?].
Such expressions evaluate to the same value for all threads,
and a combination of programmer annotation and compiler
inference is used to statically determine which expressions
are single-valued. A conditional may only contain a bar-
rier, or a call to a method with a barrier, if it is guarded
by a single-valued expression: the above code is erroneous
since Ti.thisProc() % 2 0 is not single-valued.
Our concurrency analysis also exploits such expressions and
conditionals to determine which conditional branches can run
concurrently.

Initially, flag = data = 0
T1 T2 i i
y sees effect of x | b sees effect of a | possible sequential order
’ a[setdata = 1] % 4 ylread flag]
yes yes a=>r=>y=0>0
N yes no none
, no yes a=>y=>b==
’ X [set flag = 1] k ﬂ b[read data] no no y=b=a==x

Figure 1: A program fragment consisting of four accesses in two threads. The solid edges correspond to order in the execution
stream of each thread, and the dashed edges are conflicts. Of the four possible results of thread 1 visible to thread 2, the second
is illegal since it does not correspond to an overall execution sequence in which operations are not reordered within a thread.

3.2 Memory Model

Titanium’s memory consistency model is defined in the lan-
guage specification [?]. Here are some informal properties of
the Titanium model.

1. Locally sequentially consistent: All reads and writes
issued by a given thread must appear to that thread to
occur in exactly the order specified. Thus, dependencies
within a thread must be observed.

2. Globally consistent at synchronization events: At a
global synchronization event such as a barrier, all threads
must agree on the values of all the variables. At a non-
global synchronization event, such as entry into a critical
section, the thread must see all previous updates made
using that synchronization event.

Titanium’s memory consistency semantics are thus a re-
laxed model, providing few ordering guarantees. In order to
guarantee sequential consistency, memory barriers must be in-
serted into a program to enforce order.

3.3 Intermediate Language

In this paper, we will operate on an intermediate language that
allows the full semantics of Titanium but is simpler to analyze.
In particular, we rewrite dynamic dispatches as conditionals.
A call x.foo (), where x is of type A in the hierarchy

class A {
void foo () { ... }

class B extends A {
void foo() { ... }

}

gets rewritten to

if ([type of x is A])

x.ASfoo () ;

else if ([type of x is B]J])
x.BSfoo () ;

We also rewrite switch statements and conditional ex-
pressions (?/:) as conditional if else . state-
ments.

3.4 Control Flow Graphs

The algorithms in this paper operate over a control flow graph
that represents the flow of execution in a program. Nodes
in the graph correspond to expressions in the program, and a
directed edge from one expression to another occurs when the
target can execute immediately after the source.

The Titanium compiler produces an intraprocedural con-
trol flow graph for each method. We modify each of these
graphs to model transfer of control between methods by split-
ting each method call node into a call node and a return node.
The incoming edges of the original node are attached to the
call node, and the outgoing edges to the return node. An edge
is added from the call node to the target method’s entry node,
and from the target method’s exit node to the return node.
Figure 2 illustrates this procedure.

4 Concurrency Analysis

Titanium’s structural correctness allows us to develop a sim-
ple graph-based algorithm for computing concurrent accesses
in a program. The algorithm specifically takes advantage of
Titanium’s textual barriers and single-valued expressions.

The following definitions are useful in developing the anal-
ysis:

Definition 4.1 (Single Conditional). A single conditional is a
conditional guarded by a single-valued expression.

Since a single-valued expression evaluates to the same re-
sult on all threads, every thread is guaranteed to take the same
branch of a single conditional. A single conditional thus may

bar: foo:

entry

: — -
foo()
1 1

exit

bar: foo:
entry
] /
call foo ()
foo () return
! \
exit

Figure 2: Construction of the interprocedural control flow graph of a program from the individual method flow graphs.

contain a barrier, since all threads are guaranteed to execute
it, while a non-single conditional may not.

Definition 4.2 (Cross Edge). A cross edge in a control flow
graph connects the end of the first branch of a conditional to
the start of the second branch.

Cross edges do not provide any control flow information,
since the second branch of a conditional does not execute im-
mediately after the first branch. They are, however, useful for
determining concurrency information, as shown in theorem
44.

In order to determine the set of concurrent accesses in a
program, we construct a graph representation G of the pro-
gram P by inserting cross edges in the interprocedural con-
trol flow graph of P for every non-single conditional. Algo-
rithm 4.3 in figure 3 illustrates this procedure. The algorithm
runs in time O(n), where n is the number of statements and
expressions in P, since it takes O(n) time to construct the
control flow graph of a program. The control flow graph is
very sparse, containing only O(n) edges, since the number of
expressions that can execute immediately after a particular ex-
pression e is constant. Since at most n cross edges are added
to the control flow graph, the resulting graph G is also of size
O(n).

The graph G allows us to determine the set of concurrent
accesses using the following theorem:

Theorem 4.4. Two memory accesses a and b in P can run
concurrently only if one is reachable from the other in G along
a path that does not pass through a barrier.

In order to prove theorem 4.4, we require the following def-
inition:

Definition 4.5 (Code Phase). For each barrier in a program,
its code phase is the set of statements that can execute after
the barrier but before hitting another barrier, including itself’.

1 A statement can be in multiple code phases, as is the case for a statement
in a method called from multiple contexts.

Figure 4 shows the code phases of an example program.
Since each code phase is preceded by a barrier, and each
thread must execute the same sequence of barriers, each
thread executes the same sequence of code phases. This im-
plies the following:

Lemma 4.6. Two memory accesses a and b in P can run con-
currently only if they are in the same code phase.

Proof. Suppose a and b are not in the same code phase. Then
they are preceded by two different barriers B, and B;. Con-
sider arbitrary occurrences of a and b in any program execu-
tion in which they both occur. (If one or both don’t occur,
then they trivially don’t run concurrently.) Since every thread
executes the same set of barriers, either B, precedes Bj or
By, precedes B,,. Since a occurs after B, but before any other
barrier, and b occurs after B;, but before any other barrier, this
implies that ¢ and b are separated by a barrier. Thus, a and
b cannot run concurrently, since a barrier prevents the code
before it and after it from executing concurrently.

O

Now we can prove theorem 4.4:

Proof of Theorem 4.4. Suppose a and b can run concurrently.
By lemma 4.6, a and b must be in the same code phase S. By
definition 4.5, there must be program flows from the initial
barrier Bg to a and b that do not go through barriers. There
are three cases:

Case 1: There is a program flow from a to b in S.
This means the control flow graph of the program must
contain a path from the node for a to the node for b that
does not pass through a barrier. Since G is a super-graph of
the control flow graph, it also contains such a path, so b is
reachable from a without passing through a barrier.

Case 2: There is a program flow from b to a in S.
This case is analogous to the one above.

Algorithm 4.3.
ProgramGraph(P : program) : graph

. For each conditional C in P {

If C is not a single conditional:
Add a cross edge for C'in G.

.} // End for (2).

. Return G.

AL AW

1. Let G be the interprocedural control flow graph of P, as described in §3.4.

Figure 3: Algorithm 4.3 computes a graph representation of a program by inserting cross edges into its control flow graph.

Bl: Ti.barrier();

Ll: int 1 = 0;

L2: int j = 1;

L3: if (Ti.thisProc() < 5)
L4: J += Ti.thisProc();
L5: if (Ti.numProcs () >= 1) {
L6: i = Ti.numProcs{();
B2: Ti.barrier();

L7: J o+= 1i;

L8: } else { j +=1; }

L9: 1 = broadcast j from 0;
B3: Ti.barrier();

LA: j += i;

Code Phase Statements
B1 L1l,L2,L3,L4,L5,L6,L8,L9
B2 L7,L9
B3 LA

Figure 4: The set of code phases for an example program.

Case 3: There is no program flow from either a to b or
bto a in S. Since there is a flow from Bg to a and from Bg
to b, a and b must be in different branches of a conditional
C. Since only one branch of a single conditional can run,
C must be a non-single conditional in order for a and b to
run concurrently. Without loss of generality, let a be in the
first branch, and b be in the second. Since C' is non-single,
it cannot contain a barrier, and the end of the first branch is
reachable in G from a without hitting a barrier. Similarly, b
is reachable from the beginning of the second branch without
executing a barrier. Since GG contains a cross edge from the
first branch of C to the second, this implies that there is a
path from a to b in G that does not pass through a barrier. [

By theorem 4.4, in order to determine the set of all concur-
rent accesses, it suffices to compute the pairs of accesses in
which one is reachable from the other in G without hitting a
barrier. This can be done efficiently by removing all barriers
from G and performing a depth first search from each access
in G. Algorithm 4.7 in figure 5 does exactly this. The running
time of the algorithm is dominated by the depth first searches,
each of which takes O(n) time, since G has at most n nodes
and O(n) edges. At most m searches occur, where m is the
number of memory accesses in P, so the algorithm runs in
time O(mn).

5 Feasible Paths

Algorithm 4.7 computes an over-approximation of the set of
concurrent memory accesses. In particular, due to the nature
of the interprocedural control flow graph constructed in §3.4,
the depth first searches in algorithm 4.7 can follow infeasible
paths, paths that cannot actually occur in practice. Figure 6
illustrates such a path, in which a method is entered from one
context and exits into another.

In order to prevent infeasible paths, we follow the proce-
dure outlined by Reps [?]. We label each method call edge
and corresponding return edge with matching parentheses, as
shown in figure 6. Each path then corresponds to a string of
parentheses composed of the labels of the edges in the path. A
path is then infeasible, if in its corresponding string, an open
parenthesis is closed by a non-matching parenthesis.

It is not necessary that a path’s string be balanced in order
for it to be feasible. In particular, two types of unbalanced
strings correspond to feasible paths:

e A path with unclosed parentheses. Such a path corre-
sponds to method calls that have not yet finished, as
shown in the left side of figure 7.

e A path with closing parentheses that follow a balanced
prefix. Such a string is allowed since a path may start

Algorithm 4.7.
ConcurrentAccesses(P : program) : set
1. Let concur « .
Let G — ProgramGraph(P) [Algorithm 4.3].
For each barrier B in P:
Delete B from G.
For each access a in P {
Do a depth first search on G starting from a.
For each access b reached in the search:
Insert (a, b) into concur.
} // End for (5).
Return concur.

COXRXNAUN B LD

[

Figure 5: Algorithm 4.7 computes the set of all concurrent accesses in a given program.

bar: foo: baz:

1 1
[_-ventry,
1 .. 1\{]
r=-=-====-= 1 -7 I
1call foo() 7 - call foo ()
1
...
foo () return leq=-- _~foo() return:
PR [
i cxen T Z3C
] 1 e } 1 |
exit ¢ [

Figure 6: Interprocedural control flow graph for two calls to the same function. The dashed path is infeasible, since foo ()
returns to a different context than the one from which it was called. The infeasible path corresponds to the unbalanced string

)

bar: foo: bar: foo:

1 1
_vi entr entr
o [.oy / y
1 - 1] J
r-——-%--- LIPS 1
1 call foo () :/ 4 call foo ()

e e ! I TTTA
I 1 r-———=--- 1 o

foo () return [1foo () return:v\ e q=-
] : = | DR iy
exit [~ exit

Figure 7: Feasible paths that correspond to unbalanced strings. The dashed path on the left corresponds to a method call that
has not yet returned, and the one on the right corresponds to a path that starts in a method call that returns.

in the middle of a method call and corresponds to that
method call returning, as shown in the right side of figure
7.

Determining the set of nodes reachable? using a feasible
path is the equivalent of performing context-free language
(CFL) reachability on a graph using the grammar

S —- LR

L > SM|S)|ce€
R— MR | (R | €
M — (aM)a | MM |

for each pair of matching parentheses (,, and). CFL reacha-
bility can be performed in cubic time for an arbitrary grammar
[?]. Algorithm 4.7 takes only quadratic time, however, and we
desire a feasibility algorithm that is also quadratic. In order
to accomplish this, we develop a specialized algorithm that
modifies the input graph G and the standard depth first search
instead of using generic CFL reachability.

At first glance, it appears that a method must be revisited
in every possible context in which it is called, since the con-
text determines which open parentheses have been seen and
therefore which paths can be followed. However, the follow-
ing implies that it is only necessary to visit the method in a
single context:

Theorem 5.1. Assuming nothing about the arguments, the set
of expressions that can be executed in a call to a method f is
the same regardless of the context in which f is called.

Proof by Induction.

Base case: The execution of f makes no method calls. Then
the call to f can execute exactly those expressions that are
contained in f and reachable from its entry regardless of the
calling context.

Inductive step: The execution of f makes method calls. By
the inductive hypothesis®, each method call in f can transi-
tively execute the same expressions independent of the con-
text. In addition, the call to f can execute exactly those ex-
pressions that are contained in f and reachable from its entry.
The call to f thus can execute the same set of expressions
regardless of context. O

Since the set of expressions that can be executed in a
method call is the same regardless of context, the set of nodes
reachable along a feasible path in a program’s control flow

21n this section, we make no distinction between reachable and reachable
without hitting a barrier. The latter reduces to the former if all barrier nodes
are removed from each control flow graph.

3In order for induction be be applicable, the function call depth in f must
be finite. It is reasonable to assume that this is always the case, since in
practice, an infinite function call depth is impossible due to finite memory
limits.

graph is also independent of the context of a method call, with
two exceptions:

e The nodes reachable following the method call. If the
method call can complete, then the nodes after a method
call are reachable from a point before the method call.

e When no context exists, such as in a search that starts
from a point within a method f. Then all nodes that are
reachable following any method call to f are reachable.

The second case above can easily be handled by visiting a
node twice: once in some context, and again in no context.
The first case, however, requires adding bypass edges to the
control flow graph.

5.1 Bypass Edges

Recall that the interprocedural control flow graph was con-
structed by splitting a method call into a call node and a re-
turn node. An edge was then added from the call node to the
target method’s entry, and another from the target’s exit to the
return node. If the target’s exit is reachable (or for our pur-
poses, reachable without hitting a barrier) from the target’s
entry, then it is always safe to add a bypass edge that connects
the call node directly to the return node.

Computing whether or not a method’s exit is reachable
from its entry is not trivial, since it requires knowing whether
or not the exits of each of the methods that it calls are reach-
able from their entries. Algorithm 5.2 in figure 8 does so by
continually iterating over all the methods in a program, mark-
ing those that can complete through an execution path that
only calls previously marked methods, until no more methods
can be marked. In the first iteration of loop 3, it only marks
those methods that can complete without making any calls,
or equivalently, those methods that can complete using only a
single stack frame. In the second iteration, it only marks those
that can complete by only calling methods that don’t need to
make any calls, or equivalently, those methods that can com-
plete using only two stack frames. In general, a method is
marked in the ¢th iteration if it can complete using ¢, and no
less than 4, stack frames®.

Theorem 5.3. Algorithm 5.2 marks all methods that can com-
plete using any number of stack frames.

Proof. Suppose there are some methods that can complete but
that algorithm 5.2 does not find. Out of these methods, let f be
the one that can complete with the minimum number of stack

“Note that just because a method only requires a fixed number of stack
frames doesn’t mean that it can complete. A method may contain an infinite
loop, preventing it from completing at all, or barriers along all paths through
it, preventing it from completing without executing a barrier. Algorithm 5.2
does not mark such methods.

Algorithm 5.2.
ComputeBypasses(P : program, Gy, . .., G} : intraprocedural flow graph) : set
1. Let change < true.
. Let marked < 0.
. While change = true {
change «— false.
Set visited(u) < false for all nodes v in Gy, ..., Gy.
For each method f in P {
If f & marked and CanReach(entry(f), exit(f), Gy, marked) {
marked «— marked U {f}.
9. change «— true.
10. } /1 End if (7).
11. }//End for (6).
12. } // End while (3).
13. Return marked.

N oUW

14. Procedure CanReach(u,v : vertex, G : graph, marked : method set) : boolean:
15. Setvisited(u) < true.

16. Ifu=w:

17. Return true.

18. Else If u is a method call to function g and g & marked:

19. Return false.

20. For each edge (u,w) € G {

21. If visited(w) = false and CanReach(w, v, G, marked):
22. Return true.

23. } // End for (20).

24, Return false.

Figure 8: Algorithm 5.2 uses each method’s intraprocedural control flow graph to determine if its exit is reachable from its
entry.

frames j. In order for f to require j frames to complete, there
must be an execution path through f that only calls methods
that require at most j — 1 frames to complete. These methods
must all be marked, since f was the minimum method that
wasn’t marked. Since f requires j frames, at least one of
the methods called must require j — 1 frames and thus was
marked in the (j — 1)th iteration of loop 3 above. Loop 3 will
thus iterate at least once more, and since f now has a path in
which it only calls marked methods, f will be marked, which
is a contradiction. Thus algorithm 5.2 marks all methods that
can complete. O

Algorithm 5.2 requires quadratic time to complete in the
worst case. Each iteration of loop 3 visits at most n nodes.
Only k iterations are necessary, where k is the number of
methods in the program, since at least one method is marked
in all but the last iteration of the loop. The total running time
is thus O(kn) in the worst case. In practice, only a small num-
ber of iterations are necessary®, and the running time is closer
to O(n).

After computing the set of methods that can complete, it
is straightforward to add bypass edges to the interprocedural
control flow graph G: for each method call ¢, if the target of ¢
can complete, add an edge from c to its corresponding method
return . This can be done in time O(n).

5.2 Feasible Search

Once bypass edges have been added to the graph G, a mod-
ified depth first search can be used to find feasible paths. A
stack of open but not yet closed parenthesis symbols must be
maintained, and an encountered closing symbol must match
the top of this stack, it the stack is nonempty. In addition, as
noted above, the modified search must visit each node twice,
once in no context and once in some context. Algorithm 5.4
in figure 9 formalizes this procedure.

Theorem 5.5. Algorithm 5.4 does not follow any infeasible
paths.

Proof. Consider an arbitrary infeasible path p. In order for
p to be infeasible, the labels along p must form a string in
which an open parenthesis (,, is closed by a non-matching
parenthesis)g. Consider the execution of algorithm 5.4 on
this path. An open parenthesis is pushed onto the the stack
s when it is encountered, so before any close parentheses are
encountered, the top of the stack is the most recently opened
parenthesis. A close parenthesis causes the top of the stack
to be popped, so in general, the top of the stack is the most
recently opened parenthesis that has not yet been closed. Now
consider s when the label)5 is reached. The symbol (, must

SEven on the largest example we tried (>>45,000 lines of user and library
code, 1226 methods), algorithm 5.2 required only five iterations to converge.

be on the top of s, since)3 closes it. But algorithm 5.4 checks
the top of the stack against the newly encountered label, and
since they don’t match, it does not proceed along p. O

Since G contains bypass edges and algorithm 5.4 visits
each node both in some context and in no context, it finds all
nodes that can be reachable in a feasible path from the source.
Since it visits each node at most twice, it runs in time O(n).

5.3 Feasible Concurrent Accesses

Putting it all together, we can now modify algorithm 4.7 to
find only concurrent accesses that are feasible. As in algo-
rithm 4.7, the program graph G must first be constructed.
Then the intraprocedural flow graphs of each method must
be constructed, algorithm 5.2 used to find the methods that
can complete without hitting a barrier, and the bypass edges
inserted into GG. Then algorithm 5.4 must be used to perform
the searches instead of a vanilla depth first search. Algorithm
5.6 in figure 10 illustrates this procedure.

The setup of algorithm 5.6 calls algorithm 5.2, so it takes
O(kn) time. The searches each take time O(n), and at most m
are done, so the total running time is O(kn+mn), quadratic as
opposed to the cubic running time of generic CFL reachbility.

6 Evaluation

We evaluate our concurrency analysis using two clients: static
race detection and enforcing sequential consistency at the lan-
guage/compiler level. We use the following set of benchmarks
for our evaluation:

e gas (8841 lines): Hyperbolic solver for a gas dynamics
problem in computational fluid dynamics.

e gsrb (1090 lines): Nearest neighbor computation on
a regular mesh using red-black Gauss-Seidel operator.
This computational kernel is often used within multigrid
algorithms or other solvers.

e lu-fact (420 lines): Dense linear algebra.

e pps (3673 lines) : Poisson equation solver.

spmv (1493 lines): Sparse matrix-vector multiply.

The line counts for the above benchmarks underestimate the
amount of code actually analyzed, since all reachable code in
the 37,000 line Titanium and Java 1.0 libraries is also pro-
cessed.

Algorithm 5.4.

FeasibleSearch(v : vertex, G : graph) : set
1. Let visited < ().

Let s — ().

Call FeasibleDFS(v, G, s, visited).

Return visited.

halb ol

Procedure Feasible DF'S(v : vertex, G : graph, s : stack, visited : set):
Ifs=0{
If no_context_mark(v) return.
Set no_context_mark(v) < true.
9. }//Endif (6).

® N

10. Else {
11. If context_mark(v) return.
12. Set context_mark(v) < true.

13. }//Endelse (10).

14. wisited «— visited U {v}

15. Foreach edge (v,u) € G {

16. Let s’ « s.

17. [Iflabel(v,u) is a close symbol and s” #) {

18. Let 0 < pop(s’).
19. If label (v, u) does not match o:
20. Skip to next iteration of 15.

21. }//Endif (17).

22. Else if label(v,) is an open symbol:
23. Push label (v, u) onto s'.

24, Call FeasibleDFS(u, G, s).

25. }//End for (15).

Figure 9: Algorithm 5.4 computes the set of nodes reachable from the start node through a feasible path.

10

Algorithm 5.6.

1
. For each method f in P {

For each barrier B in f {
Delete B from G.
Delete B from G.

} // End for (4).

. } // End for (2).

©NoL AW

9
10
11.
12.
13
14
15.
16.
17.
18
19

Add an edge (¢, r) to G.
.} // End for (10).

Insert (a, b) into concur.
. } // End for (14).
. Return concur.

FeasibleConcurrentAccesses(P : program) : set
. Let G <« ProgramGraph(P) [Algorithm 4.3].

Construct the intraprocedural flow graph G ¢ of f.

. Let bypass — ComputeBypasses(P, G, ...
. For each method call and return pair ¢, r in P {
If the target f of ¢, r is in bypass:

. For each memory access a in P {
Let visited < FeasibleSearch(a, G) [Algorithm 5.4].
For each memory access b € visited:

, Gx) [Algorithm 5.2].

Figure 10: Algorithm 5.6 computes the set of all concurrent accesses that can feasibly occur in a given program.

Benchmark | Races Detected
gas 1410

gsrb 33
lu-fact 7

pPpPSs 80

spmv 15

Table 1: Number of data races detected by the base level of
analysis.

6.1 Static Race Detection

Using our concurrency analysis and a thread-aware alias anal-
ysis, we built a compile-time data race analysis into the Tita-
nium compiler. Static information is generally not enough to
determine with certainty that two accesses compose a race,
so nearly all reported races are false positives. (The correct-
ness of the alias and concurrency analyses ensure that no false
negatives occur.) We therefore consider a race detector that
reports the fewest races to be the most effective.

Figure 11 compares the effectiveness of three levels of race
detection:

e base: only alias analysis is used to detect potential races

e concur: our basic concurrency analysis (§4) is used to
eliminate non-concurrent races

11

Number of Data Races Detected
1.2

0.8

0.6

0.4

0.2

Fraction Compared to base

lu-fact
Benchmark

gas gsrb pps spmv

\I:I base M concur [feasible \

Figure 11: Fraction of data races detected at compile-time
compared to base.

Static Memory | Dynamic Memory
Benchmark Barriers Barriers
gas 346 3.3M
gsrb 128 120K
lu-fact 14 1.6M
PPS 286 94M
spmyv 34 9.4M

Table 2: Number of static and dynamic barriers required by
the base level of analysis.

e feasible: our feasible paths concurrency analysis (§5) is
used to eliminate non-concurrent races

For reference, the number of races detected by the base anal-
ysis is reported in table 1.

The results show that the addition of concurrency analysis
can eliminate most of the races reported by our detector. Two
of the benchmarks do not benefit at all from the basic concur-
rency analysis, but all benefit considerably from the feasible
paths analysis. The concurrency analysis should be of signif-
icant help to users of our race detector by weeding out many
false positives.

6.2 Sequential Consistency

In order to enforce sequential consistency in Titanium, we
insert memory barriers where required in an input program.
These memory barriers can be expensive to execute at run-
time, potentially costing an entire roundtrip latency for a re-
mote access. The memory barriers also prevent code motion,
so they directly preclude many optimizations from being per-
formed. The static number of memory barriers generated pro-
vides a rough estimate for the amount of optimization pre-
vented, but the affected code may actually be unreachable at
runtime or may not be significant to the running time of a pro-
gram. We therefore additionally measure the dynamic number
of memory barriers hit at runtime, which more closely esti-
mates the performance impact of the inserted memory barri-
ers.

Figure 12 compares the number of memory barriers gener-
ated for each program using different levels of analysis:

e base: cycle detection is used to determine the minimal
number of memory barriers

e concur: our basic concurrency analysis (§4) is addition-
ally used to eliminate memory barriers for pairs of non-
concurrent accesses

e feasible: our feasible paths concurrency analysis (§5) is
additionally used to eliminate memory barriers for pairs
of non-concurrent accesses

Number of Static Memory Barriers

I
= [N
,

¢
©
|

=]
IS
L

Fraction Compared to base
o o
N o

o
\
\

gas gsrb lu-fact pps

Benchmark
\I:I base M concur [feasible \

spmv

Figure 12: Fraction of memory barriers generated at compile-
time compared to base.

Number of Dynamic Memory Barriers

I
)

i
L

o
©
|

o
»~
.

Fraction Compared to base
o o
N o

o
\
\

gas gsrb lu-fact pps

Benchmark

spmv

\I:I base M concur Cfeasible \

Figure 13: Fraction of memory barriers executed at runtime
compared to base.

12

Figure 13 compares the resulting dynamic counts at runtime.
For reference, the number of static and dynamic memory bar-
riers required by the base level of analysis is show in table
2.

The results show that our analysis, at its highest precision,
is very effective in reducing the numbers of both static and
dynamic memory barriers. In three of the benchmarks, nearly
all runtime memory barriers are eliminated, and in another,
the number of memory barriers hit is reduced by a large frac-
tion. In only one benchmark, gas, is our analysis ineffective:
while it does reduce the number of concurrent pairs detected,
it does not significantly reduce the number of memory ac-
cesses that are a member of some pair (134 under base com-
pared to 124 under feasible), preventing cycle detection from
benefiting from the analysis.

It is interesting to note that eliminating infeasible paths is
effective in three of the four benchmarks for which our anal-
ysis is useful. It should also be noted that most of the remain-
ing memory barriers are due to imprecision in our supporting
analyses, such as the inability of our alias analysis to distin-
guish array indices. Even so, we believe our analysis reduces
the number of memory barriers enough to nearly match the
performance of Titanium’s relaxed memory model.

7 Related Work

An extensive amount of work on concurrency analysis has
been done for both languages with dynamic parallelism and
SPMD programs. Duesterwald and Soffa presented a data
flow analysis to compute the happened-before and happened-
after relation for program statements [?]. Their analysis is
for detecting races in programs based on the Ada rendezvous
model [?]. Masticola and Ryder developed a more precise
non-concurrency analysis for the same set of programs [?].
The results are used for debugging and optimization. Jeremi-
assen and Eggers developed a static analysis for barrier syn-
chronization for SPMD programs with non-textual barriers
[?]. They used the information to reduce false sharing on
cache-coherent machines.

Others besides Duesterwald and Soffa and Masticola and
Ryder have developed tools for race detection. Flanagan and
Freund presented a static race detection tool for Java based on
type inference and checking [?]. Boyapati and Rinard devel-
oped a type system for Java that guarantees that a program is
race-free. Tools such as Eraser [?] and TRaDe [?] detect races
at runtime instead of statically. Other dynamic race detection
schemes have also been developed [?, ?, ?].

The concept of sequential consistency was first defined by
Lamport [?]. Shasha and Snir provided some of the founda-
tional work in enforcing sequential consistency from a com-
piler level when they introduced the idea of cycle detection for

13

general parallel programs [?]. Krishnamurthy and Yelick pre-
sented a practical cycle detection analysis for the restricted
case of SPMD programs [?]. They also used concurrency
analysis to reduce the number of memory barriers, but their
non-textual barriers forced them to generate both an opti-
mized and an unoptimized version of the code and to switch
between them at runtime depending on how the barriers lined
up. Midkiff and Padua outlined some of the implementa-
tion techniques that could violate sequential consistency and
developed some static analysis ideas, including a concurrent
static single assignment form in a paper by Lee et al [?]. More
recently, Sura et al. used cooperating escape, thread struc-
ture, and delay set analyses to provide sequential consistency
cheaply in Java [?].

Our work differs from previous work in that we develop an
analysis specifically for SPMD programs with textual barri-
ers. This allows our analysis to be both sound, unlike that of
Krishnamurthy and Yelick, and precise. In addition, our anal-
ysis takes advantage of single-valued expressions, which no
previous analysis does.

8 Conclusion

As shared memory multiprocessors have become more com-
mon, the issue of which memory consistency model to use
has gained importance. This paper provides evidence that,
with the proper set of compiler analyses, the intuitive model
of sequential consistency can be provided without sacrificing
much performance.

The contribution of this paper is a concurrency analysis that
can be used to increase the precision of the existing cycle de-
tection algorithm for the Titanium language. We presented
both a basic analysis and a more complex one that only ex-
plores those execution paths that can occur in practice. We
experimented with several benchmark programs and showed
that the analyses were able to eliminate a large fraction, if not
most, of the fences required to guarantee sequential consis-
tency in all but one example.

While the number of fences generated and executed in a
program provides some measure of the cost of sequential con-
sistency, it remains to be seen to what extent these fences af-
fect a program’s running time. In particular, the fences may
prevent certain optimizations that result in large performance
gains. In the future, we plan to explore the effects of the re-
maining fences on important communication optimizations to
determine if the cost is indeed negligible.

Acknowledgments

We would like to thank Jimmy Su, who helped us a great deal
both in developing the concurrency algorithms and in imple-
menting them.

References

(1]

(2]

(3]

(4]

[5

—_

[6

—

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

A. Aiken and D. Gay. Barrier inference. In Principles of Programming
Languages, San Diego, California, January 1998.

L. O. Andersen. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, DIKU, University of Copenhagen,
May 1994.

D. Bonachea. GASNet specification, vl1.1. Technical Report
UCB/CSD-02-1207, University of California, Berkeley, November
2002.

G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark.
Detecting data races in cilk programs that use locks. In SPAA '98: Pro-
ceedings of the tenth annual ACM symposium on Parallel algorithms
and architectures, pages 298-309, New York, NY, USA, 1998. ACM
Press.

M. Christiaens and K. De Bosschere. TRaDe, a topological approach
to on-the-fly race detection in Java programs. In Proceedings of the
Java Virtual Machine Research and Technology Symposium (JVM *01),
April 2001.

A. Dinning and E. Schonberg. Detecting access anomalies in pro-
grams with critical sections. In PADD ’91: Proceedings of the 1991
ACM/ONR workshop on Parallel and distributed debugging, pages 85—
96, New York, NY, USA, 1991. ACM Press.

E. Duesterwald and M. Soffa. Concurrency analysis in the presence
of procedures using a data-flow framework. In Symposium on Testing,
analysis, and verification, Victoria, British Columbia, October 1991.

C. Flanagan and S. N. Freund. Type-based race detection for java. In
PLDI ’00: Proceedings of the ACM SIGPLAN 2000 conference on Pro-
gramming language design and implementation, pages 219-232, New
York, NY, USA, 2000. ACM Press.

D. Gay. Barrier Inference. PhD thesis, University of California, Berke-
ley, May 1998.

P. N. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit, G. Pike,
and K. Yelick. Titanium language reference manual. Technical Report
UCB/CSD-04-1163-x, University of California, Berkeley, September
2004.

T. Jeremiassen and S. Eggers. Static analysis of barrier synchronization
in explicitly parallel programs. In Parallel Architectures and Compila-
tion Techniques, Montreal, Canada, August 1994.

A. Kamil, J. Su., and K. Yelick. Making sequential consistency practi-
cal in Titanium. In Supercomputing 2005, November 2005. To appear.

A. Krishnamurthy and K. Yelick. Analyses and optimizations for shared
address space programs. Journal of Parallel and Distributed Computa-
tions, 1996.

W. Kuchera and C. Wallace. The UPC memory model: Problems and
prospects. In 18th International Parallel and Distributed Processing
Symposium, 2004, April 2004.

L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. I[EEE Transactions on Computers,
28(9):690-691, September 1979.

14

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

J. Lee, S. Midkiff, and D. Padua. Concurrent static single assignment
form and constant propagation for explicitly parallel programs. In Pro-
ceedings of 1999 ACM SIGPLAN Symposium on the Principles and
Practice of Parallel Programming, May 1999.

J. Lee and D. Padua. Hiding relaxed memory consistency with compil-
ers. In Parallel Architectures and Compilation Techniques, Barcelona,
Spain, September 2001.

S. Masticola and B. Ryder. Non-concurrency analysis. In Principles
and practice of parallel programming, San Diego, California, May
1993.

R. H. B. Netzer and B. P. Miller. What are race conditions?: Some
issues and formalizations. ACM Lett. Program. Lang. Syst., 1(1):74—
88, 1992.

R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In
PPoPP ’03: Proceedings of the ninth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 167-178, New
York, NY, USA, 2003. ACM Press.

W. Pugh. Fixing the Java memory model. In JAVA '99: Proceedings
of the ACM 1999 conference on Java Grande, pages 89-98, New York,
NY, USA, 1999. ACM Press.

T. Reps. Program analysis via graph reachability. In ILPS '97: Pro-
ceedings of the 1997 international symposium on Logic programming,
pages 5-19, Cambridge, MA, USA, 1997. MIT Press.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: a dynamic data race detector for multithreaded programs. ACM
Trans. Comput. Syst., 15(4):391-411, 1997.

D. Shasha and M. Snir. Efficient and correct execution of paral-
lel programs that share memory. ACM Trans. Program. Lang. Syst.,
10(2):282-312, 1988.

Z. Sura, X. Fang, C. Wong, S. Midkiff, and D. Padua. Compiler tech-
niques for high performance sequentially consistent Java programs. In
Principles and Practice of Parallel Programming, Chicago, Illinois,
June 2005.

United States Department of Defense. Reference manual for the Ada
programming language. Technical Report ANSI/MIL-STD-1815A,
Washington, D.C., January 1983.

K. Yelick, D. Bonachea, and C. Wallace. A proposal for a UPC memory
consistency model, v1.1. Technical Report LBNL-54983, Lawrence
Berkeley National Lab, 2004.

	1 Introduction
	2 Motivation
	2.1 Static Race Detection
	2.2 Sequential Consistency

	3 Titanium Background
	3.1 Textual Barriers
	3.2 Memory Model
	3.3 Intermediate Language
	3.4 Control Flow Graphs

	4 Concurrency Analysis
	5 Feasible Paths
	5.1 Bypass Edges
	5.2 Feasible Search
	5.3 Feasible Concurrent Accesses

	6 Evaluation
	6.1 Static Race Detection
	6.2 Sequential Consistency

	7 Related Work
	8 Conclusion

