
ANAMORPHIC IMAGE PROCESSING

By

Steven elick

Submitted in Partial Fulfillment
of the Requirements for the

Degree of

Bachelor of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1980

Signature of Author
SDepartment of rlectrical Engineering

May 9, 1980

Certified by
Andrew Lippman

Reaserch Associate
Thesis Supervisor

Accepted by ,
Professor David Adler

Chairman, Undergraduate Thesis Committee

ARCHIVES
MA'.SACHUSETTS INSTITUTE

O TECIHOLOGY

C P 3 1980

LUBRA..!ES

Table of Contents

Abstract

Introduction . . .

Figure 1... .

Linear Perspective

Figure 2. . .
Figure 3. . .
Figure 4. . .
Figure 5. . .
Figure 6. . .
Figure 7. . .

Curvilinear Perspective.

Figure 8.
Figure 9.

Interpolative Views.

. 15

. 15

. 16

. 19

Figure 10 .
Figure 11 .
Figure 12 .
Figure 13 .
Figure 14 .

19
21
21
22
22

The Volpi Lens 24

Figure 15 .
Figure 16 .
Figure 17 .
Figure 18 .
Figure 19 .
Figure 20 .
Figure 21 .

The Fish-eye Lens. 30

Figure 22 . .
Figure 23 . .
Figure 24 . .
Figure 25 . .

Conclusions. . . .

Bibliography . . .

Appendix

.... 34

. 35

....... 36

-2-

7

7
8
9
10
11
13

24
25
25
27
27
28
29

Anamorphic Image Processing

By

Steven E. Yelick

submitted to the Department of Electrical Engineering
and Computer Science on May 9, 1980 in partial ful-
fillment of the requirements for the degree of
Bachelor of Science in Computer Science.

Abstract

Anamorphic processes are a class of visual trans-
formations that distort or stretch an image. This
thesis explores three such transformations which
are projective in nature. In all three the target
image is rendered in linear perspective, that is,
space projected to a point through a viewing plane.

Thesis Supervisor: Andrew Lippman, Research Associate

-3-

Introduction

Throughout history man has attempted to repre-

sent the three dimensions of his environment on

two dimensional surfaces. Surfaces have proven to

be ideal for communication, reproduction, and as

visual memory. Encoding the lost dimension presents

the same problem to the artist, cartographer, drafts-

man, or photographer. How each resolves this problem

is dependent on those qualities of three-space (such

as dimensionality, color or linearity) that must

be preserved. To the artist and photographer, the

preservation of apparent spatial relationships is

paramount.

During the Renaissance, linear perspective became

the representation deemed most realistic by mathemati-

cians. Debate raged as to whether art need follow the

rules of perspective or not. As mathematicians systema-

tized projective geometry, artists rebelled, saying that

strict adherence to perspective was "anti-artistic."

With the development of photography, the split between

art and mathematics was complete. The camera provided

an image production system that, unlike the brush and

canvas, invariably created a perspective view. Photo-

graphs became the two-dimensional reality against which

all representational art was compared.

-4-

Figure 1

Integrally entwined with the development of perspective

was that of anamorphic art. Paintings and engravings

that, when viewed edgewise or with special mirrors, re-

vealed new views became quite popular during the six-

teenth and seventeenth centuries. Figure 1 shows an

engraving by Jean-Francois Niceron that when reflected

in a cylindrical mirror, appears like the normal view in

the center.

During the late 1700s, a Scottish painter named

Robert Barker invented an optical refinement of perspec-

tive that allowed a 360 degree field of view. The result-

ing views, called panoramas, were an instant success,

and many feared that painting itself was threatened. The

fear proved unfounded since panoramic painting soon lost

its popularity.

Recently, there has been a new found interest in

panoramic imaging, especially in the context of movie

-5-

- -- I- -··l~--·-···IF-·-·-~·~--iL~ ----

mapping. The development of the optical video disc

provides the ability to randomly access a large number

of video images. This access can allow a user to inter-

actively sample a set of images that simulate travel in

an unfamiliar space, i.e., the movie map. Panoramic

viewing is particularly powerful because the spatial

relationships of all objects visible from a single loca-

tion can be portrayed.

-6-

Linear Perspective

Of all the pictorial qualities that are valued in

visual representations, preservation of straight lines has

been given the most attention. The three main projective

geometries that preserve straight lines are axonometric,

oblique, and perspective. In this section I will show

that axonometric and oblique projections are merely

special (albeit simplified) cases of perspective.

Oblique projections are limited in that a face of

the object being projected must be parallel with the

view plane. The lines of projection are parallel and

intersect the view plane at an oblique angle, thereby

providing a view of object depth. The face of the object

that is parallel to the view plane is called the principal

face, and oblique projection is useful for the class of

objects whose principal face is easily definable. Figure 2

Figure 2

-7-

- -~--·II -- I --- I- I

1

e00

shows an oblique cube projection. Note that dimensionality

and angularity are completely preserved in the vertical

and horizontal, but only at the expense of considerable

depth distortion.

In contrast to oblique projection, an object in an

axonometric projection can assume any angle to the view

plane, but the parallel lines of projection intersect the

view plane perpendicularly. Figure 3 shows an axonometric

cube. Dimensionality and angularity are lost, but depth

distortion is less apparent.

Figure 3

-8-

_____1___-·1__~ -:-------7 - I ~-__IIL*~ --- -L-L-II~--·I---r i. _LC~·P-IP~e~P~i~I~R~·FB··~·I~----~P/

Oblique and axonometric views are created with parallel

projection. Perspective, on the other hand, simulates

what the eye sees by projecting to a single point through

the view plane. Perspective views are classified by the

number of points towards which parallel lines converge.

Figure 4 is a one point perspective. Horizontal and ver-

tical lines are parallel with the view plane, much like

the oblique view, but depth lines look undistorted. We

interpret perspective views so often that the parallel

depth lines may actually appear to diverge in an oblique

view.

Figure 4

4-

VP

-9-

~a=mrc3lls~EEeaaa~a~lr~ i -~---r~ ---- LSg3SI pll~8~inn~s~isa~a

Two point perspective allows an object to be viewed

from any horizontal angle. As Figure 5 shows, only

vertical lines remain parallel. Because both vanishing

points are so close together, depth seems greatly

exaggerated.

Figure 5

Three point perspective gives full freedom of

viewing angle. All lines converge to their respective

-10-

VP

I _ ~ _~~_ _ __ ~I~_ e~F-----.---- ,e -- -- _ll*s~

vanishing points, as Figure 6 shows. Because perspective

VP

Figure 6

is taught as three different ways of drawing space, it is

seldom pointed out that all three involve exactly the

same transformation. The different perspectives arise

merely from the placement of the view plane with respect

to the object. One and two point perspectives can,

in fact, be understood as three point perspective with

one or two of the vanishing points infinitely distant

-11-

-- PP- 1~- _._ __~___ , _. ·I I I I

'9

from the view. Lines receding towards infinity will

appear parallel. With this in mind, if we assume all

three vanishing points to be located at infinity, the

resulting view is axonometric. Oblique views are a less

pure extrapolation, since the depth "vanishing" point,

even though located at infinity, must move angularly

with respect to the other two.

To equate perspective, axonometric projection, and

oblique projection necessatates introducing the notion of

vanishing points as virtual locations rather than physical

intersections. This is not difficult to envision if one

considers that the distance to the intersection of parallel

lines is infinite.

As mentioned before, the apparent depth of a scene

depends on the separation of vanishing points. That separ-

ation, in turn, is determined by the distance of theviewpoint

from the view plane. Decreasing the focal length decreases

the separation of the vanishing points, providing a wider

angle of view. Figure 7 compares the perspective model of

of projecting through a plane with the optical reality

of projection onto film. It is clear that focal length

and any distance measured from the center of projection

form a right triangle, so horizontal view angle is de-

scribed by the equation:

S-1 wS= 2tan ()2f

-12-

distorted when the focal length is less than half the view

plane width (lens view angle measurements are usually

measured with respect to the diagonal rather than the

-13-

horizontal). This corresponds to a viewing angle of

approximately 90 degrees, which means that two vanishing

points could both be visible in the image. As the view

angle grows larger, edge distortion increases rapidly,

and the need for a different projection becomes acute.

-14-

Curvilinear Perspective

Preservation of straight lines in views much greater

than 90 degrees is difficult since edge distortion becomes

quite apparent. The quality of straight lines remaining

straight, on which so much emphasis was placed in normal

perspective, falls victim to the desire for panoramic

viewing.

Extreme wide angle views appear stretched and distorted

at the edges because equal angles correspond to increasingly

larger lengths as the distance from the view plane center

increases. Cylindrical projection makes equal horizontal

angles appear as equal distances by wrapping the view

plane around the view point. Figure 8 is an engraving by

Figure 8

M.C. Escher of a rectilinear grid in cylindrical perspective.

Two vanishing points are visible in the image, and because

-15-

1111~ 1 I _ I III · II -- L IIIIC · __ 12111

vertical lines are projected linearly, they appear straight.

Only lines that are parallel with the axis of the view

cylinder will be straight, so that if the grid had been

angled up or down, all lines would be curved.

Cylindrical projection is ideal for panoramas, since

the view cylinder can easily be cut and laid flat. The

globuscope, a type of rotating slit camera, provides an

imaging system that incrementally exposes vertical "slices"

of space, thereby creating a cylindrical view. Because

the exposure is incremental, the scene must remain stationary

or horizontal blurring will occur.

In much the same way that three point perspective

relates to two point perspective, spherical perspective

relates to cylindrical perspective. Figure 9 is an

Figure 9

-16-

....

engraving by Albert Flocon in spherical projection. All

three vanishing points are visible, and lines in all three

dimensions are curved. Cylindrical projection required

slicing the view cylinder and laying it flat. Similarly,

an additional spatial transformation must be made to map

the view sphere onto a flat surface. This mapping is

exactly the problem that has faced cartographers for

centuries.

If less than half of the view sphere is being shown,

a parallel projection perpendicular to the view plane

can be used. This mapping is known as orthographic, and

the displacement form the center of the image is related

to angle by the equation:

y = d sin (O)

y - distance from center

d - diameter of view

0 - angle from perpendicular

Orthographic mapping of more than a hemisphere will

result in two angles mapped onto the same position on

the image. Equidistant projection averts this problem

by mapping distance as a linear function:

y = d*2v

y - distance from center

d - diameter of view

-17-

D - angle from perpendicular

v - maximum view angle

This transformation is neither a parallel projection

nor projection through the view plane to a point. Pro-

jection to any single point would result in a highly

non-linear transformation. Only if the view point moves

along the perpendicular as a function of angle can the

transformation be visualized as purely projective.

-18-

Interpolative Views

Panoramic viewing is useful because it shows the spatial

relationships of objects that are widely dispersed through

a scene. If the entire panorama isn't available on one

image (in cylindrical or spherical perspective), the

ability to rotate view direction arbitrarily can be

nearly as powerful. An apparent intermediate view can

be simulated by projecting two angularly displaced views

onto the new view plane, as shown in Figure 10. The two

1image

,ma gs

Figure 10

original views must be the correct focal length away

from the view point and must retain their angular

separation. The new view may be projected with any focal

-19-

- ------ i·-----n --- --L*-"L·_~C. __ ---

length, and can be rotated around the view point arbitrarily.

Thus, from separate images recorded at the same location

and at specific angles, a picture can be created for any

angle of view.

Figures 11 and 14 are the original views from which

Figures 12 and 13 are created. Figure 12 is 30 degrees

rotated from Figure 11, Figure 13 is rotated 60 degrees.

The originals came from 16 mm footage shot in Aspen,

Colorado. Four orthogonal 16 mm pictures were taken

simultaneously using a 5.5 mm lens. The horizontal angle

of view is calculated to be 86 degrees using the angular

view formula (the width of the image on 16 mm film is

10.2 mm). This explains the black mullion in the center

of the interpolated views; neither original image covers

those four degrees. This problem can be overcome either

by increasing view angle for each original, or by decreasing

angular displacement and using more views.

The software that projects the new view works in

three steps for each point.

1. Calculate the equation of the line passing from

the view point to the point on the new view plane.

2. Calculate the equation of the old view plane.

The old view plane must be rotated around the view

point by the view angle.

3. Solve for the intersection of the line in step

-20-

Figure 11

Figure 12

-21-

_ ~~ ~~__

Figure 13

Figure 14

-22-

1 and the plane in step 2 to find the sample

position in the old view.

An important feature of movie mapping is the ability

to change travel direction under user control. Inter-

polative viewing was used to synthesize turn footage

for those corners that were skipped during filming of

Aspen. Ultimately, real time interpolation could provide

a movie map user with complete view control.

-23-

The Volpi Lens

In order to represent an entire panorama in a single

view, an anamorphic mapping must be used. A special

panoramic lens manufacture by Volpi (Switzerland)

performs such a mapping by transforming a cylindrical

panorama into a ring (Figure 15). Figure 16 is a Volpi

image taken in Boston, Massachusetts, behind the Prudential

Building.

Figure 15

Cylindrical
Perspective

-24-

I , I .~J~.~ , -" II · ' '-"~' ·

Figure 16

Because information about the exact transformation

made by the Volpi lens was not available, photos were made

of a cylindrical grid. The lens (Figure 17) is a

parabloid of glass that uses both refraction and reflection

Figure 17

-25-

to project the image. It was thought that the lens

provided a 60 degree vertical view, and the grid photos

revealed that for an image with a 3 to 4 aspect ratio, the

horizontal view angle should be 108 degrees.

By radially sampling a Volpi image, a cylindrical

perspective is produced. Unfortunately, the vertical

angular mapping is not linear. The grid photos were used

to calculate the vertical distortion. Before measurements

were made of the grid, a correction to turn the vertical

measurements into angular measurements was needed. That

correction was made by assuming that half the vertical

distance subtends and angle of 30 degrees. The resulting

conversion is:

8 = sin-l(d-sin()/m)

0 - angle from horizontal

d - distance from horizontal

m - maximum distance from horizontal

A plot was then made of radial distance versus

angular displacement, as shown in Figure 18. That

curve was approximated by the equation:

y = sin(rx - -) + 1

2

y - corrected vertical distance

x - vertical distance

-26-

* Data A t
Cwrve Fit

Figure 18

When this equation is applied to vertical sampling

of the original photo, a corrected cylindrical perspective

like Figure 19 is produced. Note that curvature is still

present. To create a linear perspective, the view cylinder

must be projected onto a view plane. That projection is

Figure 19

-27-

llarr I·· 1~ -_--_I I ~ I I I I III

described by the equations:

xxlin = f-tan (T)f

,/x +f
ylin = yc n)s

xlin, ylin - linear perspective coordinates

x, y - cylindrical perspective coordinates

f - focal diameter

The focal diameter can be calculated from the hori-

zontal view angle:

360vf - 2ie

When these equationa are applied, views like

Figures 20 and 21 result. The building in Figure 20

is no longer curved, and lines in Figure 21 recede towards

their respective vanishing points.

Figure 20

-28-

_ _

Figure 21

-29-

The Fish-eye Lens

While the Volpi lens produces a panoramic view for

relatively flat geometries, vertical viewing is desirable

for city panoramas. Figure 22 is a photo taken in New

York City of the World Trade Center with a 6 mm fish-eye.

Figure 22

The 6mm lens provides a 220 degree view angle on

35 mm film, and uses an equidistant mapping. Due to

perturbations in lens design, the actual angular mapping

is given by:

y = (0.109)0 - (0.369 x 10-4)0 - (0.265 x 10 7)03

y - distance from image center in mm

0 - angle from center

-30-

· II · I I I

The transformation into linear perspective is more

straightforward than for the Volpi lens since the mapping

characteristics are known exactly. While approximately

10 degrees of view are lost near the ground, 120 degrees

of view are gained across the top of the lens.

Once the center of the new view is selected, the

position of the view plane can be calculated using the

equidistant mapping formula. Each point in the view

plane is translated into spherical coordinates 8 and r.

The coordinates to sample the image are given by the

equations:

'Dcos(e)
x =

110rad

=sin(e)
110 llOrad

x, y - sample coordinates

0, 7 - spherical coordinates

rad - image radius

Figures 23 and 24 are linear projections of Figure 22.

Notice that the subject of view can be arbitrary. Both

of these views use a focal length that approximates a

15 mm lens. Figure 25 is a view with a focal length of

8mm. The edge distortion is extreme, note specifically

the building on the right.

-31-

Figure 23

Figure 24

-32-

P

Figure 25

-33-

____r__pp___p____pp__~

Conclusion

The major drawback of anamorphic processing in the

video domain is resolution. The problem is especially

acute with Volpi images, where the important information

is radially compressed since it is in the center of the

picture, and also vertically compressed. Panoramic viewing

is really most useful when the entire panorama is visible.

In that case spatial correspondence would overwhelm the

viewer to such an extent that resolution problems would

seem inconsequential.

Panoramas offer compact storage of visual relation-

ships that separate images can only approach. Separate

images, however, give increased resolution. One could

concievably create panoramic data structures from multiple

views that, when accessed, could provide normal or even

enhanced resolution.

While anamorphoses has been understood for centuries,

anamorphic imagery in photography is relatively unexplored.

No longer is linear perspective looked upon as visual

reality. Rather, it is just one of the ways that space

can be represented on a surface.

-34-

Bibliography

1. Descargues, Pierre. Perspective, Harry N. Abrams,
Inc., New York, 1977.

2. Giachino, J.W.i,and Beukema, Henry J. Engineering-
Technical Drafting and Graphics, American Technical
Society, Chicago, Illinois, 1961.

3. Karp, Jeffrey M. Letter to Hans-Christian Lischewski,
Nikon Incorporated, Garden City, New York, December 27,
1979.

4. Newman, William M. Principles of Interactive Computer
Graphics, McGraw-Hill Book Company, New York, 1979.

5. Nikon, Specification Sheet for the Nikkor 50mm f/1.8
Lens, Japan, 1979.

6. Richardson, Peter, and Adler, R.K. Map Projections:
For Geodesists, Cartographers, and Geographers,
American Elsevier Publishing Company, New York, 1972.

-35-

Appendix

1. All photos in this thesis are polaroid hardcopies

of digital images stored on the Architecture Machine.

2. Program Listings:

Twirl - image interpolation

Turnwrap - cylindrical perspective-Volpi unwrapping

Secwrap - linear perspective-Volpi unwrapping

Fishy - Fish-eye straightening

-36-

twirl: proc:

/*

Interpolates a view between two adjacent frames.
For use with aspen footage.
Steve Yelick Feb 26, 1980
*/

dcl 1 split,
2 top fix(7) init(0),
2 bot fix(7);

dcl hw fix defined split:
dcl (i,j.flag,h,ox,oy,dx,dy,num,cruel) fix:
dcl (addif,dif,inc,here.there,step) fix;
dcl 0 fix(31):
dcl (lex,rex,tey,bey)[0:31 fit;
dcl (lext,rext,teyt,beyt) fit;
dcl (lelx,lely,relx,rely,telx,tely,belx,bely) fit;
dcl (le2x,le2y,re2xre2y,te2x,te2y,be2x,be2y) fit;
dcl (incy,samyl.,samy2) fit;
dcl (Irot,rrot.f.vangle,hlly) fit:
dcl (lcos,lsin,rcos,rsin,px,pz,nx,nz,dis,d,t,tx,tytz,temx,temz) fit:
dcl pa fix:
dcl (vf,vfsqrd,vfactor,fsqrd.xsqrd,picangle,samx,samy) fit:
dcl (xorgx,y,rad) fit;
dcl start fix;
dcl (vert,numa,offa)[0:479] fix;
dcl big[0:0] fix(7) based; /* really 0:30719 */
dcl p[0:9] ptr:
dcl dn char(168)vary;
dcl (stringstrsav,strl,str,name) char(32)vary;
dcl dot[O:3] char(l);
dcl (rightview,view) fix;
dcl (pat,mat)[O:255] bit(24);
dcl ch[0:4J char(1);
dcl (systemao,break) cond;

dcl camera$attach entry;
dcl camera entry (fix):
dcl cursor entry(fix,fix);
dcl (ram$refcm,ram$defcm) entry(bit(24),fixed,fixed);
dcl tab$big entry (fix,fix,fix.bit(8));
dcl (ram$writeblock) entry (fix,fix,fix,fix,fix):
dcl (math$atan,math$sqrtmath$cos,math$sin) entry (fit) rtns (fit);
dcl hcs$initiate entry (char(168)vary,char(32)vary,ptr,fix(31));
dcl hcs$terminate entry (ptr);
dcl (comerror,askn,ioa,ioan) entry options (variable):
dcl scs$cl entry options(variable);

ch[0='O';
ch[ll]=1":
ch[21='2":

ch[3]='3";
ch[4]='4";
call camera$attach;
on systemao begin: call ioan('SYSTEMAO'); end;

do oy = 0 to 479;
num = oy/48;
numaloy] = num;
offa[oy] = (oy-num*48)*640:

end;
call askn ('What is the view? (must be 8 bit) ",string);

dot[O]='e';
dot[1]='';
dot[2]=Ww';
dot[3]="n';
do view=0 to 3;

call scs$cl('loadpic |I Istring V'."1 Idot[viewl :" -nz');
call ioa('Tap left edge");
call cursor(i,j);
lex[view]=i;
call ioa('Tap right edge");
call cursor(i,j);
rex[view]=i;
call ioa('Tap top edge");
call cursor(i,j);
tey[view]=j;
call ioa('Tap bottom edge');
call cursor(i,j);
bey[view]=j;

end;

do view=0 to 3;
rightview=view+1;
if rightview=4 then rightview=O;
lelx=lex[viewJ; le2x=lex[rightview];
re1x=rex[view]; re2x=rex[rightview];
tely=tey[view]; te2y=tey[rightview];
bely=bey[view]; be2y=bey[rightview];
str=stringl I ". Idot[view];
str l=string l I "." I I dot[rightview];
do pa=O to 80 by 10;
vangle=pa;
picangle=85;
vfactor=1;

hl1y=(be1y-te 1 y)/2.+te1y;

rad=(picangle/2.)/360.*2*3.14159;

vf=(relx-lelx)/2.;
vf=vf/(math$sin(rad)/math$cos(rad));

f=vfactor*320./(math$sin(rad)/math$cos(rad));
picangle=rad*2.;
vangle=(vangle/360.)*2.*3.1 4169;
start=O;
flag=O;
inc=0;

call scs$cl('loadcm >pix>') Istrl° '1I >strl);

call ram$refcm(mat,0,255);
call scs$cl('loadcm >pix>" I|I str I' ">' I str);
call ram$refcm(pat,0,255);
call ram$defcm(mat[2556],51 1,11);

call ram$defcm(pat,0,256);
call ram$defcm(mat,256,51 0);

Irot=vangle;
rrot=vangle-(3.14159/2.);

i=rrot/(2.*3.14159)*360.;
call ioa('Pictures are ^i degrees apart.",i);
Icos=math$cos(lrot); lsin=math$sin(lrot);
rcos=math$cos(rrot); rsin=math$sin(rrot);
fsqrd=f*f;
vfsqrd=vf*vf;
lext=lelx; rext=relx; teyt=tely; beyt=bely;
px=vf*(-lsin):
pz=vf*(lcos);
nx=-Isin;
nz=lcos;
strsav=str;

call ioa('down to out');
out: if flag"=0O then do;

vf=(re2x-le2x)/2.;
vf=vf/(math$sin(rad)/math$cos(rad));
lext=le2x; rext=re2x; teyt=te2y; beyt=be2y;
px=vf*(-rsin);
pz=vf*rcos;
nx=-rsin;
nz=rcos;

Icos=rcos;
Isin=rsin;
strsav=str;
str=strl;

hi 1 y=(be2y-te2y)/2.+te2y;
inc=256;

do cruel=0O to 9;
call hcs$terminate (p[cruell);

end;
end;

dn = ">pix>"' Istr;
do cruel = 0 to 9 by 2;

call ioa("cruel fucking loop ^i',cruel);
name = str 1 ".pic'l I ch[cruel/2];
call hcs$initiate (dn,name,p[cruel],0);

call ioa("the initiate actually occured'):
if 0(0 then do;

call corn_error (O,twirl',name);
return;

end;
call ioa('Lets play pointers!!');

p[cruel+1] = addrel(p[cruel],30720);
call ioa('Still there? Here ew go again');

end;

call ioa('done with pic file intialization.');

on break begin; goto done; end;

d=px*nx+pz*nz;

do i = start to 639;

x=i-320.;

xsqrd=x*x;
dis=math$sqrt(2 40.*240.+xsqrd+fsqrd);
tx=x/dis;
ty=240./dis;
tz=f/dis;
t=d/(nx*tx-+nz*tz);
temx=tx*t;
temz=tz*t;
samx=temx*lcos+temz*lsin+320.;

if flag=O then if samx)relx then do
start=i;
flag=1;
goto out;

end;

samyl=-ty*t+hl1y;
samy2=ty*t+hl 1 ly;
incy=(samy2-samyl)/480.;
samy=samyl;

do j = 0 to 479;

samy=samy+incy;
ox=samx; oy=samy;

if ox=dx then if oy=dy then do; /* same spot as last time? */
vert[j] = hw+inc;
goto skiptheshit;

end;
hw = 0;

if oy)=teyt then if oy<=beyt then if ox)=lext then if ox<=rext then do;
num = numa[oy]; /* remember: (-23)/48=0 */
bot = p[num]-)big[offa[oy]+ox];
dx = ox;

dy = oy;

vert[j]=hw+inc;
goto skipthe-shit;

end;
vert[j] = hw;

skiptheshit:

end;

call ram$writeblock (i,0,i,479,vert);

end;

done:

do cruel = 0 to 9 by 2;
call hcs$terminate (p[cruel]);

end;
str=strsav;
/*go to loop;
*/call cam

call camera(2 1);

end;

end;

getpt: proc (x,y);

dcl (x,y,z) fix;

dcl stat bit(8);

do z=0 while (z=0);

call tab$big (x,y,z,stat);

end;

do while (z<O);

call tab$big (x,y,z,stat);

end;

call ioan ('\g");

end getpt;

end twirl;

turnwrap: proc;

/*

Volpi unwrapping program for synthesized turn filming.

by Steve Yelick 22 Feb 80
*/

dcl 1 split,
2 top fix(7) init(0),
2 bot fix(7);

dcl hw fix defined split;
dcl (ax.z,lineh,x,y,ox.oy,cx,cy,tx,ty,px.py,num,cruel) fix;
dcl (here,there,step) fix;
dcl 0 fix(31);
dcl (savxsavy) fix;
dcl ang fix:
dcl (U,F.T,X1,X2,YLY2,X,Y,DX,DY,R ,R2,R3,R4,ANGLE,DANGLE) fit;
dcl (ASINA,COSA,SINT,COST) flt;
dcl (numa,offa)[O:479] fix;
dcl vert[0:479,0:9] fix;
dcl big[O:0] fix(7) based; /* really 0:30719 */
dcl p[0:9] ptr;
dcl dn char(168)vary;
dcl (str,name) char(32)vary;
dcl up char(l);
dcl (break,systemao) cond;
dcl (correct,correct2,correct3) fit;
dcl DIO:479] fit;
dcl (ij) fix;
dcl xrad[1:6] flt;
dcl (B,EE.FYFAX,E) fit;
dcl yrad[1:6] fit;
dcl (sx,sy)fix;

dcl camera$attach entry;
dcl camera entry(fix);
dcl char[0:4] char(l);
dcl cursor entry(fix,fix);
dcl ram$defcm entry(bit(24),fix,fix);
dcl (ram$rect,ram$write block) entry (fix,fix,fix,fix,fix);
dcl (math$atan,math$sqrt,math$cos,math$sin) entry (fit) rtns (fit);
dcl hcs$initiate entry (char(168)vary,char(32)vary,ptr,fix(31));
dcl hcs$terminate entry (ptr);
dcl (com_error,askn,ioa,ioan) entry options (variable);
dcl scs$cl entry options(variable);

char[O]=-O"'
char[]-"''1;
char[2]='2";
char[3]='3";
char[4]='4':
call camera$attach; /* attach the Matrix */

on systemao begin; call ioan ('SYSTEMAO "); end;

do oy = 0 to 479; /* initialize lookup tables */

num = oy/48;
numa[oy] = num;
offa[oy] = (oy-num*48)*640;

end;

call askn ('which picture to unwrap? (must be 8 bit) ',str);
dn = ')pix)" Istr:
do cruel = 0 to 9 by 2; /* initiate picture segments */

name = stri l'.pic' Ichar[cruel/2];
call hcs$initiate (dn,name,p[cruel],O);
if 0(0 then do;

call comrn_error (O,"turnwrap',name);
return;

end;
p[cruel+1] = addrel(p[cruell,30720);

end;
call askn ("was the camera pointing up or down? (u or d) ",up);

do i=1 to 3; /* three points on inner radius */
call ioa('Tap Inner Radius');
call cursor(tx,ty);
xrad[i]=tx:yrad[i]=ty;
dall ioa("x=^f,y=^f',xrad[ilyrad[il);

end;
do i=4 to 6: /* three points on outer radius */

call ioa('Tap Outer Radius');
call cursor(tx,ty);
xrad[il=tx;yrad[i]=ty;

/* call ioa('x=^f,y=^ff,xrad[i]yrad[i]):*/
end;
call ioa('Tap left edge "); /* point to start unwrapping */
call cursor(sx,sy);

/* calculate the center */
call center(xrad[l],yrad[llxrad[2],yrad[2],xrad[3],yrad[3].DX.DY);
tx=DX;ty=DY;
call ioa('centerl x=^i y-=i',tx.ty):

call center(xrad[4],yrad[4],xrad[5],yrad[5],xrad[6],yrad[6],DX,DY):
cx=DX;cy=DY:
call ioa('center2 x=^i,y=^i',cx,cy):

cx=(cx+tx)/2;

cy=(cy+ty)/2;

call ram$defcm('ffffff'b4,500,500);/* mark center of image */

call ram$rect(cxcy-6,cx,cy+5,500);
call ram $rect(cx-S,cy,cx+Scy.S 00);
DX=xrad[2]-cx:; DY=yrad[2J-cy;
R =math$sqrt(DX*DX+DY*DY);
DX=xrad[S]-cx:; DY=yrad[S]-cy;
R2=math$sqrt(DX*DX+DY*DY):

h = 480; /* hieght in pixels */

if up='u" then do; here = 0; there = h-l; step = 1; end;

else do; here = h-1; there = 0; step = -1; end;

T = (108.84/180.)*3.1415928/640.;/* horizontal angle per pixel */

COST=math$cos(T);
savx=sx;

savy=sy;
SINT=math$sin(T);

do ang=O to 38; /* take a picture every 10 degrees */

call ioa("View #A^iang);

X1=savx-cx; Y1=savy-cy; /* set up sample radius */

R3=math$sqrt(Xl*Xi +Y1*Yi);

X1=X1*(R2/R3);
Y1=-Y1*(R2/R3);

px = -1;

py = -1;
on break begin; goto done; end;

do x = 0 to 639; /* horizontal pixel loop */

line--x-((x/1 0)*1 0);

/* call ioan ('"3i ".x);*/

/* call ram$cursor (1,0,1,cx+X1.cy+Y1);*/

X = X1;

Y = Y1;

if x(6400/108 then do; /* linear unwrapping */

savy=cy-Y;

savx=cx+X;

end;

do y = here to there by step;/* vertical pixel loop */

ox = Cx+X;
oy = cy-Y;

if ox=px then if oy=py then do; /* same spot as last time? */

vert[y,line] = hw;

goto skiptheshit;

end;

hw = 0;

if oy)=O then if oy(=479 then if ox)=O then if ox(=839 then do;

num = numaloy]; /* remember: (-23)/48=0 */

bot = p[num]-)big[offa[oy]+ox];

px = ox;

py = oy;
end;

vert[y,line] = hw;

skiptheshit:

if x=0 then do; /* initialize vertical distartion tables */

correct=l-y/(h-1.0);

/* D[y]=-0.0 12+0.629*correct- 1.048*correct*correct+*/

/* 4.486*correct*correct*correct+*/

/* 1.385*correct*correct*correct*correct-*/

/* 8.957*correct*correct*correct*correct*correct+*/

/* 4.599*correct*correct*correct*correct*correct*correct;*/

if y)239 then

D[y]=(math$sin(3.14159*correct-3.14159/2.)+1.)/2.;

else D[y]=correct;

X= 1-(X 1*(1 -R 1/R2))*(1 -D[y]);
Y=Y 1 -(Y 1*(1 -R 1/R 2))*(1-D[y]);

end;

else do;

X=X1-(X1*(1-R1/R2))*(1-D[y]);/* calculate next sample */

Y= Y 1-(Y 1*(I -R 1/R 2))*(-D[yD;

end;

end;

= (COST*X1+SINT*Y1);
= (COST*Y1 -SINT*X 1);
= X2;

/* next sample radius */

if line=9 then
call ram$writeblock (x-9,0,x,h-l.vert);/* write to screen */

end;
call camera(l 1);
end;

/* take a picture */

done:
/* call ram$cursor (0,0,0,0,0);*/
/* call ram$cursor (1,0,0,0,0);*/

do cruel = 0 to 9 by 2;
call hcs$terminate (p[cruel]);

end;

perpend:proc(xl,ylx2,y2,xm,ym,slope);

/* subroutine to calculate the equation
of a line perpendicular to two points*/

dcl (xl,x2,yl,y2,xmym,slope)flt;

slope=-(x2-xl)/(y2-yl);
xm=(x2+xl)/2.;
ym=(y2+yl)/2.;

end perpend;

center: proc(xl ,yl ,x2,y2,x3,y3,xcen,ycen);

/* subroutine to calculate the center of a circle defined by 3 points */
dcl(xl,x2,x3,yl,y 2 ,y3,xcen,ycen)flt;
dcl a[20,21] flt;
dcl (xa,ya,slopa) fit;
dcl (xd,yd) flt;
dcl (i,j) fix;

do i=1 to 2;
if i=1 then do;

xd=x1;
yd=yl;

end;
else do;

xd=x3;
yd=y3;

end;
call perpend(xd,yd,x2,y2,xa,ya,slopa);
a[i,1]=-slopa;

a[i,2]=1;

a[i,3]=ya-slopa*xa;
end;

call solve(2,a);
xcen=a[1l,3];
ycen=a[2,3];

end center;

solve: proc(order,array);

/* subroutine to solve an n order array */

dcl array[20,21] flt;
dcl (order,m,n.ll1,2,rl.13.x,y) fix;
dcl r2 fit;
m=order; n=order+l;

do x=1 to m;
rl = m;

do 11=m-1 to x by -1;
if (array[rl,x]*array[rl,x]) < (array[ll,x]*array[ll,x]) then rl=11;

end;
do 12= n to x by -1;

r2= fna(fna(array[rl.,12)/fna(array[rl ,x));

array[rl,12]= array[x,12];

array[x,12]= r2;
end;
array[x,x]=l;
do y = 1 to m;

if x'=y then do;
do 13= x+1 to n;

array[y,13]= n a(array[y,l 3])-fna(fna(array[x,131)*

fna(array[y,x]));
end;
array[y,x]=0;

end:
end;

end;
end solve;

fna: proc(x) returns(flt);
dcl x fit; dcl y fix;

return(x);
end fna;

end turnwrap;

secwrap: proc;

/*

Linear perspective Volpi unwrapping program

by Steve Yelick
*/

dcl 1 split,

2 top fix(7) init(0),

2 bot fix(7);

dcl hw fix defined split;

dcl (ax,z,line,h,x,y,ox,oy,cx,cy,tx,ty,px,py,num,cruel) fix;

dcl (here,there,step) fix;

dcl O fix(31);

dcl (U,F,T,X1 ,X2,Y1 ,Y2,X,Y,DX,DY,R 1 ,R2,R3,R4,ANGLE,DANGLE) fit;

dcl (SINT,COST) fit;

dcl (numa,offa)[0:479] fix;

dcl vert[0:479,0:9] fix;

dcl big[0:0] fix(7) based; /* really 0:30719 */

dcl p[0:9) ptr;

dcl dn char(168)vary;

dcl (str,name) char(32)vary;

dcl up char(1);

dcl (break,systemao) cond;

dcl (correct,correct2,correct3) fit;

dcl D[0:479] fit;

dcl (i,j) fix;

dcl xrad[l:6] fit;

dcl (A,B,EE,FY,FAX,E) fit;

dcl yrad[l:6J fit;

dcl (sx,sy)fix;

dcl solve entry(fix,flt);

dcl tab$big entry (fix,fix,fix,bit(8));

dcl (ram$cursor,ram$write_block) entry (fix,fix,fix,fix,fix);

dcl (math$atan,math$sqrt,math$cos,math$sin) entry (flt) rtns (flt);

dcl hcs$initiate entry (char(168)vary,char(32)vary,ptr,fix(31));

dcl hcs$terminate entry (ptr);

dcl (com_error,askn,ioa,ioan) entry options (variable);

dcl scs$cl entry options(variable);

on systemao begin; call ioan ('SYSTEMAO "); end;

do oy = 0 to 479;
num = oy/48;

numa[oy] = num;

offa[oy] = (oy-num*48)*640;

end;

call askn ('which picture to unwrap? (must be 8 bit) ",str);

dn = ">)pix>" I str;

do cruel = 0 to 9 by 2;

name = strl '.pic'l Ichar(cruel/2,1);

call hcs$initiate (dn,name,p[cruel],O);

if 0(0 then do;

call com_error (O,"secwrap',name);

return;

end;

plcruel+1] = addrel(p[cruell,30720);

end;
call askn ("was the camera pointing up or down? (u or d) ",up);

do i=1 to 3;
call ioa('Tap Inner Radius');
call getpt(tx,ty);
xrad[i]=tx;yrad[i]=ty;

call ioa('x=^f,y=^f'.xrad[i],yradlil);
end;
do i=4 to 6;

call ioa('Tap Outer Radius');
call getpt(tx,ty);
xrad5i]=tx:yrad[i]=ty;

/* call ioa('x=^f.y=^f°,xrad[il,yrad[il])*/
end;
call ioa('Tap left edge at horizon');
call getpt(sx.,sy);

call ioa('Tap another horizon point');
call getpt(x,y):

call ram$cursor(0.0,0,0);
call ram$cursor(1,0,0,0,0);
call scs$cl('tmr tab');
call center(xrad[l],yrad[1xrad2],yrad],rad[3],yrad[31,DX,DY);
tx=DX;ty=DY:
call ioa("centerl x=^i y=^i',tx,ty);
call center(xrad4]yradrad xrad rad[Slxrad[S6,yrad[6,DX,DY)
cx=DX;cy=DY:
call ioa('center2 x=^i,y=^i',cx,cy);
cx=(cx+tx)/2;
cy=(cy+ty)/2;

DX=xrad[2]-cx; DY=yrad[2J-cy;
R I =math $sqrt(DX*DX+DY*DY);
DX=xrad[S]-cx: DY=yrad[SJ-cy;
R2=math$sqrt(DX*DX+DY*DY);

h = 480:

if up='u" then do; here = 0; there = h-l; step = 1; end;
else do; here = h-l; there = 0; step = -1; end;

E=320J(math$sin(46./360.*2.*3.14159)/math$cos(45./360.*2.*3.14159));

X2=x-cx; Y2=y-cy;
R4=math$sqrt(X2*X2+Y2*Y2);
x=480.*((R 2 -R 4)/(R 2-R 1)):

X2=X2*(R2/R4);
Y2=-Y2*(R2/R4);

X1=sx-cx: Y1=sy-cy:
sx=x:

R3=math$sqrt(X1*X1+Yl*Y1);
X1=X1*(R2/R3);
Y1=-Y *(R2/R3);
sy=480.*((R2-R3)/(R 2 -R 1)):
call ioan('Horizon = ^i',sy):

call ioan("Horizon test = ^i',sx)

X=X2-X1; Y=Y2-Y1;

T=math$sqrt(X*X+Y*Y)/2.;

ANGLE= 2 *math$atan(T/math$sqrt(R 2*R 2-T*T));

DANGLE=0;

px = -1;

py = -1;
on break begin; goto done; end:

EE=0;

do x = 0 to 639;

line=x-((x/1 0)*1 0);

/* call ioan ('^3i ",x);*/

/* call ram$cursor (1,0,1,cx+X1,cy+Y1);*/

X = X1;

Y = Y1;

do y = here to there by step;

ox = cx+X;

oy = cy-Y;

if ox=px then if oy=py then do; /* same spot as last time? */

vert[y,line] = hw;

goto skipthe....shit;

end;

hw = 0:;
if oy)=O then if oy(=479 then if ox)=O then if ox(=639 then do;

num = numa[oy]; /* remember: (-23)/48=0 */

bot = p[num]-)big[offa[oy]+ox];

pX = OX;

py = oy;
end;

vert[y,line] = hw;

skip_the_shit:

ax=x-320;

FAX=ax;

FY=y;

EE=sy+(sx-sy)*(DANGLE)/ANGLE:

z=EE-((EE-FY)*(E/math$sqrt(FAX*FAX+E*E)));

if x=0 then do;

correct=l -y/(h-1.0);

D[y]=(math$sin(3.14159*correct-3.14159/2.)+1.)/2.;

X=X1-(X1*(1-R1/R2))*(1-D[z]);
Y=Y I -(Y I *(1 -R1/R 2))*(1 -D[zl);

end;

else do;

X=X -(X1*(1 -R1/R2))*(1-D[z]);
Y=Y 1 -(Y 1 *(I -R 1/R 2))*(1 -D[z]);

end;

end;
ax=x-32 0;
if ax(0O then j=ax+1;

else j=ax-1;

FAX=ax;
FY=j;
DANGLE=((45.*2.*3.14159)/360.)+math$atan(FY/E);

A=math$sqrt(E*E+FAX*FAX);
B=math$sqrt(E*E+FY*FY);
T=-(1.-A*A-B*B)/(2.*B);
COST=T/A;
SINT=math$sqrt(1.-COST*COST);

X2 = (COST*XI+SINT*Y1);
Y1 = (COST*Y1-SINT*X1);
XI = X2;

if line=9 then
call ram$writeblock (x-9,0,x,h-1,vert);

end;

done:
/* call ram$cursor (0,0,0.0,0);*/
/* call ram$cursor (1,0,0,0,0);*/

do cruel = 0 to 9 by 2;
call hcs$terminate (p[cruell);

end;

getpt: proc (x,y);
dcl (x,y,z) fix;
dcl stat bit(8);

do z=0 while (z=0);
call tab$big (x,y,z,stat);

end;
do while (z(O);

call tab$big (x.y,z,stat);
end;
call ioan ('\Og);

end getpt;

perpend:proc(x 1 ,yl,x2,y2,xm,ymslope);

dcl (xl,x2,yl,y2,xm,ym,slope)flt;

slope=-(x2-xl)/(y2-yl);
xm=(x2+xl)/2.;
ym=(y2+yl)/2.;

end perpend;

center: proc(x 1,yl,x2,y2,x3,y3,xcen,ycen);

dcl(x 1,x2,x3,yl,y2,y3,xcen,ycen)flt;
dcl a[20,21] fit;
dcl (xa,ya,slopa) fit;
dcl (xd,yd) fit;
dcl (i,j) fix:

do i=l1 to 2;
if i=l1 then do;

xd=x1;
yd=y1:

end:
else do;

xd=x3:
yd=y3;

end;
call perpend(xd,yd,x2.y2,xa,ya,slopa):
ali,1]=-slopa;
a[i,2]=1;
a[i,3]=ya-slopa*xa;

end;

call solve(2,a);
xcen=a[1,3];
ycen=a[2,3];

end center;

end secwrap;

fishy: proc;

6mm fish-eye images projected to linear perspective

Steve Yelick 4 March 80
*/

dcl 1 split,
2 top fix(7) init(0),
2 bot fix(7);

dcl hw fix defined split;
dcl (ax~z,line,hx,y,oxoy,cx,cy,tx,ty,px,py,num,cruel) fix;
dcl 0 fix(31);
dcl (XX,YY,ysin,ycos) fit;
dcl char[0:4] char(1);
dcl (f,vy,vx,vz,theta,stheta,yphi,phi,r,samxsamyDX,DYR1) fit;
dcl (X,Y) fit;
dcl (numa,offa)[0:479] fix:
dcl vert[0:479,0:9J fix;
dcl big[0:0] fix(7) based; /* really 0:30719 */
dcl p[0:9] ptr;
dcl dn char(168)vary;
dcl (str,name) char(32)vary;
dcl up char(l);
dcl (break,systemao) cond;
dcl (correct,correct2,correct3) fit;
dcl D[0:479] fit;
dcl (i,j) fix;
dcl xrad[1:6] fit;
dcl (A,B,EE,FY,FAX,E) fit;
dcl yrad[1:6] fit:
dcl (sx,sy)fix;

dcl cursor entry(fix,fix);
dcl (ram$cursorram$writeblock) entry (fix,fixfix,fix,fix);
dcl (math$atan,math$sqrtmath$cos,math$sin) entry (fit) rtns (flt);

dcl math$atan2 entry(flt,flt) rtns(flt);

dcl hcs$initiate entry (char(168)varychar(32)vary.ptr,fix(31));
dcl hcs$terminate entry (ptr);
dcl (com_error,askn,ioa,ioan) entry options (variable);

dcl scs$cl entry options(variable);

char[0]='0";
char[1]"'1";
char[2]='2";
char[3]='3";
char[4]='4";

on systemao begin; call ioan ('SYSTEMAO "); end:

do oy = 0 to 479;
num = oy/48;

numa[oy] = num;
offa[oy] = (oy-num*48)*640:

end:
call askn ('which picture to unwrap? (must be 8 bit) ",str):
dn =)>pix)"' Istr:
do cruel = 0 to 9 by 2;

name = str l".pic' char[cruel/2];

call hcs$initiate (dn,name,p[cruel],O);
if 0(0 then do;

call comrn_error (O,'fishy',name);
return;

end;
p[cruel+1] = addrel(p[cruel],30720);

end;

do i=l1 to 3;
call ioa(CTap Outer Radius");
call cursor(tx,ty);
xrad[i]=tx;yradli]=ty;
call ioa('x=^fy=^f",xrad[il,yrad[i);

end;

call center(xrad[l],yrad[1],xrad[2],yrad[21.xrad[3],yrad[31,DX,DY);
cx=DX;cy=DY;
call ioa(°center x=^i,y=^Ai,cx,cy);

DX=xrad[2]-cx; DY=yrad[2]-cy;
R 1 =math $sqrt(DX*DX+DY*DY);

call ioa('Tap subject');
call cursor(sx,sy);
yphi=-(math$sqrt((sx-cx)*(sx-cx)+ (cy-sy)*(cy-sy))/R 10.*3.14159/180.;
call askn('What is the view focal length?(try 30)^f',f);
f=(f*320.)/17.5;
ysin=math$sin(yphi); ycos=math$cos(yphi);

XX=sx-cx;
YY=cy-sy;

stheta=math$atan2(YY,XX);

px = -1;

py = -1;

on break begin; goto done; end;

do x = 0 to 639;
X=X;
line=x-((x/1 0)*1 0);
vx=x-320.;

do y=0 to 479;
Y=y;

vy=(240.-Y)*ycos+f*ysin;
vz=-(2 40.-Y)*ysin+f*ycos;

theta=math$atan2(vx,-vy);

phi=math$atan 2(math$sqrt(vx*vx+vy*vy),vz);

r=phi/(110.*3.14159/180.)*R1;

samx=r*math $cos(theta+stheta)+cx;
samy=cy-r*math$sin(theta+stheta);

ox=samx; oy=samy;

if ox=px then if oy=py then do; /* same spot as last time? */
vert[y,line] = hw;

goto skiptheshit;
end;
hw = 0:

if oy)=O then if oy(=479 then if ox)=O then if ox(=639 then do;
num = numaloy]; /* remember: (-23)/48=0 */

bot = p[num]-)big[offa[oy]+ox];

pX = ox;

py = oy;
end;
vert[y,line] = hw;

skiptheshit:

end;

if line=9 then

call ram$writeblock (x-9,0,x,479,vert):

end;

done:
/* call ram$cursor (0,0,O,0,0);*/
/* call ram$cursor (1,0,0,0,0);*/

do cruel = 0 to 9 by 2;
call hcs$terminate (p[cruell);

end;

perpend:proc(xl,yl,x2,y2,xm,ym,slope);

dcl (x l, 2,y1,y2,xm,ym,slope)flt;

slope=-(x2-xl)/(y2-yl);
xm=(x2+xl)/2.;
ym=(y2+yl)/2.;

end perpend;

center: proc(xl,y 1,x2,y2,x3,y3,xcen,ycen);

dcl(x 1,x2,x3,yl,y2,y3,xcen,ycen)flt;
dcl a[20,21] fit;
dcl (xa,ya,slopa) fit;
dcl (xd,yd) fit;
dcl (i,j) fix;

do i=l1 to 2,
if i=1 then do;

xd=Lx 1
yd=yl,

end;
else do;

xd=x3;
yd=y3:

end;

call perpend(xdyd,x2.y2.xa.ya.slopa);

a[i,l]=-slopa;
a[i,2]=1;
a[i,3]=ya-slopa*xa;

end;

call solve(2,a);

xcen=a[1 ,3];
ycen=a[2,3];

end center;

solve: proc(order,array);
dcl array[20,21] fit;
dcl (order,m,n.ll,12,rl,13,x,y) fix;
dcl r2 fit;
m=order; n=order+1;

do x=l1 to m;
rl = m;
do 11=m-1 to x by -1;

if (array[rl,x]*array[rl,x]) < (array[ll,x]*array[llx]) then r=l11;
end;
do 12= n to x by -1;

r2= fna(fna(array[rl,1 2)/fna(array[rl,x]));
array[rl,12]= array[x,12];
array[x,12]= r2;

end;

array[x,x] = 1;
do y = 1 to m;

if x"=y then do;
do 13= x+1 to n;

array[y,13]= fna(array[y,13])-fna(fna(array[x,13])*
fna(array[y,x]));

end;
array[y,x]=0;

end;
end;

end;
end solve;

fna: proc(x) returns(flt);
dcl x fit; dcl y fix;

return(x);
end fna;

end fishy;

Acknowledgements

I would like to thank Andy Lippman for the

opportunity to prepare this thesis, and for contin-

uing direction during the work. I would also like

to thank Paul Heckbert for programming assistance;

Christian Lischewski for many of the original images;

and Mike Naimark for raising pertinent questions.

