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Abstract
The recent switch to parallel microprocessorsnslastone in the history of computing.
Industry has laid out a roadmap for multicore desitpat preserves the programming
paradigm of the past via binary compatibility aralee coherence. Conventional wisdom
is now to double the number of cores on a chip eébh silicon generation.

A multidisciplinary group of Berkeley researcherstmearly two years to discuss this
change. Our view is that this evolutionary appro@cparallel hardware and software
may work from 2 or 8 processor systems, but idyike face diminishing returns as 16
and 32 processor systems are realized, just asnsdll with greater instruction-level
parallelism.

We believe that much can be learned by examiniagtitcess of parallelism at the
extremes of the computing spectrum, namely embeddegbuting and high performance
computing. This led us to frame the parallel lamgecwith seven questions, and to
recommend the following:

* The overarching goal should be to make it easyrite\wrograms that execute
efficiently on highly parallel computing systems

» The target should be 1000s of cores per chip,esetbhips are built from
processing elements that are the most efficieMIPS (Million Instructions per
Second) per watt, MIPS per area of silicon, and $/jler development dollar.

* Instead of traditional benchmarks, use 13 “Dwatfstiesign and evaluate parallel
programming models and architectures. (A dwarhiglgorithmic method that
captures a pattern of computation and communication

* “Autotuners” should play a larger role than convemal compilers in translating
parallel programs.

* To maximize programmer productivity, future programg models must be
more human-centric than the conventional focusardware or applications.

* To be successful, programming models should bepenitent of the number of
processors.

* To maximize application efficiency, programming retsdshould support a wide
range of data types and successful models of pasati: task-level parallelism,
word-level parallelism, and bit-level parallelism.
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* Architects should not include features that sigaifitly affect performance or
energy if programmers cannot accurately measureithpact via performance
counters and energy counters.

» Traditional operating systems will be deconstru@ed operating system
functionality will be orchestrated using librari@sd virtual machines.

* To explore the design space rapidly, use systeniadons based on Field
Programmable Gate Arrays (FPGASs) that are highdyedde and low cost.

Since real world applications are naturally pataled hardware is naturally parallel,
what we need is a programming model, system sodtveard a supporting architecture
that are naturally parallel. Researchers haveateeapportunity to re-invent these
cornerstones of computing, provided they simplifg efficient programming of highly
parallel systems.



The Landscape of Parallel Computing Research: Av\ieom Berkeley

1.0 Introduction

The computing industry changed course in 2005 whiah followed the lead of IBM’s
Power 4 and Sun Microsystems’ Niagara processanimouncing that its high
performance microprocessors would henceforth relynaltiple processors or cores. The
new industry buzzwordrulticore captures the plan of doubling the number of séadd
cores per die with every semiconductor processrgéoa starting with a single
processor. Multicore will obviously help multipr@mmed workloads, which contain a
mix of independent sequential tasks, but how wilividual tasks become faster?
Switching from sequential to modestly parallel canimpy will make programming much
more difficult without rewarding this greater effovith a dramatic improvement in
power-performance. Hence, multicore is unlikelypéothe ideal answer.

A diverse group of University of California at Betky researchers from many
backgrounds—circuit design, computer architectomassively parallel computing,
computer-aided design, embedded hardware and seftm@gramming languages,
compilers, scientific programming, and numericalgsis—met between February 2005
and December 2006 to discuss parallelism from thesgy angles. We borrowed the
good ideas regarding parallelism from differentgiBnes, and this report is the result.
We concluded that sneaking up on the problem dligdism via multicore solutions was
likely to fail and wedesperatelyneed a new solution for parallel hardware andisot.

Applications Hardware
Tension between

1. What are the Embedded & Server 3. What are the

applications? Computing hardware
building blocks?

2. What are

common 4. How to

kernels of the Programming Models connect them?

applications? 5. How to describe applications and

kernels?
6. How to program the hardware?

Evaluation:
7. How to measure success?

Figure 1. A view from Berkeley: seven critical questions for 21% Century parallel computing.
(This figure is inspired by a view of the Golden Gate Bridge from Berkeley.)

Although compatibility with old binaries and C pragns is valuable to industry, and
some researchers are trying to help multicore proghans succeed, we have been
thinking bolder thoughts. Our aim is to realizeubands of processors on a chip for new
applications, and we welcome new programming moaledsnew architectures if they
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simplify the efficient programming of such highlgnallel systems. Rather than
multicore, we are focused omanycoré. Successful manycore architectures and
supporting software technologies could reset mimogssor hardware and software
roadmaps for the next 30 years.

Figure 1 shows the seven critical questions we tsé&@me the landscape of parallel
computing research. We do not claim to have thevarssin this report, but we do offer
non-conventional and provocative perspectives amesguestions and state seemingly
obvious but sometimes-neglected perspectives @rth

Note that there is a tension between embeddedighghlrformance computing, which
surfaced in many of our discussions. We arguettteste two ends of the computing
spectrum have more in common looking forward threay tid in the past. First, both are
concerned with power, whether it is battery life dell phones or the cost of electricity
and cooling in a data center. Second, both areectoed with hardware utilization.
Embedded systems are always sensitive to cosgfticient use of hardware is also
required when you spend $10M to $100M for high-sexvers. Third, as the size of
embedded software increases over time, the fraofibiland tuning must be limited and
so the importance of software reuse must incréaa@th, since both embedded and
high-end servers now connect to networks, both te@devent unwanted accesses and
viruses. Thus, the need is increasing for some fafroperating system for protection in
embedded systems, as well as for resource sharthganeduling.

Perhaps the biggest difference between the twetsig the traditional emphasis on real-
time computing in embedded, where the computettlaagrogram need to be just fast
enough to meet the deadlines, and there is no ibémefinning faster. Running faster is
usually valuable in server computing. As serveriappons become more media-
oriented, real time may become more important éover computing as well. This report
borrows many ideas from both embedded and higlopeance computing.

The organization of the report follows the seveadjons of Figure 1. Section 2
documents the reasons for the switch to parallelpeding by providing a number of
guiding principles. Section 3 reviews the left toweFigure 1, which represents the new
applications for parallelism. It describes the wrid “Seven Dwarfs”, which we believe
will be the computational kernels of many futur@légations. Section 4 reviews the right
tower, which is hardware for parallelism, and wpasate the discussion into the classical
categories of processor, memory, and switch. Seéticovers programming models and
Section 6 covers systems software; they form tidgbrthat connects the two towers in
Figure 1. Section 7 discusses measures of sucedstesacribes a new hardware vehicle
for exploring parallel computing. We conclude watlsummary of our perspectives.
Given the breadth of topics we address in the tepar provide 134 references for
readers interested in learning more.

In addition to this report, we also started a wied@nd blog to continue the conversation
about the views expressed in this report. See emus.berkeley.edu.
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2.0 Motivation

The promise of parallelism has fascinated reseasdbe at least three decades. In the
past, parallel computing efforts have shown proraiseé gathered investment, but in the
end, uniprocessor computing always prevailed. Nbetgss, we argue general-purpose
computing is taking an irreversible step towardapiar architectures. What's different
this time? This shift toward increasing parallelisnmot a triumphant stride forward
based on breakthroughs in novel software and aathites for parallelism; instead, this
plunge into parallelism is actually a retreat fremen greater challenges that thwart
efficient silicon implementation of traditional yomocessor architectures.

In the following, we capture a number of guidingnpiples that illustrate precisely how
everything is changing in computing. Following 8tgle ofNewsweekthey are listed as
pairs of outdated conventional wisdoms and theiv replacements. We later refer to
these pairs as C\Wh#
1. Old CW Power is free, but transistors are expensive.
* New CWis the ‘Power wall: Power is expensive, but transistors are “frddiat
IS, we can put more transistors on a chip than ave lthe power to turn on.
2. Old CW If you worry about power, the only concern is dgmc power.
* New CWFor desktops and servers, static power due katgacan be 40% of
total power. (See Section 4.1.)
3. Old CW Monolithic uniprocessors in silicon are reliabiéernally, with errors
occurring only at the pins.

* New CWAs chips drop below 65 nm feature sizes, theyhalehigh soft and
hard error rates. [Borkar 2005] [Mukherjee et @20

4. Old CW By building upon prior successes, we can contiouaise the level of
abstraction and hence the size of hardware designs.

 New CWWire delay, noise, cross coupling (capacitive entictive),
manufacturing variability, reliability (see abovelock jitter, design validation,
and so on conspire to stretch the developmentdimgecost of large designs at 65
nm or smaller feature sizes. (See Section 4.1.)

5. Old CW Researchers demonstrate new architecture idelsiloyng chips.

* New CWThe cost of masks at 65 nm feature size, theafdSkectronic
Computer Aided Design software to design such ¢laipd the cost of design for
GHz clock rates means researchers can no longerirlievable prototypes.
Thus, an alternative approach to evaluating archites must be developed. (See
Section 7.3.)

6. Old CW Performance improvements yield both lower lateaweg higher
bandwidth.

 New CW Across many technologies, bandwidth improvestdgast the square
of the improvement in latency. [Patterson 2004]

7. Old CW Multiply is slow, but load and store is fast.

* New CWis the ‘Memory waltl [Wulf and McKee 1995]: Load and store is slow,
but multiply is fast. Modern microprocessors caketa00 clocks to access
Dynamic Random Access Memory (DRAM), but even flogdpoint multiplies
may take only four clock cycles.
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8. Old CW We can reveal more instruction-level paralleli@bP) via compilers
and architecture innovation. Examples from the padtide branch prediction,
out-of-order execution, speculation, and Very Lémgruction Word systems.

* New CWis the ‘ILP wall”: There are diminishing returns on finding mord°IL
[Hennessy and Patterson 2007]

9. OIld CW Uniprocessor performance doubles every 18 months.

* New CWs Power Wall + Memory Wall + ILP Wall = Brick WalFigure 2 plots
processor performance for almost 30 years. In 208@8ormance is a factor of
three below the traditional doubling every 18 maritiat we enjoyed between
1986 and 2002. The doubling of uniprocessor perdmice may now take 5 years.

10.0Ild CW Don't bother parallelizing your application, asuycan just wait a little
while and run it on a much faster sequential coput

 New CWIt will be a very long wait for a faster sequahttomputer (see above).

11.0Ild CW Increasing clock frequency is the primary metbbanproving
processor performance.

* New CW Increasing parallelism is the primary methodmproving processor
performance. (See Section 4.1.)

12.0Ild CW Less than linear scaling for a multiprocessoiiappon is failure.

* New CWGiven the switch to parallel computing, any spgedia parallelism is a
success.

10000

??%lyear

1000 === m e
100 f----mmmmmm e A

/
10 T----------------- - R e e

1 & T T T T T T T T T T T T T
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Performance (vs. VAX-11/780)

Figure 2. Processor performance improvement between 1992606 using integer SPEC [SPEC 2006]
programs. RISCs helped inspire performance to inghy 52% per year between 1986 and 2002, which
was much faster than the VAX minicomputer improbetiveen 1978 and 1986. Since 2002, performance
has improved less than 20% per year. By 2006, peacs will be a factor of three slower than if pess

had continued at 52% per year. This figure is Fedud in [Hennessy and Patterson 2007].

Although the CW pairs above paint a negative pealout the state of hardware, there
are compensating positives as well. First, Mooke@w continues, so we will soon be
able to put thousands of simple processors onghesiaconomical chip (see Section



The Landscape of Parallel Computing Research: Av\ieom Berkeley

4.1.2). For example, Cisco is shipping a produthwB8 Reduced Instruction Set
Computer (RISC) cores on a single chip in a 130nmegss [Eatherton 2005]. Second,
communication between these processors within@adn have very low latency and
very high bandwidth. These monolithic manycore opcocessors represent a very
different design point from traditional multichiputtiprocessors, and so provide promise
for the development of new architectures and prognang models. Third, the open
source software movement means that the softwac& san evolve much more quickly
than in the past. As an example, note the widedpusa of Ruby on Rails. Version 1.0
appeared in just December 2005.

3.0 Applications and Dwarfs

The left tower of Figure 1 is applications. In adxh to traditional desktop, server,
scientific, and embedded applications, the impagasf consumer products is increasing.

We decided to mine the parallelism experience efigh-performance computing
community to see if there are lessons we can leara broader view of parallel
computing. The hypothesismet that traditional scientific computing is the futuof
parallel computing; it is that the body of knowledgreated in building programs that run
well on massively parallel computers may prove wisefparallelizing future

applications. Furthermore, many of the authors father areas, such as embedded
computing, were surprised at how well future agglans in their domain mapped
closely to problems in scientific computing.

The conventional way to guide and evaluate arctitednnovation is to study a
benchmark suite based on existing programs, suelfEMBC (Embedded
Microprocessor Benchmark Consortium) or SPEC (Steth®erformance Evaluation
Corporation) or SPLASH (Stanford Parallel Applicats for Shared Memory) [EEMBC
2006] [SPEC 2006] [Singh et al 1992] [Woo et al 2P®Dne of the biggest obstacles to
innovation in parallel computing is that it is cemtly unclear how to express a parallel
computation best. Hence, it seems unwise to let afsexisting source code drive an
investigation into parallel computing. There iseed to find a higher level of abstraction
for reasoning about parallel application requireteen

Our goal is to delineate application requirementa manner that is not overly specific to
individual applications or the optimizations useddertain hardware platforms, so that
we can draw broader conclusions about hardwareareggents. Our approach, described
below, is to define a number of “dwarfs”, which ka@apture a pattern of computation
and communication common to a class of importaptiegtions.

3.1 Seven Dwarfs

We were inspired by the work of Phil Colella, widemtified seven numerical methods
that he believed will be important for science andineering for at least the next decade
[Colella 2004]. Figure 3 introduces the Seven Dwjanfhich constitute classes where
membership in a class is defined by similarity@amputation and data movement. The
dwarfs are specified at a high level of abstractmallow reasoning about their behavior
across a broad range of applications. Programsateanembers of a particular class can
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be implemented differently and the underlying nunamethods may change over time,
but the claim is that the underlying patterns haeesisted through generations of
changes and will remain important into the future.

Some evidence for the existence of this particsgdrof “equivalence classes” can be
found in the numerical libraries that have beertlamound these equivalence classes: for
example, FFTW for spectral methods [Frigo and Johri®©98], LAPACK/ScaLAPACK
for dense linear algebra [Blackford et al 1996]] @5KI for sparse linear algebra
[Vuduc et al 2006]. We list these in Figure 3, tinge with the computer architectures
that have been purpose-built for particular dweadsexample, GRAPE for N-body
methods [Tokyo 2006], vector architectures fordinalgebra [Russell 1976], and FFT
accelerators [Zarlink 2006]. Figure 3 also shovesithier-processor communication
patterns exhibited by members of a dwarf when muopion a parallel machine [Vetter
and McCracken 2001] [Vetter and Yoo 2002] [Vetted Meuller 2002] [Kamil et al
2005]. The communication pattern is closely relatethe memory access pattern that
takes place locally on each processor.

3.2 Finding More Dwarfs

The dwarfs present a method for capturing the comraquirements of classes of
applications while being reasonably divorced frowlividual implementations. Although
the nomenclature of the dwarfs comes from Phil [$discussion of scientific
computing applications, we were interested in applygwarfs to a broader array of
computational methods. This led us naturally toftlewing questions:
* How well do the Seven Dwarfs of high performancmpating capture
computation and communication patterns for a broeatege of applications?
* What dwarfs need to be added to cover the missnpgitant areas beyond high
performance computing?
If we find that an expanded set of dwarfs is brgagiplicable, we can use them to guide
innovation and evaluation of new prototypes. Agllas the final list contains no more
than two- or three-dozen dwarfs, architects andnamming model designers can use
them to measure success. For comparison, SPEC2808henchmarks and EEMBC
has 41. Ideally, we would like good performancesasithe set of dwarfs to indicate that
new manycore architectures and programming modélpavform well on applications
of the future.

Dwarfs are specified at a high level of abstractibat can group related but quite
different computational methods. Over time, a sngfvarf can expand to cover such a
disparate variety of methods that it should be e@ws multiple distinct dwarfs. As long
as we do not end up with too many dwarfs, it seerssr to err on the side of embracing
new dwarfs. For example, unstructured grids cowddirierpreted as a sparse matrix
problem, but this would both limit the problem tosmgle level of indirection and
disregard too much additional information abouthablem.
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Dwarf Description Communication Pattern NAS
(Figure axes show Benchmark /
processors 1 to 256, with Example HW
black meaning no
communication)
1. Dense Linear | Data are dense matrices or vectors e R T Block
Algebra (BLAS Level 1 = vector-vector; Triadiagonal
(e g., BL AS Level 2 = matrix-vector; and Level 3 Matrix, Lower
I = matrix-matrix.) Generally, such Upper
[Blackford et al | appiications use unit-stride memory Symmetric
2002], accesses to read data from rows, a Gauss-Seidel /
ScaLAPACK strided accesses to read data from Vector
[Blackford et al columns. computers, Array
1996], or The communication pattern of compulters
MATLAB MadBench, which makes
[MathWorks heavy use of ScaLAPACK fof
2006]) parallel dense linear algebra,|is

typical of a much broader
class of numerical algorithms

2. Sparse Linear

Data sets include many zero values.

SuperLU Point-to-Point Communication (bytes)

Conjugate
Gradient / Vector

Algebra Data is usually stored in compresse
(e.9., SpMV matrices to reduce the storage and < computers with
NN ! bandwidth requirements to access all .. gather/scatter
OSKI [OSKI of the nonzero values. One exampl
2006], or is block compressed sparse row
SuperLU (BCSR). Because of the compresse
[Demmel et al formats, data is generally accessed 7
1999]) with indexed loads and stores. N o
SuperLU (communication
pattern pictured above) uses
the BCSR method for
implementing sparse LU
factorization.
3. Spectral Data are in the frequency domain, as .. peemrmr————— Fourier
Methods opposed to time or spatial domains Transform /
(e.g., FFT Typically, spectral methods use DSPs, Zalink
I multiple butterfly stages, which ) PDSP [Zarlink
[Cooley and combine multiply-add operations and i 2006]
Tukey 1965]) a specific pattern of data

permutation, with all-to-all
communication for some stages an
strictly local for others.

(] 50

PARATEC: The 3D FFT
requires an all-to-all

communication to implement
a 3D transpose, which requiré
communication between ever
link. The diagonal stripe
describes BLAS-3 dominated
linear-algebra step required f

100 0 200 250

orthogonalization.
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Dwarf Description Communication Pattern NAS
(Figure axes show Benchmark /
processors 1 to 256, with Example HW
black meaning no
communication)
4. N-Body Depends on interactions between SR e (no benchmark)
Methods many discrete points. Variations GRAPE
(e.g., Barnes-Huf include particle-particle methods, [Tokyo 2006],
"I where every point depends on all MD-GRAPE
[Barnes and Hut | gthers, leading to an OB\ [IBM 2006]
1986], Fast calculation, and hierarchical particle
Multipole methods, which combine forces or
Method potentials from multiple points to
[Greengard and :gdg(cl\(le Itct;e computational complexit _ j L
. g N) or O(N). B e w0
Rokhlin 1987]) PMEMD’s communication
pattern is that of a particle
mesh Ewald calculation.
5. Structured Represented by a regular grid; points  geasromeron connnens by Multi-Grid,
Grids on grid are concgptually L_deateq S_calar Penta-
(e.g., Cactus together. It has h!gh spatial locality.| diagonal /

! Updates may be in place or between QCDOC
[Goodale et al | 2 versions of the grid. The grid may| [Edinburg 2006],
2003] or Lattice- | be subdivided into finer grids in areps : BlueGeneL
Boltzmann of interest (“Adaptive Mesh
Magneto- Refinement”); and the transition n
hydrodynamics gsav;isiga?l?nularities may happen
[LBMHD 2005]) ' T e

Communication pattern for
Cactus, a PDE solver using 7-
point stencil on 3D block-
structured grids.
6. Unstructured | Anirregular grid where data Unstructured
Grids locations are selected, usually by Adaptive /
(e.g., ABAQUS underlying characteristics of the Vector
N application. Data point location and computers with
[ABAQUS 2006] connectivity of neighboring points gather/scatter,
or FIDAP must be explicit. The points on the Tera Multi
[FLUENT grid are conceptually updated Threaded
2006)) together. Updates typically involve Architecture
multiple levels of memory reference [Berry et al
indirection, as an update to any point 2006]

requires first determining a list of
neighboring points, and then loadin
values from those neighboring
points.

7. Monte Carlo
(e.g., Quantum
Monte Carlo
[Aspuru-Guzik et

al 2005])

Calculations depend on statistical
results of repeated random trials.
Considered embarrassingly parallel

Communication is typically
not dominant in Monte Carlo
. methods.

Embarrassingly
Parallel / NSF
Teragrid

Figure 3. Seven Dwarfs, their descriptions, correspondingshb&nchmarks, and example computers.
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To investigate the general applicability of the &eDwarfs, we compared the list against
other collections of benchmarks: EEMBC from embeldciemputing and from
SPEC2006 for desktop and server computing. Thdtections were independent of our
study, so they act as validation for whether oualsset of computational kernels are
good targets for applications of the future. Wd dascribe the final list in detail in
Section 3.5, but from our examination of the 41 E&B/kernels and the 26 SPEC2006
programs, we found four more dwarfs to add to ite |

o Combinational Logic generally involves performing simple operations on
very large amounts of data often exploiting bitdieparallelism. For example,
computing Cyclic Redundancy Codes (CRC) is critioaénsure integrity and
RSA encryption for data security.

0 Graph Traversal applications must traverse a number of objectseasathine
characteristics of those objects such as wouldskd tor search. It typically
involves indirect table lookups and little compidat

o Graphical Modés applications involve graphs that represent random
variables as nodes and conditional dependenciedges. Examples include
Bayesian networks and Hidden Markov Models.

o Finite State Machines represent an interconnected set of states, such as
would be used for parsing. Some state machinesdeammpose into multiple
simultaneously active state machines that camaaiiallel.

To go beyond to EEMBC and SPEC, we examined tmeeasingly important
application domains to see if we should increasentimber of dwarfs: machine learning,
database software, and computer graphics and games.

3.2.1 Machine Learning

One of the most promising areas for the futureomhputing is the use of statistical
machine learning to make sense from the vast amaimtata now available due to faster
computers, larger disks, and the use of the Intéoneonnect them all together.

Michael Jordan and Dan Klein, our local expertmerchine learning, found two dwarfs
that should be added to support machine learning:

o Dynamic programming is an algorithmic technique that computes solgtion
by solving simpler overlapping subproblems. Itastgularly applicable for
optimization problems where the optimal resultdgsroblem is built up from
the optimal result for the subproblems.

o0 Backtrack and Branch-and-Bound: These involve solving various search
and global optimization problems for intractablygla spaces. Some implicit
method is required in order to rule out regionghefsearch space that contain
no interesting solutions. Branch and bound algorghvork by the divide and
conquer principle: the search space is subdividexsmaller subregions
(“branching”), and bounds are found on all the 8ohs contained in each
subregion under consideration.

Many other well-known machine-learning algorithrisrfto the existing dwarfs:

11
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0 Support Vector Machind€ristianini and Shawe-Taylor 2000]: Dense linear
algebra.

o0 Principal Component Analys[®uda and Hart 1973]: Dense or sparse linear
algebra, depending on the details of implementation

o Decision Tree$Poole et al 1998]: Graph traversal.

o Hashing Combinational logic.

3.2.2 Database Software

Jim Gray of Microsoft Research believes sort ithatheart of modern databases. He
sponsors an annual competition to see who can cpmath the fastest sorter assuming
the data is on the disk at the beginning and end. Win MinuteSort by sorting the most
data in a minute, organized as 100-byte records.ZD®6 winner sorted 400 million
records (40 GB) on a 32-way shared memory multgssor using 1.6 GHz Itanium 2
processors with 128 GB of main memory and 128 dig&sises a commercial sorting
package called Nsort, which does sorts eitheraberds directly or pointers to records.
[Nyberg et al 2004] The sorting algorithm is samgaet. While it will be important to
have efficient interfaces between 1/0 and main mgrwsort large files fast, sorting
does not add to our list of dwarfs.

Another important function of modern databasesaghing. Unlike a typical hash, a
database hash will compute over a lot of data,ggimalf of main memory. Once again,
these computation and communication patterns dexpmnd the dwarfs.

Joe Hellerstein, our local expert in databased, tha future of databases was large data
collections typically found on the Internet. A kpymitive to explore such collections is
MapReduce, developed and widely used at Googlarjad Ghemawat 2004] The first
phase maps a user supplied function onto thousafrmtsmputers, processing key/value
pairs to generate a set of intermediate key/vafues pThe second phase reduces the
returned values from all those thousands of ingt&irtto a single result by merging all
intermediate values associated with the same ietiate key. Note that these two
phases are highly parallel yet simple to understBodrowing the name from a similar
function in Lisp, they call this primitive “MapRede’.

MapReduce is a more general version of the patterhad previously called “Monte
Carlo”: the essence is a single function that etescin parallel on independent data sets,
with outputs that are eventually combined to forsirgle or small number of results. In
order to reflect this broader scope, we changednee of the dwarf to “MapReduce”.

A second thrust for the future of databases wagiretics, exemplified by the widely
popular BLAST (Basic Local Alignment Search Toabde. [Altschul et al 1990]
BLAST is a heuristic method used to find areas NAZprotein sequences that are
similar from a database. There are three main steps

1. Compile a list of high-scoring words from the seugee

2. Scan database for hits from this list

3. Extend the hits to optimize the match
Although clearly important, BLAST did not extendrdist of dwarfs.

12
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3.2.3 Computer Graphics and Games

While the race to improve realism has pushed gapbriocessing unit (GPU)
performance up into the Teraflops range, grapmaaism is not isolated to drawing
polygons and textures on the screen. Rather, nmagefithe physical processes that
govern the behavior of these graphical objectsiregunany of the same computational
models used for large-scale scientific simulatidrige same is true for many tasks in
computer vision and media processing, which forendtbre of the “applications of the
future” driving the technology roadmaps of hardweaeadors.

Employing on-chip parallelism to accelerate compgtaphics is considered a solved
problem for all practical purposes via GPUs. Thagple burden for the host processor
at this point centers on modeling the physical progs of the graphical elements that
comprise the game or the user interface. Reapstysics requires computational
modeling of physical processes that are essenttalysame as those required for
scientific computing applications. The computationathods employed are very much
like those that motivate the seven original dwarfs.

For instance, modeling of liquids and liquid beloavised for special effects in movies
are typically done using particle methods suchrae@h Particle Hydrodynamics (SPH)
[Monaghan 1982]. The rendering of the physical nhagstill done in OpenGL using
GPUs or software renderers, but the underlying rhoidiée flowing shape of the liquid
requires the particle-based fluid model. Theresangeral other examples where the desire
to model physical properties in game and graphias onto the other dwarfs:

0 Reverse kinematics requires a combination of spaetex computations and
graph traversal methods.

0 Spring models, used to model any rigid object tiedibrms in response to
pressure or impact such as bouncing balls or Jelis® either sparse matrix or
finite-element models.

o Collision detection is a graph traversal operatisrare the Octrees and Kd
trees employed for depth sorting and hidden sunfeceval.

0 Response to collisions is typically implementec disite-state machine.

Hence, the surprising conclusion is that gamesgaaphics did not extend the drawfs
beyond the 13 identified above.

One encouraging lesson to learn from the GPUs eaqh@cs software is that the APIs do
not directly expose the programmer to concurre@penGL, for instance, allows the
programmer to describe a set of “vertex shadertaims in Cg (a specialized language
for describing such operations) that are applieeM&ry polygon in the scene without
having to consider how many hardware fragment @®me or vertex processors are
available in the hardware implementation of the GPU

3.2.4 Summarizing the Next Six Dwarfs

Figure 4 shows six more dwarfs that were addedusecaf the studies in the prior
section. Note that we consider the algorithms iedeent of the data sizes and types (see
Section 5.3).
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Dwarf Description

8. Combinational Logic Functions that are implemented with logical funes@nd stored state.
(e.g., encryption)

9. Graph traversal (e.qg., Visits many nodes in a graph by following successdges. These

Quicksort) applications typically involve many levels of inglation, and a relatively
small amount of computation.

10. Dynamic Computes a solution by solving simpler overlap@ngproblems.

Programming Particularly useful in optimization problems witheage set of feasible
solutions.

11. Backtrack and Finds an optimal solution by recursively dividirgtfeasible region into

Branch+Bound subdomains, and then pruning subproblems thatdrepsimal.

12. Construct Graphical Constructs graphs that represent random variables@es and
Models conditional dependencies as edges. Examples in8lagesian networks
and Hidden Markov Models.

13. Finite State Machine A system whose behavior is defined by states, itians defined by
inputs and the current state, and events assoaidtiedransitions or
states.

Figure 4. Extensions to the original Seven Dwarfs.

Although 12 of the 13 Dwarfs possess some formaddlfelism, finite state machines
(FSMs) look to be a challenge, which is why we midwen the last dwarf. Perhaps FSMs
will prove to beembarrassingly sequentiplst as MapReduce is embarrassingly parallel.
If it is still important and does not yield to invetion in parallelism, that will be
disappointing, but perhaps the right long-term gofuis to change the algorithmic
approach. In the era of multicore and manycoreuRolgorithms from the sequential
computing era may fade in popularity. For exampleuffman decoding proves to be
embarrassingly sequential, perhaps we should de€féeeent compression algorithm that
is amenable to parallelism.

In any case, the point of the 13 Dwarfsitd to identify the low hanging fruit that are
highly parallel. The point is to identify the keta¢hat are the core computation and
communication for important applications in the aming decade, independent of the
amount of parallelism. To develop programming systand architectures that will run
applications of the future as efficiently as poksilwe must learn the limitations as well
as the opportunities. We note, however, that ioiefficy on embarrassingly parallel code
could be just as plausible a reason for the faibdire future architecture as weakness on
embarrassingly sequential code.

More dwarfs may need to be added to the list. Nbetrss, we were surprised that we
only needed to add six dwarfs to cover such a braage of important applications.

3.3 Composition of Dwarfs

Any significant application, such as an MPEG4 (MayPicture Experts Group) decoder
or an IP (Internet Protocol) forwarder, will comtanultiple dwarfs that each consume a
significant percentage of the application’s compata Hence, the performance of a
large application will depend not only on each disgrerformance, but also on how
dwarfs are composed together on the platform.
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The collection of dwarfs comprising an applicataan be distributed on a multiprocessor
platform in two different ways:

1. Temporally distributedr time-shared on a common set of processors, or

2. Spatially distributedbr space-shared, with each dwarf uniquely occupgime or

more processors.

The selection of temporal or spatial distributioill im part depend on the structure of
communication between dwarfs. For example, somécapipns are structured as a
number of serial phases, where each phase is 4 thaamust complete before we start
the next. In this case, it would be natural to tirese multiplexing to allocate the whole
set of processors to each phase. Other applicateombe structured as a network of
communicating dwarfs running concurrently, in whaase it would be natural to
distribute the dwarfs spatially across the avadghybcessors.

The two forms of distribution can be applied hiehacally. For example, a dwarf may be
implemented as a pipeline, where the computatioarianput is divided into stages with
each stage running on its own spatial divisiorhefppirocessors. Each stage is time
multiplexed across successive inputs, but procggeima single input flows through the
spatial distribution of pipeline stages.

Two software issues arise when considering the ositipn of dwarfs:

1. The choice of composition model—how the dwarfsparetogether to form a
complete application. The scientific software comityihas recently begun the
move to component models [Bernholdt et al 2002ih&se models, however,
individual modules are not very tightly coupled ah$ may affect the efficiency
of the final application.

2. Data structure translation. Various algorithms rhaye their own preferred data
structures, such as recursive data layouts forederagrices. This may be at odds
with the efficiency of composition, as working setay have to be translated
before use by other dwarfs.

These issues are pieces of a larger puzzle. Waaiffactive ways to describe
composable parallel-code libraries? Can we writerary such that it encodes
knowledge about its ideal mapping when composek @thers in a complete parallel
application? What if the ideal mapping is heavigpdndent on input data that cannot be
known at compile time?

3.4 Intel Study

Intel believes that the increase in demand for agimg will come from processing the
massive amounts of information available in thed'Bf Tera”. [Dubey 2005] Intel
classifies the computation into three categoriedg@nition, Mining, and Synthesis,
abbreviated as RM&ecognitionis a form of machine learning, where computers
examine data and construct mathematical modelsapiata. Once the computers
construct the model$jining searches the web to find instances of that m&jeithesis
refers to the creation of new models, such asaplgcs. Hence, RMS is related to our
examination of machine learning, databases, anghgrain Sections 3.2.1 to 3.3.3.
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The common computing theme of RMS is “multimodalognition and synthesis over
large and complex data sets” [Dubey 2005]. Intéiklkes RMS will find important
applications in medicine, investment, business,iggnand in the home. Intel’s efforts in
Figure 5 show that Berkeley is not alone in tryiagrganize the new frontier of
computation to underlying computation kernels idevrto guide architectural research.

Computer
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Tracking fDetectio

Physical
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Analytics

Portfolio § Option
M Pricing

Rendering

Global
Illumination

Data Mining

| |
| |
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| |
| |
| |
| |
| |
| |
| |
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1 |

MachinefCluster/j Text
learning|Classifyj Index

Media
Synth l

VM FIMI
Classificgtion ~ Tfaining
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v Level Set (LP. QP) {y

P_artigle t Filt;)r/ Fast Marching Text

Filtering ransform Method Monte Carlo Indexer

Krylov lterative Solvers Direct Solver Basic lterative Solver Non-Convex
(PCG) (Cholesky) (Jacobi, GS, SOR) Method

Basic matrix primitives Basic geometry primitives
(dense/sparse, structured/unstructured) (partitioning structures, primitive tests)

Figure5. Intel's RMS and how it maps down to functions taet more primitive. Of the five categories at
the top of the figure, Computer Vision is classifess Recognition, Data Mining is Mining, and Reragr
Physical Simulation, and Financial Analytics ar@t®gsis. [Chen 2006]

3.5 Dwarfs Summary

Figure 6 summarizes our investigation and showgtasence of the 13 Dwarfs in a
diverse set of application benchmarks including BEMSPEC2006, machine learning,
graphics/games, database software, and Intel's Fd®entioned above, several of the
programs use multiple dwarfs, and so they aredistenultiple categories. We do not
believe that our list of dwarfs is yet completed ave anticipate the addition of more
dwarfs in the future. At the same time we are ssegrat what a diverse set of important
applications is supported by a modest number ofidwa
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Dwarf Embedded Computing General Purpose Machine Learning Graphics/ | Databases Intel RMS
Computing Games
1. Dense Linear | EEMBC AutomotiveiDCT, FIR, | SPEC IntegerQuantum Support vector Database hash | Body Tracking,
Alaebra (e IIR, Matrix Arith; EEMBC computer simulation machines, princpal accesses large | media synthesis
g9 -9, ConsumerJPEG, RGB to CMYK,| (libquantum), video component analysis, contiguous linear
BLAS or RGB to YIQ;EEMBC Digital compression (h264avc) independent component sections of programming, K-
MATLAB) EntertainmentRSA MP3 Decode,| SPEC FI. PL. Hidden Markov | analysis memory means, support
MPEG-2 Decode, MPEG-2 models (sphinx3) vector machines,
Encode, MPEG-4 Decode; quadratic
MPEG-4 EncodeEEMBC programming,
Networking IP PacketEEMBC PDE: FacePDE
Office Automationimage Cloth*
Rotation;EEMBC Telecom
Convolution EncodeEEMBC
Java:PNG
2. Sparse Linear| EEMBC AutomotiveBasic Int + | SPEC Fl. Pt Fluid dynamics | Support vector Reverse Support vector
Alaebra (e FP, Bit Manip, CAN Remote (bwaves), quantum chemistry| machines, principal kinematics; Spring machines,

9 -9, Data, Table Lookup, Tooth to (gamess; tonto), linear programcomponent analysis, models quadratic
SpMV, OSKI, or Spark;EEMBC TelecomBit solver (soplex) independent component programming,
SuperLU) Allocation; EEMBC JavaPNG analysis PDE: FacePDE

Cloth*
PDE:
Computational
fluid dynamics
3. Spectral EEMBC AutomotiveFFT, iFFT, Spectral clustering Texture maps PDE
iDCT; EEMBC ConsumelPEG,; Computational
Methods (e'g" EEMBC EntertainmentMP3 fluid dynamics
FFT) Decode PDE: Cloth

4. N-Body
Methods (e.qg.,
Barnes-Hut, Fast

SPEC FIl. Pt Molecular
dynamics (gromacs, 32-bit;
namd, 64-bit)

Multipole
Method)
5. Structured EEMBC AutomotiveFIR, IIR; SPEC Fl. Pt Quantum Smoothing;
Grids (e EEMBC ConsumeHP Gray- chromodynamics interpolation
-9, Scale;EEMBC ConsumelPEG; | (milc),magneto hydrodynamics
Cactus or EEMBC Digital Entertainment (zeusmp), general relativity
Lattice- MP3 Decode, MPEG-2 Decode, | (cactusADM), fluid dynamics
MPEG-2 Encode, MPEG-4 (leslie3d-AMR; Ibm), finite
Boltzmann Decode; MPEG-4 Encode; element methods (dealll-AMR;;
Magneto- EEMBC Office Automatian calculix), Maxwell's E&M
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Dwarf Embedded Computing General Purpose Machine Learning Graphics/ | Databases Intel RMS
Computing Games
hydrodynamics) | Dithering; EEMBC Telecom eqns solver (GemsFDTD),
Autocorrelation guantum crystallography
(tonto), weather modeling
(wrf2-AMR)
6. Unstructured Belief propagation Global
Grids (e g illumination
ABAQUS or
FIDAP)
7. MapReduce SPEC Fl. Pt.Ray tracer Expectation MapReduce
(e 9 Monte (povray) maximization
Carlo)
8. Combinational EEMBC Digital Entertainment Hashing Hashing
Loagic AES, DES EEMBC Networking
g IP Packet, IP NAT, Route Lookup;
EEMBC Office Automatiarimage
Rotation;EEMBC Telecom
Convolution Encode
9. Graph EEMBC AutomotivePointer Bayesian networks, Reverse Transitive Natural language
Traversal Chasing, Tooth to SparEEMBC decision trees kinematics, closure processing
Networking IP NAT, OSPF, collision detection,
Route LookupEEMBC Office depth sorting,
Automation Text Processing; hidden surface
EEMBC JavaChess, XML removal
Parsing
10. Dynamic EEMBC TelecomViterbi Decode | SPEC IntegerGo (gobmk) Forward-backward, Query
inside-outside, variable optimization

Programming

elimination, value
iteration

11. Back-track

SPEC IntegerChess (sjeng),
network simplex algorithm

Kernel regression,
constraint satisfaction,

and Branch (mcf), 2D path finding library | satisficability
+Bound (astar)

12. Graphical EEMBC TelecomViterbi Decode | SPEC IntegerHidden Markov | Hidden Markov models
Models models (hmmer)
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Dwarf Embedded Computing General Purpose Machine Learning Graphics/ | Databases Intel RMS
Computing Games
13. Finite State | EEMBC AutomotiveAngle To SPEC IntegerText processing Response to
Time, Cache “Buster”, CAN (perlbench), compression collisions

Machine

Remote Data, PWM, Road Spee
Tooth to SparkEEMBC
ConsumerJPEG,EEMBC Digital
EntertainmentHuffman Decode,
MP3 Decode, MPEG-2 Decode,
MPEG-2 Encode, MPEG-4
Decode; MPEG-4 Encode;
EEMBC NetworkingQoS, TCP;
EEMBC Office AutomatiarText
ProcessingEEMBC TelecomBit
Allocation; EEMBC JavaPNG

d,(bzip2), compiler (gcc), video
compression (h264avc),
network discrete event
simulation (omnetpp), XML
transformation (xalancbmk)

Figure 6. Mapping of EEMBC, SPEC2006, Machine Learning, GegiGames, Data Base, and Intel's RMS to the 13ri3wedNote that SVM, QP, PDE:Face,
and PDE:Cloth may use either dense or sparse estdepending on the application.
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4.0 Hardware

Now that we have given our views of applicationd dwarfs for parallel computing in
the left tower of Figure 1, we are ready for exaation of the right tower: hardware.
Section 2 above describes the constraints of presehfuture semiconductor processes,
but they also present many opportunities.

We organize our observations on hardware arounthtlke components first used to
describe computers more than 30 years ago: pragessmory, and switch [Bell and
Newell 1970].

4.1 Processors: Small is Beautiful

In the development of many modern technologiesh siscsteel manufacturing, we can
observe that there were prolonged periods duringhwhbigger equated to better. These
periods of development are easy to identify: Thaalestration of onéour de forceof
engineering is only superseded by an even greater@ue to diminishing economies of
scale or other economic factors, the developmetitesfe technologies inevitably hit an
inflection point that forever changed the coursd@felopment. We believe that the
development of general-purpose microprocessortisdhjust such an inflection point.

New Conventional Wisdom #4 in Section 2 statestasize of module that we can
successfully design and fabricate is shrinking. NGamventional Wisdoms #1 and #2 in
Section 2 state that power is proving to be theidant constraint for present and future
generations of processing elements. To supporetagsertions we note that several of
the next generation processors, such as the Tejasif 4 processor from Intel, were
canceled or redefined due to power consumptioressptvolfe 2004]. Even
representatives from Intel, a company generallp@ated with the “higher clock-speed
is better” position, warned that traditional apmioes to maximizing performance
through maximizing clock speed have been pushdukeio limit [Borkar 1999]

[Gelsinger 2001]. In this section, we look pastitifeection point to ask: What processor
is the best building block with which to build fuéumultiprocessor systems?

There are numerous advantages to building futuceamiocessors systems out of smaller
processor building blocks:

» Parallelism is an energy-efficient way to achieeef@rmance [Chandrakasan et al
1992].

* Many small cores give the highest performance pérarea for parallel codes.

* A larger number of smaller processing elementsialla finer-grained ability to
perform dynamic voltage scaling and power down.

» A small processing element is an economical elerthentis easy to shut down in
the face of catastrophic defects and easier tonfegoe in the face of large
parametric variation. The Cisco Metro chip [Eatber2005] adds four redundant
processors to each die, and Sun sells 4-procesgoocessor, or 8-processor
versions of Niagara based on the yield of a siBgbeocessor design. Graphics
processors are also reported to be using redupdacessors in this way, as is the
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IBM Cell microprocessor for which only 7 out of $nergistic processors are
used in the Sony Playstation 3 game machine.

* A small processing element with a simple architexts easier to design and
functionally verify. In particular, it is more amaole to formal verification
techniques than complex architectures with outrdeoexecution.

» Smaller hardware modules are individually more posfécient and their
performance and power characteristics are easgetiict within existing
electronic design-automation design flows [Sylveated Keutzer 1998]
[Sylvester and Keutzer 2001] [Sylvester et al 1999]

While the above arguments indicate that we shad# to smaller processor
architectures for our basic building block, theyria indicate precisely what circuit size
or processor architecture will serve us the begt.afgued that we must move away from
a simplistic “bigger is better” approach; howewvbgt does not immediately imply that
“smallest is best".

4.1.1 What processing element is optimum?

Determining the optimum processing element wilbdrihe solution, or at least
approximating the solution, of a multivariable opization problem that is dependent on
the application, environment for deployment, woddpconstraints of the target market,
and fabrication technology. It is clear, howevbatithe tradeoff between performance
and power will be of central importance acrossehire spectrum of system applications
for current and future multiprocessor systems.

It is important to distinguish between energy (&syland power (Joules/second or
Watts), which is the rate of consuming energy. Byeer task is usually a metric to be
minimized in a design, whereas peak power consamji usually treated as a design
constraint. The energy used by a computation affibet battery life of a mobile device,
and the cost of powering a server farm. Peak pol@trmines the cost of packaging and
cooling the processor, and these costs rise a&ep step-function of the amount of power
to be dissipated. Chip temperature must be lintbemlvoid excessive leakage power.
High chip temperature may also lead to a redudetiniie due to electromigration and
other high temperature reliability issues. Reastmapper limits for peak power
consumption may be 150W for air-cooled server asktbp chips, 40W for a laptop,
and 2W for low cost/low power embedded applications

Different applications will present different trafts between performance and energy
consumption. For example, many real-time tasks,(ei@wing a DVD movie on a
laptop) have a fixed performance requirement foicivive seek the lowest energy
implementation. Desktop processors usually seekitifeest performance under a
maximum power constraint. Note that the design wWithlowest energy per operation
might not give the highest performance under a paweestraint, if the design cannot
complete tasks fast enough to exhaust the avaiteler budget.

If all tasks were highly parallelizable and silicarea was free, we would favor cores
with the lowest energy per instruction (SPEC/Wattjwever, we also require good

21



The Landscape of Parallel Computing Research: Av\ieom Berkeley

performance on less parallel codes, and high thmouigper-unit-area to reduce die costs.
The challenge is to increase performance withouémsetly increasing energy per
operation or silicon area.

The effect of microarchitecture on energy and delag studied in [Gonzalez and
Horowitz 1996]. Using energy-delay product (SB&Q) as a metric, the authors
determined that simple pipelining is significarblgneficial to delay while increasing
energy only moderately. In contrast, superscakufes adversely affected the energy-
delay product. The power overhead needed for adaitihardware did not outweigh the
performance benefits. Instruction-level parallelisnimited, so microarchitectures
attempting to gain performance from techniques stiscWide issue and speculative
execution achieved modest increases in performainttes cost of significant area and
energy overhead.

The optimal number of pipeline stages in a micrbiéecture has been investigated by a
number of researchers [Hrishikesh et al 2002] j@agan et al 2002] [Harstein and
Puzak 2003] [Heo and Asanovic 2004]. These resmdsummarized and reviewed in
[Chinnery 2006]. Note that to date uniprocessorcherarks, such as SPEC, have been
the most common benchmarks for measuring computdtand energy efficiency. We
believe that future benchmark sets must evolvefleat a more representative mix of
applications, including parallel codes based onlhewarfs, to avoid over-optimization
for single-thread performance. As the results nogrtil above have dependencies on
process technology, logic family, benchmark sed, @orkload it is hard to generalize the
results for our purposes. However, a review of likesature together with an analysis of
empirical data on existing architectures gathesetidrowitz [Horowitz 2006], Paulin
[Paulin 2006], and our own investigations [Chond &atanzaro 2006] indicates that
shallower pipelines with in-order execution haveven to be the most area and energy
efficient. Given these physical and microarchitegltgonsiderations, we believe the
efficient building blocks of future architecturazdikely to be simple, modestly
pipelined (5-9 stages) processors, floating pamitsy vector, and SIMD processing
elements. Note that these constraints fly in tlce faf the conventional wisdom of
simplifying parallel programming by using the lasgprocessors available.

4.1.2 Will we really fit 1000s of cores on one economical chip

This significant reduction in the size and comgexif the basic processor building

block of the future means that many more coresbeagconomically implemented on a
single die; furthermore, this number can doublégrch generation of silicon. For
example, the “manycore” progression might well B8,1256, 512, ... cores instead of the
current “multicore” plan of 2, 4, 8, ... cores otlee same semiconductor process
generations.

There is strong empirical evidence that we caneaehl000 cores on a die when 30nm
technology is available. (As Intel has taped odbaxm technology chip, 30 nm is not so
distant in the future.) Cisco today embeds inatgers a network processor with 188
cores implemented in 130 nm technology. [Eathe2@®6] This chip is 18mm by 18mm,
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dissipates 35W at a 250MHz clock rate, and prodanesggregate 50 billion instructions
per second. The individual processor cores aradestensilica processors with very
small caches, and the size of each core is 0.8 Wbout a third of the die is DRAM and
special purpose functions. Simply following scalfingm Moore's Law would arrive at
752 processors in 45nm and 1504 in 30nm. Unforaipgbower may not scale down
with size, but we have ample room before we pusiLl80W limit of desktop or server
applications.

4.1.3 Does one size fit all?

We would like to consider briefly the question asmhether multiprocessors of the future
will be built as collections of identical processar assembled from diverse
heterogeneous processing elements. Existing embeddiiprocessors, such as the Intel
IXP network processing family, keep at least oneegal-purpose processor on the die to
support various housekeeping functions and to peothe hardware base for more
general (e.g. Linux) operating system support. @y, the IBM Cell has one general-
purpose processor and eight tailored processimgegits. Keeping a larger processor on
chip may help accelerate “inherently sequentialieeeegments or workloads with fewer
threads [Kumar et al 2003].

As Amdahl observed 40 years ago, the less papltion of a program can limit
performance on a parallel computer [Amdahl 196 An¢k, one reason to have different
“sized” processors in a manycore architecture isnfarove parallel speedup by reducing
the time it takes to run the less parallel code.éxample, assume 10% of the time a
program gets no speed up on a 100-processor comButgpose to run the sequential
code twice as fast, a single processor would n8ddies as many resources as a simple
core runs due to bigger power budget, larger caeghkgyger multiplier, and so on. Could
it be worthwhile? Using Amdahl's Law [Hennessy &ratterson 2007], the comparative
speedups of a homogeneous 100 simple processgndesi a heterogeneous 91-
processor design relative to a single simple pisuresre:

SpeedupHomogeneous = 1/ (0.1 — 0.9/100) = 9. X tfaster

SpeedupHeterogeneous = 1/ (0.1/2 — 0.9/90) =tir6es faster
In this example, even if a single larger processmded 10 times as many resources to
run twice as fast, it would be much more valuabint10 smaller processors it replaces.

In addition to helping with Amdahl’s Law, heterog®us processor solutions can show
significant advantages in power, delay, and arezcd3sor instruction-set configurability
[Killian et al 2001] is one approach to realizimg benefits of processor heterogeneity
while minimizing the costs of software developmand silicon implementation, but this
requires custom fabrication of each new desigre&tize the performance benefit, and
this is only economically justifiable for large rkats.

Implementing customized soft-processors in prergefireconfigurable logic is another
way to realize heterogeneity in a homogenous imeteation fabric; however, current
area (40X), power (10X), and delay (3X) overhed&lsn and Rose 2006] appear to
make this approach prohibitively expensive for gakpurpose processing. A promising
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approach that supports processor heterogeneityadd a reconfigurable coprocessor as
a separate chip [Hauser and Wawrzynek 1997] [Ar26I@5]. This obviates the need for
new custom silicon. Current data is insufficientiegermine whether such approaches
can provide energy-efficient solutions.

On the other hand, a single replicated procesdermgent has many advantages; in
particular, it offers ease of silicon implementatend a regular software environment.
Managing heterogeneity in an environment with tlamals of threads may make a
difficult problem impossible.

Will the possible power and area advantages ofbgémeous multicores win out versus
the flexibility and software advantages of homogersemulticores? Alternatively, will

the processor of the future be like a transist@ingle building block that can be woven
into arbitrarily complex circuits? Alternatively,ilva processor be more like a NAND
gate in a standard-cell library: one instance fainaily of hundreds of closely related but
unique devices? In this section, we do not clairhawee resolved these questions. Rather
our point is that resolution of these question=eigain to require significant research and
experimentation, and the need for this researati® imminent than industry’s
multicore multiprocessor roadmap would otherwishdate.

4.2 Memory Unbound

The DRAM industry has dramatically lowered the pnper gigabyte over the decades, to
$100 per gigabyte today from $10,000,000 per gitaby1980 [Hennessy and Patterson
2007]. Alas, as mentioned in CW #8 in Section 2,ribmber of processor cycles to
access main memory has grown dramatically as fwelth a few processor cycles in

1980 to hundreds today. Moreover, the memory galie major obstacle to good
performance for almost half dwarfs (see Figure Seaation 8). Thomas Sterling
expressed this concern in his provocative questigranelists at the SC06 conference:
“will multicore ultimately be asphyxiated by the mery wall?” [Sterling 2006]

The good news is that if we look inside a DRAM ¢hig see many independent, wide
memory blocks. [Patterson et al 1997] For exanpl2 Mbit DRAM is composed of
hundreds of banks, each thousands of bits widerl@laghere is potentially tremendous
bandwidth inside a DRAM chip waiting to be tappadd the memory latency inside a
DRAM chip is obviously much better than from separhips across an interconnect.

In creating a new hardware foundation for paratehputing hardware, we should not
limit innovation by assuming main memory must beeparate DRAM chips connected
by standard interfaces. New packaging techniques as 3D stacking, might allow
vastly increased bandwidth and reduced latencypameer between processors and
DRAM. Although we cannot avoid global communicatiarthe general case with
thousands of processors and hundreds of DRAM baokse important classes of
computation have almost entirely local memory aseesnd hence can benefit from
innovative memory designs.
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Another reason to innovate in memory is that insiregly, the cost of hardware is
shifting from processing to memory. The old Amdahé of thumb was that a balanced
computer system needs about 1 MB of main memorgagpper MIPS of processor
performance [Hennessy and Patterson 2007].

Whereas DRAM capacity kept pace with Moore’s Lawglyadrupling capacity every
three years between 1980 and 1992, it slowed tbloh@uevery two years between 1996
and 2002. Today we still use the 512 Mbit DRAM thvais introduced in 2002.

Manycore designs will unleash a much higher nunob®IPS in a single chip. Given
the current slow increase in memory capacity, MBS explosion suggests a much
larger fraction of total system silicon in the frewvill be dedicated to memory.

4.3 Interconnection networks

At the level of the physical hardware interconneat)ticores have initially employed
buses or crossbar switches between the cores ahd banks, but such solutions are not
scalable to 1000s of cores. We need on-chip topesdfat scale close to linearly with
system size to prevent the complexity of the irdenect from dominating cost of
manycore systems. Scalable on-chip communicatiomanks will borrow ideas from
larger-scale packet-switched networks [Dally an@/Es 2001]. Already chip
implementations such as the IBM Cell employ muétiphg networks to interconnect the
nine processors on the chip and use software-mdmageory to communicate between
the cores rather than conventional cache-cohenartgcols.

Although there has been research into statistiatld models to help refine the design of
Networks-on-Chip [Soteriou et al 2006], we beli¢ve 13 Dwarfs can provide even
more insight into communication topology and reseuequirements for a broad-array
of applications. Based on studies of the commuimisatequirements of existing
massively concurrent scientific applications thater the full range of dwarfs [Vetter
and McCracken 2001] [Vetter and Yoo 2002] [Vetted Meuller 2002] [Kamil et al
2005], we make the following observations aboutdb@munication requirements in
order to develop a more efficient and custom-tatiosolution:

* The collective communication requirements are gfiyodifferentiated from point-to-
point requirements. Collective communication, reiqgi global communication,
tended to involve very small messages that aregpilyriatency bound. As the
number of cores increases, the importance of theserained, smaller-than-cache-
line-sized, collective synchronization constructs kkely increase. Since latency is
likely to improve much more slowly than bandwidde¢ CW #6 in Section 2), the
separation of concerns suggests adding a sepatatey-oriented network dedicated
to the collectives. They already appeared in pgvi&Ps. [Hillis and Tucker 1993]
[Scott 1996] As a recent example at large scaie|BM BlueGene/L has a “Tree”
network for collectives in addition to a higher-dandth “Torus” interconnect for
point-to-point messages. Such an approach mayrdibrl for chip interconnect
implementations that employ 1000s of cores.

* The sizes of most point-to-point messages areallgitarge enough that they remain
strongly bandwidth-bound, even for on-chip intemects. Therefore, each point-to-
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point message would prefer a dedicated point-totgmathway through the
interconnect to minimize the chance of contentidthiw the network fabric. So while
the communication topology does not require a nooking crossbar, the on-chip
network should have high total bandwidth and supgareful mapping of message
flows onto the on-chip interconnect topology.

» These studies observed that most point-to-poininconications were stable and
sparse, and primarily bandwidth bound. With theegxion of the 3D FFT (see Figure
2), the point-to-point messaging requirements t@fige only a fraction of the
available communication paths through a fully carteé network switch fabric such
as a crossbar or fat-tree. For on-chip intercormp@chon-blocking crossbar will
likely be grossly over-designed for most applicatiequirements and would
otherwise be a waste of silicon given the resotggeirements scale as the square of
the number of interconnected processor cores. Agbins that do not exhibit the
communication patterns of the “spectral” dwarfoaér-degree interconnect topology
for on-chip interconnects may prove more spacepaner efficient.

* Although the communication patterns are observdzbtsparse, they are not
necessarily isomorphic to a low-degree, fixed-togglinterconnect such as a torus,
mesh, or hypercube. Therefore, assigning a dedigztth to each point-to-point
message transfer is not solved trivially by anyegitixed-degree interconnect
topology. To this end, one would either want tcebally place jobs so that they
match the static topology of the interconnect fabriemploy an interconnect fabric
that can be reconfigured to conform to the appbcét communication topology.

The communication patterns observed thus far axseb} related to the underlying
communication/computation patterns. Given just Wards, the interconnect may need to
target a relatively limited set of communicationtpens. It also suggests that the
programming model provide higher-level abstractifmnglescribing those patterns.

For the bandwidth bound communication pathwaysdasre an approach to minimizing
the surface area occupied by the switch while aonifog to the requirements of the
application's communication topology. The diregbrach to optimizing the
interconnect topology to the application requiretaés to augment the packet switches
using circuit switches to reconfigure the wiringatogy between the switches to meet
the application communication requirements whilentaéning the
multiplexing/demultiplexing capability afforded Itlye packet switches. The inverse
approach to this problem relies on software to ganask mapping and task migration
to adapt to lower degree static interconnect tagiek The circuit switched approach
offers a faster way to reconfigure the interconnepblogy, which may prove important
for applications that have rapidly changing/adagptemmunication requirements. In
both cases, runtime performance monitoring sys{eees Section 4.6), compile-time
instrumentation of codes to infer communicatiorology requirements, or auto-tuners
(see Section 6.1) will play an important role imiieg an optimal interconnect topology
and communication schedule.

One can use less complex circuit switches to pravidedicated wires that enable the
interconnect to adapt to communication patterrhefapplication at runtime. A hybrid
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design that combined packed switches with an dpticauit switch was proposed as a
possible solution to the problem at a macro s¢&k@mil et al 2005] [Shalf et al 2005].
However, at a micro-scale, hybrid switch desigred thcorporate electrical circuit
switches to adapt the communication topology magiile to meet all of the needs of
future parallel applications. A hybrid circuit-selited approach can result in much
simpler and area-efficient on-chip interconnectsmi@anycore processors by eliminating
unused circuit paths and switching capacity throtiggtom runtime reconfiguration of
the interconnect topology.

4.4 Communication Primitives

Initially, applications are likely to treat multimmand manycore chips simply as
conventional symmetric multiprocessors (SMPs). H@mvechip-scale multiprocessors
(CMPs) offer unique capabilities that are fundaratiytdifferent from SMPs, and which
present significant new opportunities:

» The inter-core bandwidth on a CMP can be many tigneater than is typical for
an SMP, to the point where it should cease to pertbrmance bottleneck.

* Inter-core latencies are far less than are typaradn SMP system (by at least an
order of magnitude).

* CMPs could offer new lightweight coherency and $yoaization primitives that
only operate between cores on the same chip. Tharges of these fences are
very different from what we are used to on SMP#, &itl operate with much
lower latency.

If we simply treat multicore chips as traditiondiBs—or worse yet, by porting MPI
applications (see Figure 7 in Section 5)—then wg m&ss some very interesting
opportunities for new architectures and algorithesigns that can exploit these new
features.

4.4.1 Coherency

Conventional SMPs use cache-coherence protocpiotade communication between
cores, and mutual exclusion locks built on tophef tcoherency scheme to provide
synchronization. It is well known that standard @amce protocols are inefficient for
certain data communication patterns (e.g., prodacasumer traffic), but these
inefficiencies will be magnified by the increasaemtecount and the vast increase in
potential core bandwidth and reduced latency of GMWore flexible or even
reconfigurable data coherency schemes will be retdkeverage the improved
bandwidth and reduced latency. An example migHatgge, on-chip, caches that can
flexibly adapt between private or shared configorat. In addition, real-time embedded
applications prefer more direct control over themoey hierarchy, and so could benefit
from on-chip storage configured as software-manageatchpad memory.

4.4.2 Synchronization Using Locks

Inter-processor synchronization is perhaps the wreae there is the most potential for
dramatic improvement in both performance and prognability. There are two
categories of processor synchronization: mutudusian and producer-consumer. For
mutual exclusion, only one of a number of contegdiancurrent activities at a time
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should be allowed to update some shared mutaliks biat typically, the order does not
matter. For producer-consumer synchronization,rs@mer must wait until the producer
has generated a required value. Conventional sgsteplement both types of
synchronization using locksBérriers, which synchronize many consumers with many
producers, are also typically built using lockscomventional SMPS).

These locking schemes are notoriously difficulptogram, as the programmer has to
remember to associate a lock with every criticéhddructure and to access only these
locks using a deadlock-proof locking scheme. Loglsohemes are inherently non-
composable and thus cannot form the basis of arglgparallel programming model.
Worse, these locking schemes are implemented gpingvaits, which cause excessive
coherence traffic and waste processor power. Ath@pin waits can be avoided by
using interrupts, the hardware inter-processoriapt and context switch overhead of
current operating systems makes this impracticaiast cases.

4.4.3 Synchronization Using Transactional Memory

A possible solution for mutual exclusion synchreatiian is to use transactional memory
[Herlihy and Moss 1993]. Multiple processors spatukly update shared memory
inside a transaction, and will only commit all upeaif the transaction completes
successfully without conflicts from other process@therwise, updates are undone and
execution is rolled back to the start of the tratisa. The transactional model enables
non-blocking mutual exclusion synchronization (itedls on mutex locks or barriers)
[Rajwar and Goodman 2002]. Transactional memorybfies mutual exclusion because
programmers do not need to allocate and use eijalakt variables or worry about
deadlock.

The Transactional Coherence & Consistency (TCCgmmeh[Kozyrakis and Olukotun
2005] proposes to apply transactions globally pdaee conventional cache-coherence
protocols, and to support producer-consumer symiration through speculative
rollback when consumers arrive before producers.

Transactional memory is a promising but still aetresearch area. Current software-only
schemes have high execution time overheads, warkd\are-only schemes either lack
facilities required for general language supponteguire very complex hardware. Some
form of hybrid hardware-software scheme is lik&lymerge, though more practical
experience with the use of transactional memorgagsiired before even the functional
requirements for such a scheme are well understood.

4.4.4 Synchronization Using Full-Empty Bits in Memory

Reducing the overhead of producer-consumer synaton would allow finer-grained
parallelization, thereby increasing the exploitgideallelism in an application. Earlier
proposals have included full-empty bits on memooydg, and these techniques could be
worth revisiting in the manycore era [Alverson E1890] [Alverson et al 1999]. Full-
empty bits have proven instrumental for enablirigieiht massively parallel graph
algorithms (corresponding to the “graph followirdyvarf) that are essential for emerging
bioinformatics, database, and information procegapplications [Bader and Madduri
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2006]. In particular, recent work by Jon Berryakt[Berry et al 2006] has demonstrated
that graph processing algorithms executing on aasio#i processor MTA, which offers
hardware support for full-empty bits, can outparidhe fastest system on the 2006
Top500 list — the 64k processor BG/L system.

4.4.5 Synchronization Using Message Passing

Shared memory is a very powerful mechanism, supppftexible and anonymous
communication, and single-chip CMP implementatimdiice many of the overheads
associated with shared memory in multi-chip SMR=/étheless, message passing
might have a place between cores in a manycore @sIRessages combine both data
transfer and synchronization in a form that isipafarly suited to producer-consumer
communications.

4.5 Dependability

CW #3 in Section 2 states that the next generatianicroprocessors will face higher
soft and hard error rates. Redundancy in spaaetime is the way to make dependable
systems from undependable components. Since redeyndaspace implies higher
hardware costs and higher power, we must use rasaggudiciously in manycore
designs. The obvious suggestion is to use singte eorrecting, double error detecting
(SEC/DED) encoding for any memory that has the onlyy of data, and use parity
protection on any memory that just has a copy td tfzat can be retrieved from
elsewhere. Servers that have violated those gaeehave suffered dependability
problems [Hennessy and Patterson 2007].

For example, if the L1 data cache uses write thndogan L2 cache with write back, then
the L1 data cache needs only parity while the lLcheaneeds SEC/DED. The cost for
SEC/DED is a function of the logarithm of the waevilth, with 8 bits of SEC/DED for

64 bits of data being a popular size. Parity ngestsone bit per word. Hence, the cost in
energy and hardware is modest.

Mainframes are the gold standard of dependablenNsasddesign, and among the
techniques they use is repeated retransmissiag to bvercome soft errors. For
example, they would retry a transmission 10 timefeiie giving up and declaring to the
operating system that it uncovered an error. Whileight be expensive to include such a
mechanism on every bus, there are a few placesawhmight be economical and
effective. For example, we expect a common desmméwork for manycore will be
globally asynchronous but locally synchronous pedute, with unidirectional links and
gueues connecting together these larger functiockbl It would be relatively easy to
include a parity checking and limited retransmisssocheme into such framework.

It may also be possible to fold in dependabilith@mcements into mechanisms included
to enhance performance or to simplify programmifay. example, Transactional
Memory above (Section 4.4.3) simplifies parall@gmamming by rolling back all
memory events to the beginning of a transactidhénevent of mis-speculation about
parallelism. Such a rollback scheme could be ceaptto helping with soft errors.
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Virtual Machines can also help systems resilierfailores by running different programs
in different virtual machines (see Section 6.2ytdal machines can move applications
from a failing processor to a working processoa imanycore chip before the hardware
stops. Virtual machines can help cope with softwailares as well due to the strong
isolation they provide, making an application crasirch less likely to affect others.

In addition to these seemingly obvious points,éhae open questions for dependability
in the manycore era:
* What is the right granularity to check for erro'¥Bole processors, or even down
to registers?
* What is the proper response to an error? Retrgeoline to use the faulty
component in the future?
» How serious are errors? Do we need redundant thiteduave confidence in the
results, or is a modest amount of hardware redwndsuificient?

4.6 Performance and Energy Counters

Performance counters were originally created tp bemputer architects evaluate their
designs. Since their value was primarily introspegtthey had the lowest priority during
development. Given this perspective and prioritis not surprising that measurement of
important performance events were often inaccuatrissing: why delay the product
for bugs in performance counters that are onlyuldefthe product’s architects?

The combination of Moore’s Law and the Memory Wedl architects to design
increasingly complicated mechanisms to try to alpperformance via instruction level
parallelism and caching. Since the goal was tostandard programs faster without
change, architects were not aware of the increasipgrtance of performance counters
to compiler writers and programmers in understamtiiow to make their programs run
faster. Hence, the historically cavalier attitudeards performance counters became a
liability for delivering performance even on seqti@nprocessors.

The switch to parallel programming, where the cden@nd the programmer are
explicitly responsible for performance, means ff@formance counters must become
first-class citizens. In addition to monitoringdigonal sequential processor performance
features, new counters must help with the challerigdficient parallel programming.

Section 7.2 below lists efficiency metrics to exatuparallel programs, which suggests
performance counters to help manycore architectueseed:

- To minimize remote accesses, identify and counttireber of remote accesses
and amount of data moved in addition to local asegsnd local bytes
transferred.

- To balance load, identify and measure idle timeaesive time per processor.

- To reduce synchronization overheatkntify and measure time spent in
synchronization per processor.

As power and energy are increasingly importanty tieed to be measured as well.
Circuit designers can create Joule counters fositp@ficant modules from an energy
and power perspective. On a desktop computergtmirig energy consumers are
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processors, main memory, caches, the memory ctarirtie network controller, and the
network interface card.

Given Joules and time, we can calculate Watts. ttinfately, measuring time is getting
more complicated. Processors traditionally coupt@dessor clock cycles, since the
clock rate was fixed. To save energy and power espracessors have adjustable
threshold voltages and clock frequencies. Thusjeéasure time accurately, we now need
a “picosecond counter” in addition to a clock cyoteinter.

While performance and energy counters are vitt#héosuccess of parallel processing, the
good news is that they are relatively easy to ihelWur main point is to raise their
priority: do not include features that significanéiffect performance or energy if
programmers cannot accurately measure their impact.

5.0 Programming Models

Figure 1 shows that@rogramming modek a bridge between a system developer’s
natural model of an application and an implemeatatif that application on available
hardware. A programming model must allow the progreer to balance the competing
goals ofproductivityandimplementation efficiencymplementation efficiency is always
an important goal when parallelizing an applicatias programs with limited
performance needs can always be run sequentialiyb&lfeve that the keys to achieving
this balance are two conflicting goals:

» Opacityabstracts the underlying architecture. Abstractibbwates the need for
the programmer to learn the architecture’s intaadtails and increases
programmer productivity.

» Visibility makes the key elements of the underlying hardwiaible to the
programmer. It allows the programmer to realizeggormance constraints of
an application by exploring design parameters sisctiiread boundaries, data
locality, and the implementation of elements of aipplication.

While maximizing the raw performance/power of fetmnulticores is important, the real
key to their success is the programmer’s abilitiidovest that performance.

Figure 7 shows the current lack of agreement ompaeity/visibility tradeoff. It lists 10
examples of programming models for five criticatgiel tasks that go from requiring

the programmer to make explicit decisions forasks for efficiency to models that make
all the decisions for the programmer for produtyivin between these extremes, the
programmer does some tasks and leaves the réw gystem.

The struggle is delivering performance while ragsihe level of abstraction. Going too
low may achieve performance, but at the cost ofestating the software productivity
problem, which is already a major hurdle for th@imation technology industry. Going
too high can reduce productivity as well, for tmegrammer is then forced to waste time
trying to overcome the abstraction to achieve parémce.

In the following sections, we present some recondagans for designers of
programming systems for parallel machines. Instddlde conventional focus just on
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hardware, applications, or mathematical formalistnsate and evaluate programming
models inspired more by results from psychologyc(i®a 5.1). A few seemingly obvious
but often neglected characteristics for a succepsfallel model that raise the level of
abstraction without hurting efficiency are makinggrams independent of the number of
processors (Section 5.2), supporting a rich sdatd types (Section 5.3), and supporting

styles of parallelism that have been proven sufgessthe past (Sections 5.4).
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Figure 7. Comparison of 10 current parallel programming niedler 5 critical tasks, sorted from most explicit

most implicit. High-performance computing applicais [Pancake and Bergmark 1990] and embedded afiplis
[Shah et al 2004a] suggest these tasks must bessddr one way or the other by a programming maji@ividing
the application into parallel tasks; 2) Mapping putational tasks to processing elements; 3) Digtioin of data to
memory elements; 4) mapping of communication tarker-connection network; and 5) Inter-task syocization.
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5.1 Programming model efforts inspired by psychological
research

Developing programming models that productivelyldaaevelopment of highly
efficient implementations of parallel applicatiaaghe biggest challenge facing the
deployment of future manycore systems. Hence, relséa programming models is a
high priority. In our view, programming model dempinent in the past has been
hardware-centric, application-centric, or formalisemtric.Hardware-centric
programming models are typically developed by theltvare-manufacturers themselves
in an attempt to maximize the efficiency of thedveaire they produce. For example, the
C-variant known as IXP-C [Intel 2004], togetheriwlibrary elements known as
microblocks, was developed for the Intel IXP famofynetwork processors [Adiletta et al
2002]. Such environments typically do not offer tesired productivity improvements
or support for the broader parallel programmingcpss—architecting, debugging, and so
on — involved in the development of a parallel aggtion.

Application-centric programming models, such asldafMathWorks 2006], are
typically focused on easing the development ofteel@application domains. These
models also don’t support the broader parallel @nagning process nor do they offer
support for fine-tuning implementations to realkeficiency constraints.

Formalism-centric programming models, such as Adtdewitt et al 1973], try to reduce
the chance of programmer making mistakes by haslewn semantics and offer the
chance to remove bugs by verifying correctnesodigns of the code.

All three goals are obviously important: efficiepgyoductivity, and correctness. It is
striking, however, that research from psychology had almost no impact, despite the
obvious fact that the success of these modeldeifitrongly affected by the human
beings who use them. Testing methods derived flanpsychology research community
have been used to great effect for HCI, but arelgdacking in language design and
software engineering. For example, there is athelory investigating the causes of
human errors, which is well known in the human-catepinterface community, but
apparently it has not penetrated the programmindeiand language design community.
[Kantowitz and Sorkin 1983] [Reason 1990] Thereehbgen some initial attempts to
identify the systematic barriers to collaborati@tvizeen the Software Engineering (SE)
and HCI community and propose necessary changbs S curriculum to bring these
fields in line, but there has been no substantiadgess to date on these proposals.
[Seffah 2003] [Pyla et al 2004] We believe thaegrating research on human
psychology and problem solving into the broad peobbf designing, programming,
debugging, and maintaining complex parallel systasitidoe critical to developing
broadly successful parallel programming modelsemdronments.

Transactional memory is an example of a programmiodel that helps prevent human
errors. Programmers have a difficult time determgnivhen to synchronize in parallel
code, and often get it wrong. An advantage of &atisnal memory is that the system
will ensure correctness, even when programmers rimakerect assumptions about the
safety of parallelizing a piece of code. The pawdffransactional memory is not
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primarily efficiency, formalism, or even productiyi it is that programs can work
properly even when programmers err or overly agivesauto-parallelizing compilers
make mistakes.

Not only do we ignore insights about human cognitiothe design of our programming
models, we do not follow their experimental methodesolve controversies about how
people use them. That method is human-subject ixeets, which is so widespread that
most campuses have committees that must be cotddfere you can perform such
experiments. Subjecting our assumptions aboutrbeeps or programming to formal
testing often yields unexpected results that chgleour intuition. [Mattson 1999]

A small example is a study comparing programmiriggishared memory vs. message
passing. These alternatives have been the sulfjaot debates for decades, and there is
no consensus on which is better and when. A rquageer compared efficiency and
productivity of small programs written both ways $mall parallel processors by novice
programmers. [Hochstein et al 2005] While thisas the final word on the debate, it
does indicate a path to try to resolve importangpmming issues. Fortunately, there
are a growing number of examples of groups that leewbraced user studies to evaluate
the productivity of computer languages. [Kuo e2@D5] [Solar-Lezama et al 2005]
[Ebcioglu et al 2006]

We believe that future successful programming nedelst be more human-centric.
They will be tailored to the human process of pahely architecting and efficiently
implementing, debugging, and maintaining complevalbel applications on equally
complex manycore hardware. Furthermore, we beleyenust use human subject
experiments to resolve open issues for us to medgrss in discovering how to make it
genuinely easy to program manycore systems eftigien

5.2 Models must be independent of the number of processors

MPI, the current dominant programming model forgtlat scientific programming,

forces coders to be aware of the exact mappingmpatational tasks to processors. This
style has been recognized for years to increasedtpaitive load on programmers, and
has persisted primarily because it is expressidedativers the best performance. [Snir et
al 1998] [Gursoy and Kale 2004]

Because we anticipate a massive increase in eapleitoncurrency, we believe that this
model will break down in the near future, as prograers have to explicitly deal with
decomposing data, mapping tasks, and performinghsgnization over thousands of
processing elements.

Recent efforts in programming languages have fatosehis problem and their
offerings have provided models where the numb@ratessors is not exposdotz

2005] [Allen et al 2006] [Callahan et al 2004] [Cles et al 2005]. While attractive, these
models have the opposite problem—delivering peréoroe. In many cases, hints can be
provided to co-locate data and computation in paldr memory domains. In addition,
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because the program is not over-specified, theesybias quite a bit of freedom in
mapping and scheduling that in theory can be usegtimize performance. Delivering
on this promise is, however, still an open resegrgstion.

5.3 Models must support arich set of data sizes and types

Although the algorithms were often the same in eddbd and server benchmarks in
Section 3, the data types were not. SPEC reliesrme- and double-precision floating
point and large integer data, while EEMBC usesgatend fixed-point data that varies
from 1 to 32 bits. [EEMBC 2006] [SPEC 2006] Notattinost programming languages
only support the subset of data types found orltyima the IBM 360 announced 40 years
ago: 8-bit characters, 16- and 32-bit integers,3dand 64-bit floating-point numbers.

This leads to the relatively obvious observatidithé parallel research agenda inspires
new languages and compilers, they should allownaragiers to specify at least the
following sizes (and types):

* 1 bit (Boolean)

* 8 bits (Integer, ASCII)

* 16 bits (Integer, DSP fixed point, Unicode)

» 32 bits (Integer, Single-precision floating poidhicode)

* 64 bits (Integer, Double-precision floating point

e 128 bits (Integer, Quad-Precision floating point

e Large integer (>128 hits) (Crypto)

Mixed precision floating-point arithmetic—separatecisions for input, internal
computations, and output—has already begun to afjpeBLAS routines [Demmel et al
2002]. A similar and perhaps more flexible struetwill be required so that all methods
can exploit it. While support for all of these tgpean mainly be provided entirely in
software, we do not rule out additional hardwaragsist efficient implementations of
very wide data types.

In addition to the more “primitive” data types debed above, programming
environments should also provide for distributethdgpes. These are naturally tightly
coupled to the styles of parallelism that are esped, and so influence the entire design.
The languages proposed in the DARPA High Produgth@nguage Systems program
are currently attempting to address this issud) witnajor concern being support for
user-specified distributions.

5.4 Models must support of proven styles of parallelism

Programming languages, compilers, and architechaes often placed their bets on one
style of parallel programming, usually forcing pragymers to express all parallelism in
that style. Now that we have a few decades of supleriments, we think that the
conclusion is clear: some styles of parallelismehproven successful for some
applications, and no style has proven best for all.
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Rather than placing all the eggs in one baskethwd& programming models and
architectures should support a variety of stylethab programmers can use the superior
choice when the opportunity occurs. We believe lieaincludes at least the following:

1. Independent task parallelisim an easy-to-use, orthogonal style of parallelism
that should be supported in any new architectusea Bounterexample, older
vector computers could not take advantage of teg&Hparallelism despite
having many parallel functional units. Indeed, thes one of the key arguments
used against vector computers in the switch to ivelgsparallel processors.

2. Word-level parallelisms a clean, natural match to some dwarfs, sudparsse
and dense linear algebra and unstructured gricamigles of successful support
include array operations in programming languagestorizing compilers, and
vector architectures. Vector compilers would giugsat compile time about
why a loop did not vectorize, and non-computerrgés could then vectorize the
code because they understood the model of pasafielt has been many years
since that could be said about a new parallel laggucompiler, and architecture.

3. Bit-level parallelismmay be exploited within a processor more effidiemt
power, area, and time than between processorexXannple, the Secure Hash
Algorithm (SHA) for cryptography has significantrplielism, but in a form that
requires very low latency communication betweenraipens on small fields.

In addition to the styles of parallelism, we alswé the issue of the memory model.
Because parallel systems usually contain memotsitalised throughout the machine, the
question arises of the programmer’s view of thismoey. Systems providing the illusion
of a uniform shared address space have been vpojgravith programmers. However,
scaling these to large systems remains a challéhgmory consistenagsues (relating

to the visibility and ordering of local and rematemory operations) also arise when
multiple processors can update the same locateaes likely having a cache. Explicitly
partitioned systems (such as MPI) sidestep manlyesfe issues, but programmers must
deal with the low-level details of performing remaipdates themselves.

6.0 Systems Software

In addition to programming models, compilers andrafing systems help span the gap
between applications and hardware towers of Figute our view, both of these vital
programs have grown so large over the decadet ikdtard to do the innovation that
may need as we switch to parallelism. Hence, idsté@ompletely re-engineering
compilers for parallelism, we recommend relying enon autotuners that search to yield
efficient parallel code (Section 6.1). Insteadedfing on the conventional large,
monolithic operating systems, we recommend relymage on virtual machines and
system libraries to include only those functionsdexl by the application (Section 6.2)

6.1 Autotuners vs. Traditional Compilers

Regardless of the programming model, performandetofe parallel applications will
crucially depend on the quality of the generatetdiecdraditionally the responsibility of
the compiler. For example, it may need to selestiitable implementation of
synchronization constructs or optimize communicatitatements. Additionally, the
compiler must generate good sequential code; actasiplicated by complex
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microarchitectures and memory hierarchies. The demgelects which optimizations to
perform, chooses parameters for these optimizatan selects from among alternative
implementations of a library kernel. The resultspace of optimization alternatives is
large. Such compilers will start from parallelisndicated in the program implicitly or
explicitly, and attempt to increase its amount adify its granularity—a problem that
can be simplified, but not sidestepped, by a ggodiamming model.

6.1.1 The Difficulty of Enhancing Modern Compilers

Unfortunately, it is difficult to add new optimizahs to compilers, presumably needed in
the transition from instruction-level parallelismtask- and data-level parallelism. As a
modern compiler contains millions of lines of cad®l new optimizations often require
fundamental changes to its internal data structtinesarge engineering investment is
difficult to justify, as compatibility with languagstandards and functional correctness of
generated code are usually much higher prioriias butput code quality. Moreover,
exotic automatic optimization passes are diffitolverify against all possible inputs
versus the few test cases required to publish arpa research conference.
Consequently, users have become accustomed toduffisophisticated optimizations,
as they are known to trigger more than their faars of compiler bugs.

Due to the limitation®f existing compilers, peak performance may stitjuire
handcrafting the program in languages like C, FORNRor even assembly code.
Indeed, most scalable parallel codes have allldgitaut, data movement, and processor
synchronization manually orchestrated by the pnognar. Such low-level coding is
labor intensive, and usually not portable to défarhardware platforms or even to later
implementations of the same instruction set archite.

6.1.2 The Promise of Search-Based Autotuners

Our vision is that relying on search embedded nioua forms of software synthesis can
solve these problems. Synthesizing efficient pnogréhrough search has been used in
several areas of code generation, and has hadaewetable successes. [Massalin 1987]
[Granlund et al 2006] [Warren 2006].

In recent years, “Autotuners” [Bilmes et al 199F{io and Johnson 1998] [Frigo and
Johnson 2005] [Granlund et al 2006] [Im et al 20@8haley and Dongarra 1998] gained
popularity as an effective approach to producirgikgquality portable scientific code.
Autotuners optimize a set of library kernels by gg@ting many variants of a given kernel
and benchmarking each variant by running on thgetgslatform. The search process
effectively tries many or all optimization switchasd hence may take hours to complete
on the target platform. Search needs to be peridioné/ once, however, when the
library is installed. The resulting code is oft@vearal times faster than naive
implementations, and a single autotuner can be tasgenerate high-quality code for a
wide variety of machines. In many cases, the antaticode is faster than vendor
libraries that were specifically hand-tuned for theget machine! This surprising result is
partly explained by the way the autotuner tirefpsisés many unusual variants of a
particular routine, often finding non-intuitive lpainrolling or register blocking factors
that lead to better performance.
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For example, Figure 8 shows how performance vényes factor of four with blocking
options on Itanium 2. The lesson from autotunintp& by searching many possible
combinations of optimization parameters, we carstip the problem of creating an
effective heuristic for optimization policy.

900 MHz Itanium 2, Intel C v8: ref=275 Mflop/s
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Figure 8. Sparse matrix performance on Itanium 2 for a fielEment problem using block compressed
sparse row (BCSR) format [Im et al 2005]. Perforoga(color-coded, relative to the 1x1 baseline) is
shown for all block sizes that divide 8x8—16 impktations in all. These implementations fully uhrol
the innermost loop and use scalar replacemenh&sadurce and destination vectors. You might ressgn
expect performance to increase relatively smoaikly and c increase, but this is clearly not tise ca
Platform: 900 MHz Itanium-2, 3.6 Gflop/s peak spdetkl v8.0 compiler.

The popularity of autotuners could lead to changdsenchmarks. Conventional
benchmarks such as SPEC are distributed as soatlegltat must be compiled and run
unaltered. This code often contains manual optititima favoring a particular target
computer, such as a particular cache blocking. thuaed code, however, would allow a
benchmark to find the best approach for each tanggmatically.

6.1.3 Extending Autotuners to Parallelism

We believe that autotuning can help with the coatfmh of parallel code as well.

Parallel architectures, however, introduce many aptimization parameters, and so far,
no successful autotuners for parallel codes ex@stany given problem, there may be
several parallel algorithms, each with alternapaeallel data layouts. The optimal choice
may depend not only on the processor architectuiralbo on the parallelism of the
computer, as well as the network bandwidth andhtateConsequently, in a parallel
setting, the search space can be much larger hlaafior a sequential kernel.
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To reduce the search space, it may be possiblecougle the search for good data
layout and communication patterns from the seavcla fgood compute kernel, especially
with the judicial use of performance models. Thievoek and memory performance may
be characterized relatively quickly using testgraits, and then plugged into performance
models for the network to derive suitable code $ofap the search over compute kernels
[Vadhiyar et al 2000].

6.2 Deconstructing operating system support

Although programming models live above the opepsipstem layer, the efficiency of
that layer can strongly affect the efficiency of fprograms that rely upon it. Just as
processors have crossed an inflection point obdreefits of growing larger, we believe
operating systems have as well. Going forward, alee that operating systems must
be deconstructed, with virtual machines enablirg)aplications to select only the
portion of the OS capabilities that are needederatle forced to accept a gargantuan soft
stack. Just as hardware is moving away from ae&imginolithic processor, operating
systems may be moving away from a single monolphagram. We lay out those
arguments in this section.

6.2.1 Increasing Need of Protection in Embedded Computing

One place where there is the greatest tension batihe embedded and server
communities in the past is operating systems. Exh@dystems have historically had
very minimal application-specific run-time systemath tight control over real-time
scheduling, but with little support for protectiand virtualization. This reflects the
desire to reduce processor cost, memory footmimd, power consumption, and the
assumption that software will be custom writtendgyarticular embedded system by the
manufacturer. Traditional server operating systeenge millions of lines of code, and
provide a very rich set of features. Protection @ntwialization are essential to support
large software systems built using a range of thady code written to industry-standard
APIs, and communicating over the unsecured glaliathet.

We believe these two worlds are colliding and meggas embedded systems increase in
functionality. For example, cell phones and gamehires now support multi-gigabyte
file systems and complex Web browsers. In particakl phone manufacturers who
have previously resisted the installation of thpatty software due to reliability

concerns, now realize that a standard APl mustdeged to allow user extensibility,

and this will require much more sophisticated amadble operating systems and the
hardware support these require.

Since embedded computers are increasingly connexteetworks, we think they will be
increasingly vulnerable to viruses and other atatrkdeed, the first personal computer
operating systems dropped protection since deveddpeught a PC had only a single
user, which worked OK until we connected PCs toltiernet. Imagine how much better
our lives would be if security had been a PC OS8rjiyi before they joined the Internet.
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6.2.2 Virtual Machines to the Rescue

Traditional OSes are too large and brittle to supraalical innovation but contain
millions of lines of valuable legacy code essentiapplication functionality. The
resurgence of interest wirtual machinegVMs) is evidence that operating systems have
reached their own technology inflexion point. VMheaology allows a complete
operating system with running applications to leatied as a software component,
manipulated by airtual machine monito(VMM) or hypervisor. The VMM inserts a

thin software layer between a guest OS and theNaaedto give the guest OS the illusion
that it is running on its own copy of the real haade. This approach allows a very small,
very low overhead VMM to provide innovative proiectand resource sharing without
having to run or modify multimillion-line OSes.

Virtual machines appear to be the future of seoparating systems. For example, AMD,
Intel, and Sun have all modified their instructset architectures to support virtual
machines. VMs have become popular in server comgdidir a few reasons: [Hennessy
and Patterson 2007]
* To provide a greater degree of protection agaimgsgs and attacks;
* To cope with software failures by isolating a peogrinside a single VM so as
not to damage other programs; and
* To cope with hardware failures by migrating a \attmachine from one computer
to another without stopping the programs
VMMs provide an elegant solution to the failurecohventional OSes to provide such
features. VMMs are also a great match to manyggstesis, in that space sharing will be
increasingly important when running multiple apations on 1000s of processors.

What is the cost of a VMM? The overhead of runrangOS on a VMM is generally a
function of the instruction set architecture. Wéeéwe manycore architectures for
embedded and server should support virtualizaéierthe hardware costs are trivial. By
designing an instruction set architecture to beuglizable, the software overhead can be
very low. Indeed, an important architectural goalld be to provide the support that
helps prevent the VMM from growing over time.

6.2.3 Deconstructing Operating Systems

Rosenblum argues that the future of server operatystem could essentially be libraries
where only the functions needed are linked intoagyglication, on top of a thin VMM
layer providing protection and sharing of hardwa®ources. [Rosenblum 2006] This
vision is similar to embedded OSes today. For exemyfxWorks lets the user choose
which features of the OS will be included in thiskedded application. [Wind River
2006] Hence, we see operating systems having maremnmon for embedded and server
computing.

While this vision is compelling, it is not bindingn application can run either a very thin
or a very thick OS on top of the VMM, or even mpiéi OSes simultaneously to
accommodate different task needs. For examplaldinee code and a best effort code
running on different cores, or a minimal data-pl@f on multiple high-density cores
and a complex control-plane OS on a large genenadgse core.
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7.0 Metrics for Success

Having covered the six questions from the full gadn Figure 1, we need to decide how
to best invent and evaluate answers to those gaesstin the following, we focus on
maximizing two metrics—programmer productivity dmahl implementation efficiency—
and to provide a vehicle to help researchers inteoweore quickly.

7.1 Maximizing programmer productivity

Having thousands of processing elements on a saggepresents a major programming
challenge to application designers. The adoptiah@icurrent generation of on-chip
multiprocessors has been slow due to the difficoftgetting applications correctly and
productively implemented on these devices. For gtanthe trade press speaking of
current on-chip multiprocessors targeted for nekvagplications says [Weinberg 2004]:
“... network processors with powerful and complex packet-engine sets have
proven to be notoriously difficult to program.”
Earlier on-chip multiprocessors such as the TI TRIB380 failed altogether because
application designers could not tap their perforaegoroductively. Thus, the ability to
productively program these high-performance mudiiessors of the future is as at least
as important as providing high-performance silicaplementations of these
architectures.

Another area that deserves consideration is thi@ddf hardware structures that assist
language productivity features. For example, suppptransactional memory entirely in
software may be too slow to be useful, but can bderefficient with hardware support.
Other examples of this include support for garbagkection, fine-grained
synchronization (the Cray MTA), one-sided messadirage collection for debugging
[Xu et al 2003], and performance and energy coariteaid program optimization (see
Section 4.5).

Productivity is a multifaceted term that is difficto quantify. However, case studies
such as [Shah et al 2004b] and the work in the imggdARPA HPCS program [HPCS
2006] build our confidence that productivity is arable to quantitative comparison. In
addition, work in the psychology of programming edso inform our evaluation efforts.

7.2. Maximizing application performance

One implication of Figure 2 is that for 15 yearplagation performance steadily
increased simply by running applications on newegations of processors with minimal
additional programmer effort. As processor perfarogagrowth has slowed, new ideas
will be required to realize further application fmemance gains. Radical ideas are
required to make manycore architectures a secureddust base for productive software
development since the existing literature only shewccesses in narrow application
domains such as Cisco’s 188-processor Metro chiipdtworking applications

[Eatherton 2005].

Moreover, since the power wall has forced us taede the battle for maximum

performance of individual processing elements, wstraim at winning the war for
application efficiency through optimizing total s performance. This will require
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extensive design space exploration. The geneeaatiltre on design-space exploration is
extensively reviewed in [Gries 2004] and the stitéie art in commercial software
support for embedded processor design-space ekplotsing CoWare or Tensilica
toolsets is presented in [Gries and Keutzer 2086yvever, evaluating full applications
requires more than astute processing element tefinthe full system-architecture
design space including memory and interconnect imeisixplored. Although these
design space explorations focus on embedded parsesg believe that the processors
of manycore systems will look more like embeddeatpssors than current desktop
processors (see Section 4.1.2.).

New efficiency metrics will make up the evaluatmiithe new parallel architecture. As
in the sequential world, there are many “obsenaiftem program execution that
provide hints (such as cache misses) to the oveffadlency of a running program. In
addition to serial performance issues, the evalonaif parallel systems architectures will
focus on:

- Minimizing remote accessds the case where data is accessed by compudation
tasks that are spread over different processingeiés, we need to optimize its
placement so that communication is minimized.

- Load balanceThe mapping of computational tasks to processlaments must
be performed in such a way that the elements s&dwaiting for data or
synchronization) as little as possible.

- Granularity of data movement and synchronizatidiost modern networks
perform best for large data transfers. In addittbe,latency of synchronization is
high and so it is advantageous to synchronizetésdis possible.

Software design environments for embedded systentsas those described in [Rowen
and Leibson 2005] lend greater support to makiegehypes of system-level decisions.
To make help programmers progress towards theds, ggmrecommend hardware
counters that can measure these performance igmeSection 4.6).

The conventional path for exploring new architeesufor the last decade has been
simulation. We are skeptical that software simolatlone will provide sufficient
throughput for thorough evaluation of manycore eyst architectures. Nor will per-
project hardware prototypes that require long dgwalent cycles be sufficient. The
development of thesad hocprototypes will be far too slow to influence thectsions

that industry will need to make regarding futurenywore system architectures. We need
a platform where feedback from software experimentaovel manycore architectures
running real applications with representative woakls will lead to new system
architectures within days, not years.

7.3 RAMP: Research Accelerator for Multiple Processors

The Research Accelerator for Multiple Processor N#A project is an open-source
effort of ten faculty at six institutions to createomputing platform that will enable
rapid innovation in parallel software and architeet[Arvind et al 2005] [Wawrzynek et
al 2006]. RAMP is inspired by:
1. The difficulty for researchers to build modern chips described in CW #5 in
Section 2.
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2. The rapid advance in field-programmable gate ar(Bi$5As), which are
doubling in capacity every 18 months. FPGAs nowehidne capacity for millions
of gates and millions of bits of memory, and thay be reconfigured as easily as
modifying software.

3. Flexibility, large scale, and low cost trumps abselperformance for researchers,
as long as performance is fast enough to do thperaments in a timely fashion.
This perspective suggests the use of FPGAs foesysmulation.

4. Smaller is better (see Section 4.1) means marnyesithardware modules can fit
insidean FPGA today, avoiding the much tougher mappnodplpms of the past
when a single module had to span many FPGAs.

5. The availability of open-source modules, from Omers.org, Open SPARC, and
Power.org, which can be inserted into FPGAs wittelieffort [Opencores 2006]
[OpenSPARC 2006] [Power.org 2006].

While the idea for RAMP is just 18 months old, treup has made rapid progress. It has
financial support from NSF and several companiesithas working hardware based on
an older generation of FPGA chips. Although RAMH win, say, 20 times more slowly
than real hardware, it will emulate many differepeeds of components accurately to
report correct performance as measured in the éatuddock rate.

The group plans to develop three versions of RAMBamonstrate what can be done:
* Cluster RAMP (“RAMP Blue™)Led by the Berkeley contingent, this version will
a large-scale example using MPI for high perforneasgplications like the NAS
parallel benchmarks [Van der Wijngaart 2002] or TI€PRor Internet applications
like search. An 8-board version will run the NASbemarks on 256 processors.
» Transactional Memory RAMP (“RAMP Redl)ed by the Stanford contingent,
this version will implement cache coherency usimgTCC version of
transactional memory [Hammond et al 2004]. A sirmgdard system runs 100
times faster than the Transactional Memory simulato
» Cache-Coherent RAMP (“RAMP White')ed by the CMU and Texas
contingents, this version will implement a ring-edsoherency or snoop based
coherency.
All will share the same “gateware’—processors, mgnoontrollers, switches, and so
on—as well as CAD tools, including co-simulatio€hjung et al 2006]

The goal is to make the “gateware” and softwarelyravailable on a web site, to
redesign the boards to use the recently announotek\6 FPGAS, and finally to find a
manufacturer to sell them at low margin. The cegstimated to be about $100 per
processor and the power about 1 watt per procegstaing a 1000 processor system
that costs about $100,000, that consumes aboukiloweatt, and that takes about one
guarter of a standard rack of space.

The interactions between massively parallel prognarg models, real-time constraints,
protection, and virtualization provide a rich grduor architecture and software systems
research. The hope is that the advantages of &r@e-multiprocessing, standard
instruction sets and OSes, low cost, low power,eagk-of-change will make RAMP a
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standard platform for parallel research for mampesyof researchers. If it creates a
“watering hole effect” in bringing many disciplinesgether, it could lead to innovation
that will more rapidly develop successful answerthe seven questions of Figure 1.

8.0 Conclusion

CWs # 1, 7,8, and 9 in Section 2 say the triplamvimy of the Power, Memory, and
Instruction Level Parallelism Walls has forced mmmocessor manufacturers to bet their
futures on parallel microprocessors. This is n@ $hing, as parallel software has an
uneven track record.

From a research perspective, however, this is aitiegx opportunity. Virtually any
change can be justified—new programming languag®s,instruction set architectures,
new interconnection protocols, and so on—if it dafiver on the goal of making it easy
to write programs that execute efficiently on mamgccomputing systems.

This opportunity inspired a group of us at Berkdleyn many backgrounds to spend
nearly two years discussing the issues, leaditigg@even questions of Figure 1 and the
following unconventional perspectives:

* Regarding multicore versus manycoYée believe that manycore is the future of
computing. Furthermore, it is unwise to presume inalticore architectures and
programming models suitable for 2 to 32 processansincrementally evolve to
serve manycore systems of 1000s of processors.

* Regarding the application toweWe believe a promising approach is to use 13
Dwarfs as stand-ins for future parallel applicasi@mce applications are rapidly
changing and because we need to investigate dgpadigramming models as
well as architectures.

* Regarding the hardware towéWe advise using simple processors, to innovate in
memory as well as in processor design, to consiglearate latency-oriented and
bandwidth-oriented networks. Since the point-tospebmmunication patterns
are very sparse, a hybrid interconnect designubes circuit switches to tailor the
interconnect topology to application requiremertsid be more area and power
efficient than a full-crossbar and more computatlynefficient than a static
mesh topology. Traditional cache coherence is ahlito be sufficient to
coordinate the activities of 1000s of cores, sa@@mmend a richer hardware
support for fine-grained synchronization and comitation constructs. Finally,
do not include features that significantly affeetfpormance or energy if you do
not provide counters that let programmers accwyraelasure their impact.

* Regarding the programming models that bridge thetowers To improve
productivity, programming models must be more hwoeamtric and engage the
full range of issues associated with developingralpel application on manycore
hardware. To maximize application efficiency aslaslprogrammer
productivity, programming models should be indeganaef the number of
processors, they should allow programmers to ugdar set of data types and
sizes, and they should support successful andkmelivn parallel models of
parallelism: independent task, word-level, anddiel parallelism.
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» We also think that autotuners should take on aela@ at least complementary,
role to compilers in translating parallel programsrtther, we argue that
traditional operating systems will be deconstru@ed operating system
functionality will be orchestrated using virtual ahnes.

» To provide an effective parallel computing roadmajckly so that industry can
safely place its bets, we encourage researchersetautotuners and RAMP to
explore this space rapidly and to measure sucgelsw easy it is to program the
13 Dwarfs to run efficiently on manycore systems.

* While embedded and server computing have histdyieablved along separate
paths, in our view the manycore challenge bringstimuch closer together. By
leveraging the good ideas from each path, we bekey will find better answers
to the seven questions in Figure 1.

As a test case to see the usefulness of thesevalisaes, one of the authors was invited
to a workshop that posed the question of what cpoilddo if you had infinite memory
bandwidth? We approached the problem using thefdwasking which were
computationally limited and which were limited bymory. Figure 9 below gives the
results of our quick study, which was that memaitgmcy was a bigger problem than
memory bandwidth, and some dwarfs were not limitgdnemory bandwidth or latency.
Whether our answer was correct or not, it was gxgib have a principled framework to
rely upon to try to answer such open and diffiquiestions.

This report is intended to be the start of a cosstaon about these perspectives. There is
an open, exciting, and urgent research agendagh @iut the concepts represented by the
two towers and span of Figure 1. We invite youddtipipate in this important discussion
by visiting view.eecs.berkeley.edu.

Dwarf Performance Limit: Memory Bandwidth,

Memory Latency, or Computation?

1. Dense Matrix Computationally limited

2. Sparse Matrix Currently 50% computation, 50% moenBW

3. Spectral (FFT) Memory latency limited

4. N-Body Computationally limited

5. Structured Grid Currently more memory bandwidthted

6. Unstructured Grid Memory latency limited

7. MapReduce Problem dependent

8. Combinational Logic CRC problems BW; cryptolgeims
computationally limited

9. Graph traversal Memory latency limited

10. Dynamic Programming Memory latency limited

11. Backtrack and Branch+Bound ?

12. Construct Graphical Models ?

13. Finite State Machine Nothing helps!

Figure9. Limits to performance of dwarfs, inspired by ailggestion by IBM that a packaging technology
could offer virtually infinite memory bandwidth. W& the memory wall limited performance for almost
half the dwarfs, memory latency is a bigger probtaan memory bandwidth

45



The Landscape of Parallel Computing Research: Av\ieom Berkeley

Acknowledgments

During the writing of this paper, Krste Asanovicamasiting U.C. Berkeley, on
sabbatical from MIT. We’d like to thank the followg who participated in at least some
of these meetings: Jim Demmel, Jike Chong, Armdfmq Joe Hellerstein, Mike
Jordan, Dan Klein, Bill Kramer, Rose Liu, Lenny K&, Heidi Pan, and John
Wawrzynek. We'd also like to thank those who gasedback on the first draft that we
used to improve this report: Shekhar Borkar, Yerak@Chen, David Chinnery, Carole
Dulong, James Demmel, Srinivas Devadas, Armando Riwardo Gonzalez, Jim Gray,
Mark Horowitz, Wen-Mei Hwu, Anthony Joseph, Chrstgozyrakis, Jim Larus, Sharad
Malik, Grant Martin, Tim Mattson, Heinrich Meyr, €y Morrisett, Shubhu Mukherjee,
Chris Rowen, and David Wood. Revising the reporesponse to their extensive
comments meant the final draft took 4 more months!

References
[ABAQUS 2006] ABAQUS finite element analysis homage. http://www.hks.com

[Adiletta et al 2002] M. Adiletta, M. Rosenbluth, Bernstein, G. Wolrich, and H. Wilkinson, “The Nex
Generation of the Intel IXP Network Processotafél Technology Journalol. 6, no. 3, pp. 6—18, Aug.
15, 2002.

[Allen et al 2006] E. Allen, V. Luchango, J.-W. Mssen, S. Ryu, G. Steele, and S. Tobin-HochsTdu,
Fortress Language Specificatioh006. Available at http://research.sun.com/pitsjetrg/

[Altschul et al 1990] S.F. Altschul, W. Gish, W. IMr, E.W. Myers, and D.J. Lipman, “Basic local
alignment search toolJournal Of Molecular Biadgy, vol. 215, no. 3, 1990, pp. 403-410.

[Alverson et al 1990] R. Alverson, D. Cllahan, Dur@mings, B. Koblenz, A. Porterfield, and B. Smith,
“The Tera Computer System,” ifProceedings of the 1990 ACM International Confeeengn
Supercomputing (SC'90p. 1-6, Jun. 1990.

[Alverson et al 1999] G.A. Alverson, C.D. CallahdinS.H. Kahan, B.D. Koblenz, A. Porterfield, B.J.
Smith, “Synchronization Techniques in a MultithreddEnvironment,” US patent 6862635.

[Arnold 2005] J. Arnold, “S5: the architecture ashelvelopment flow of a software configurable prooess
in Proceedings of the IEEE International Conference~@id-Programmable Technologipec. 2005, pp.
121-128.

[Arvind et al 2005] Arvind, K. Asanovic, D. Chiod,C. Hoe, C. Kozyrakis, S. Lu, M. Oskin, D. Patters
J. Rabaey, and J. Wawrzynek, “RAMP: Research Acatge for Multiple Processors - A Community
Vision for a Shared Experimental Parallel HW/SWitflen,” U.C. Berkeley technical report, UCB/CSD-
05-1412, 2005.

[Aspuru-Guzik et al 2005] A. Aspuru-Guzik, R. SalemFerrer, B. Austin, R. Perusquia-Flores, M.A.
Griffin, R.A. Oliva, D. Skinner, D. Domin, and W.Aester, Jr., “Zori 1.0: A Parallel Quantum Monte
Carlo Electronic PackageJournal of Computational Chemistryol. 26, no. 8, Jun. 2005, pp. 856—862.

[Bader and Madduri 2006] D.A. Bader and K. Maddtbiesigning Multithreaded Algorithms for Breadth-
First Search and st-connectivity on the Cray MTAi2,Proceedings of the 35th International Conference
on Parallel Processing (ICPRPAug. 2006, pp. 523-530.

[Barnes and Hut 1986] J. Barnes and P. Hut, “A &tighical O(n log n) force calculation algorithm,”
Nature vol. 324, 1986.

46



The Landscape of Parallel Computing Research: Av\ieom Berkeley

[Bell and Newell 1970] G. Bell and A. Newell, “THeMS and ISP descriptive systems for computer
structures,” inProceedings of the Spring Joint Computer ConfereAE#PS Press, 1970, pp. 351-374.

[Bernholdt et al 2002] D.E. Bernholdt, W.R. ElsaslfA. Kohl, and T.G.W. Epperly, “A Component
Architecture for High-Performance Computing,” roceedings of the Workshop on Performance
Optimization via High-Level Languages and Librar{©HLL-02) Jun. 2002.

[Berry et al 2006] J.W. Berry, B.A. Hendrickson, lsahan, P. Konecny, “Graph Software Development
and Performance on the MTA-2 and Eldorado,” preskrdat the 48th Cray Users Group Meeting,
Switzerland, May 2006.

[Bilmes et al 1997] J. Bilmes, K. Asanovic, C.W.ighJ. Demmel, “Optimizing matrix multiply using
PHIPAC: a Portable, High-Performance, ANSI C codimgthodology,” inProceedings of the 11th
International Conference on Supercomputi¥gnna, Austria, Jul. 1997, pp. 340-347.

[Blackford et al 1996] L.S. Blackford, J. Choi, 8leary, A. Petitet, R.C. Whaley, J. Demmel, |. Diril

K. Stanley, J. Dongarra, S. Hammarling, G. Henng B. Walker, “ScaLAPACK: a portable linear algebra
library for distributed memory computers - desigauies and performance,” Rroceedings of the 1996
ACM/IEEE conference on SupercompufiNgv. 1996.

[Blackford et al 2002] L.S. Blackford, J. Demmel, Dongarra, I. Du, S. Hammarling, G. Henry, M.
Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, RzBpK. Remington, R.C. Whaley, “An updated set of
basic linear algebra subprograms (BLARACM Transactions on Mathematical Software (TOM®). 28,
no. 2, Jun. 2002, pp. 135-151.

[Borkar 1999] S. Borkar, “Design challenges of tealogy scaling,”|IEEE Micro, vol. 19, no. 4, Jul.—Aug.
1999, pp. 23-29.

[Borkar 2005] S. Borkar, “Designing Reliable Systefrom Unrealiable Components: The Challenges of
Transistor Variability and DegradationEEE Micro, Nov.—Dec. 2005, pp. 10-16.

[Brunel et al 2000] J.-Y. Brunel, K.A. Vissers, Bieverse, P. van der Wolf, W.M. Kruijtzer, W.J.M.
Smiths, G. Essink, E.A. de Kock, “YAPI: ApplicatioModeling for Signal Processing Systems,” in
Proceedings of the 37th Conference on Design AutoméAC '00) 2000, pp. 402-405.

[Callahan et al 2004] D. Callahan, B.L. Chambetlaind H.P. Zima. “The Cascade High Productivity
Language,” inProceedings of the 9th International Workshop omghHievel Parallel Programming
Models and Supportive Environments (HIPS 20(EE Computer Society, Apr. 2004, pp. 52—-60.

[Chandrakasan et al 1992] A.P. Chandrakasan, SigSh@d R.W. Brodersen, “Low-power CMOS digital
design,”IEEE Journal of Solid-State Circujtgol. 27, no. 4, 1992, pp. 473-484.

[Charles et al 2005] P. Charles, C. Donawa, K. &gci, C. Grothoff, A. Kielstra, C. von Praun, V.
Saraswat, and V. Sarkar, “X10: An Object-Orientegpfoach to Non-Uniform Cluster Computing,” in
Proceedings of the 20th Annual ACM SIGPLAN Confegeon Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA '06xt. 2005.

[Chen 2006] Y.K. Chen, Private Communication, R006.

[Chinnery 2006] D. Chinnery,ow Power Design AutomatipPh.D. dissertation, Department of Electrical
Engineering and Computer Sciences, University dif@aia, Berkeley, Berkeley, CA, 2006.

[Chong and Catanzaro 2006] J. Chong and B. Catangacel spreadsheet.

47



The Landscape of Parallel Computing Research: Av\ieom Berkeley

[Chung et al 2006] E.S. Chung, J.C. Hoe, and Bsdfal“ProtoFlex: Co-Simulation for Component-wise
FPGA Emulator Development,” in thend Workshop on Architecture Research using FPGafdétins
(WARFP 2006)Feb. 2006.

[Colella 2004] P. Colella, “Defining Software Rerpments for Scientific Computing,” presentationQ20

[Cooley and Tukey 1965] J. Cooley and J. Tukey, “@gorithm for the machine computation of the
complex Fourier seriesMathematics of Computatiomol. 19, 1965, pp. 297-301.

[Cristianini and Shawe-Taylor 2000] N. Cristianarid J. Shawe-TayloAn Introduction to Support Vector
Machines Cambridge University Press, Cambridge, 2000.

[Dally and Towles 2001] W.J. Dally and B. TowleRdute Packets, Not Wires: On-Chip Interconnection
Networks,” inProceedings of the 38th Conference on Design Auiomé@AC '01) 2001, pp. 684—-689.

[Dean and Ghemawat 2004] J. Dean and S. GhemaMapReduce: Simplified Data Processing on Large
Clusters,” inProceedings of OSDI '04: 6th Symposium on OperaSggtem Design and Implemention
San Francisco, CA, Dec. 2004.

[Deitz 2005] S.J. DeitzHigh-Level Programming Language Abstractions forvéaced and Dynamic
Parallel ComputationsPhD thesis, University of Washington, Feb. 2005.

[Demmel et al 1999] J. Demmel, S. Eisenstat, Jbe&si|] X. Li, and J. Liu, “A supernodal approach to
sparse partial pivoting 3IAM Journal on Matrix Analysis and Applicationsl. 20, no. 3, pp. 720-755.

[Demmel et al 2002] J. Demmel, D. Bailey, G. Hen¥yHida, J. Iskandar, X. Li, W. Kahan, S. Kang, A.
Kapur, M. Martin, B. Thompson, T. Tung, and D. Y&Dgsign, Implementation and Testing of Extended
and Mixed Precision BLAS,ACM Transactions on Mathematical Softwavel. 28, no. 2, Jun. 2002, pp.

152-205.

[Dubey 2005] P. Dubey, “Recognition, Mining and 8wsis Moves Computers to the Era of Tera,”
Technology@Intel Magazin&eb. 2005.

[Duda and Hart 1973] R. Duda and P. H&attern Classification and Scene Analy$iew York: Wiley,
1973.

[Eatherton 2005] W. Eatherton, “The Push of NetwBmrocessing to the Top of the Pyramid,” keynote
address aBymposium on Architectures for Networking and Comications System®Oct. 26—-28, 2005.
Slides available at: http://www.cesr.ncsu.edu/aglice's/eathertonKeynote.pdf

[Ebcioglu et al 2006] K. Ebcioglu, V. Sarkar, T-Ghazawi, J. Urbanic, “An Experiment in Measurihg t
Productivity of Three Parallel Programming Langusgen Proceedings of the Second Workshop on
Productivity and Performance in High-End Comput{fFgPHEC 2005)Feb. 2005.

[Edinburg 2006] University of Edinburg, “QCD-on-&ip, (QCDOC),”
http://lwww.pparc.ac.uk/roadmap/rmProject.aspx?q=82

[EEMBC 2006] Embedded Microprocessor Benchmark @adngn. http://www.eembc.org

[FLUENT 2006] FIDAP finite element for computatidndluid dynamics analysis home page.
http://www.fluent.com/software/fidap/index.htm

[Frigo and Johnson 1998] M. Frigo and S.G. JohnSBRTW: An adaptive software architecture for the

FFT,” in Proceedings of the 1998 IEEE International Confereron Acoustics, Speech, and Signal
Processing (ICASSP '98%eattle, WA, May 1998, vol. 3, pp. 1381-1384.

48



The Landscape of Parallel Computing Research: Av\ieom Berkeley

[Frigo and Johnson 2005] M. Frigo and S.G. John&dhge Design and Implementation of FFTW3,"
Proceedings of the IEER0I. 93, no. 2, 2005, pp. 216-231.

[Gelsinger 2001] P.P. Gelsinger, “Microprocessanstfie new millennium: Challenges, opportunitias] a
new frontiers,” inProceedings of the International Solid State Cits@onference (ISSCC001, pp. 22—
25.

[Gonzalez and Horowitz 1996] R. Gonzalez and M. didtz, “Energy dissipation in general purpose
microprocessors,/IEEE Journal of Solid-State Circujtgol. 31, no. 9, 1996, pp. 1277-1284.

[Goodale et al 2003] T. Goodale, G. Allen, G. Lanfann, J. Masso, T. Radke, E. Seidel, and J. Shalf,
“The cactus framework and toolkit: Design and amdlons,” in Vector and Parallel Processing
(VECPAR’2002), 5th International Conferen&pringer, 2003.

[Gordon et al 2002] M.l. Gordon, W. Thies, M. Kamtarek, J. Lin, A.S. Meli, A.A. Lamb, C. Leger, J.
Wong, H. Hoffmann, D. Maze, and S. Amarasinghe, Stkeam Compiler for Communication-Exposed
Architectures,” MIT Technology Memo TM-627, Camhyal MA, Mar. 2002.

[Granlund et al 2006] T. Granlund et al. GNU Suptrizer FTP site.
ftp://prep.ai.mit.edu/pub/gnu/superopt

[Gries 2004] M. Gries, “Methods for Evaluating af@vering the Design Space during Early Design
Development,integration, the VLSI JournaElsevier, vol. 38, no. 2, Dec. 2004, pp. 131-183.

[Gries and Keutzer 2005] M. Gries and K. Keutzatit@gs), Building ASIPs: The MESCAL Methodology
Springer, 2005.

[Gursoy and Kale 2004] A. Gursoy and L.V. Kale, fféemance and Modularity Benefits of Message-
Driven Execution,’Journal of Parallel and Distributed Computingol. 64, no. 4, Apr. 2004, pp. 461-480.

[Hammond et al 2004] L. Hammond, V. Wong, M. Ch&n,Hertzberg, B. Carlstrom, M. Prabhu, H.
Wijaya, C. Kozyrakis, and K. Olukotun, “TransactidrMemory Coherence and Consistency (TCC),” in
Proceedings of the 31st Annual International Syryoon Computer Architecture (ISCA )04un. 2004.

[Harstein and Puzak 2003] A. Harstein and T. PuZz@ktimum Power/Performance Pipeline Depth,” in
Proceedings of the 36th IEEE/ACM International Sgaipm on Microarchitecture (MICRO-36Pec.
2003, pp. 117-126.

[Hauser and Wawrzynek 1997] J.R. Hauser and J. W#awk, “GARP: A MIPS processor with a
reconfigurable coprocessor,” Proceedings of the IEEE Symposium on FPGAs foraustomputing
Machines Apr. 1997, pp. 12-21.

[Hennessy and Patterson 2007] J. Hennessy and tieréta, Computer Architecture: A Quantitative
Approach 4" edition, Morgan Kauffman, San Francisco, 2007.

[Heo and Asanovic 2004] S. Heo and K. Asanovic, WBeOptimal Pipelining in Deep Submicron
Technology,” inProceedings of the International Symposium on Lowé? Electronics and Desig2004,
pp. 218-223.

[Herlihy and Moss 1993] M. Herlihy and J.E.B. MoS§ransactional Memory: Architectural Support for
Lock-Free Data Structures,” iRroceedings of the 20th Annual International Symposon Computer
Architecture (ISCA '93)1993, pp. 289-300.

[Hewitt et al 1973] C. Hewiit, P. Bishop, and Rieger, “A Universal Modular Actor Formalism for

Artificial Intelligence,” in Proceedings of the 1973 International Joint Confees on Artificial
Intelligence 1973, pp. 235-246.

49



The Landscape of Parallel Computing Research: Av\ieom Berkeley

[Hillis and Tucker 1993] W.D. Hillis and L.W. Tucke“The CM-5 Connection Machine: A Scalable
Supercomputer,Communications of the AGMol. 36, no. 11, Nov. 1993, pp. 31-40.

[Hochstein et al 2005] L. Hochstein, J. CarverShull, S. Asgari, V.R. Basili, J.K. Hollingsworth.
Zelkowitz. “Parallel Programmer Productivity: A @asStudy of Novice Parallel Programmers,”
International Conference for High Performance Comimy, Networking and Storag&C'05). Nov. 2005.

[Horowitz 2006] M. Horowitz, personal communicatiand Excel spreadsheet.

[Hrishikesh et al 2002] M.S. Hrishikesh, D. Burgét,P. Jouppi, S.W. Keckler, K.I. Farkas, and P.
Shivakumar, “The Optimal Logic Depth Per Pipelinadge is 6 to 8 FO4 Inverter Delays,”fmoceedings
of the 29th Annual International Symposium on Caepérchitecture (ISCA '02May 2002, pp. 14-24.

[HPCS 2006] DARPA High Productivity Computer Systehome page. http://www.highproductivity.org/
[IBM 2006] IBM Research, “MD-GRAPE." http://www.rearch.ibm.com/grape/

[Im et al 2005] E.J. Im, K. Yelick, and R. VuducSparsity: Optimization framework for sparse matrix
kernels,”International Journal of High Performance Computiagplications vol. 18, no. 1, Spr. 2004, pp.
135-158.

[Intel 2004] Intel Corporation, “Introduction to Aa+Partiontioning Programming Model,” Literature
number 254114-001, 2004.

[Kamil et al 2005] S.A. Kamil, J. Shalf, L. Olikeand D. Skinner, “Understanding Ultra-Scale Apgima
Communication Requirements,” Proceedings of the 2005 IEEE International Sympuasan Workload
Characterization (IISWC)Austin, TX, Oct. 6-8, 2005, pp. 178-187. (LBNLO5D)

[Kantowitz and Sorkin 1983] B.H. Kantowitz and R.Borkin, Human Factors: Understanding People-
System RelationshipSlew York, NY, John Wiley & Sons, 1983.

[Killian et al 2001] E. Killian, C. Rowen, D. Maydaand A. Wang, “Hardware/Software Instruction set
Configurability for System-on-Chip Processors,” Broceedings of the 38th Conference on Design
Automation (DAC '01)2001, pp. 184-188.

[Koelbel et al 1993] C.H. Koelbel, D.B. Loveman,SR.Schreiber, G.L. Steele Jr., and M.E. Zo3éle
High Performance Fortran Handbopkhe MIT Press, 1993. ISBN 0262610949.

[Kozyrakis and Olukotun 2005] C. Kozyrakis and Klukbtun, “ATLAS: A Scalable Emulator for
Transactional Parallel Systems,” Workshop on Architecture Research using FPGA Hiaitso 11th
International Symposium on High-Performance Comp#tehitecture (HPCA-11 2005)San Francisco,
CA, Feb. 13, 2005.

[Kumar et al 2003] R. Kumar, K.l. Farkas, N.P. Joyf. Ranganathan, and D.M. Tullsen, “Single-ISA
Heterogeneous Multi-core Architectures: The Pogfiitir Processor Power Reduction,”Rnoceedings of
the 36th Annual IEEE/ACM International SymposiumMiaroarchitecture (MICRO-36)Dec. 2003.

[Kuo et al 2005] K. Kuo, R.M. Rabbah, and S. Amargke, “A Productive Programming Environment for
Stream Computing,” ifProceedings of the Second Workshop on Produciity Performance in High-
End Computing (P-PHEC 20053eb. 2005.

[Kuon and Rose 2006] I. Kuon and J. Rose, “Meagutime gap between FPGAs and ASICs,” in

Proceedings of the Internation Symposium on Figlodgfammable Gate Arrays (FPGA 'Q6Monterey,
California, USA, ACM Press, New York, NY, Feb. 22-2006, pp. 21-30.

50



The Landscape of Parallel Computing Research: Av\ieom Berkeley

[Massalin 1987] H. Massalin, “Superoptimizer: akoat the smallest program,” iRroceedings of the
Second International Conference on Architectual @dupfor Programming Languages and Operating
Systems (ASPLOS,IRalo Alto, CA, 1987, pp. 122-126.

[MathWorks 2004] The MathWorks, “Real-Time Workshefd Datasheet,” 2004.

[MathWorks 2006] The MathWorks, MATLAB Function Reénce, 2006.

[Mattson 1999] T. Mattson, “A Cognitive Model fordggramming,” U. Florida whitepaper, 1999.
Available at
http://www.cise.ufl.edu/research/ParallelPatterag#?nLanguage/Background/Psychology/CognitiveMod
el.htm

[Monaghan 1982] J.J. Monaghan, “Shock Simulation the Particle Method SPH,Journal of
Computational Physi¢cyol. 52, 1982, pp. 374-389.

[Mukherjee et al 2005] S.S. Mukherjee, J. Emer, &HK. Reinhardt, "The Soft Error Problem: An
Architectural Perspective," iProceedings of the 11th International SymposiumHigh-Performance
Computer Architecture (HPCA-11 200%eb. 2005, pp. 243-247.

[Nyberg et al 2004] C. Nyberg, J. Gray, C. Koestéy,Minute with Nsort on a 32P NEC Windows
Itanium2 Server”, http://www.ordinal.com/NsortMirupdf, 2004.

[Opencores 2006] Opencores home page. http://wwenogres.org
[OpenMP 2006] OpenMP home page. http://www.openngp.o
[OpenSPARC 2006] OpenSPARC home page. http://opgogunsource.net
[OSKI 2006] OSKI home page. http://bebop.cs.berkeldu/oski/about.html

[Pancake and Bergmark 1990] C.M. Pancake and DgrBank, “Do Parallel Languages Respond to the
Needs of Scientific ProgrammerdBEE Computervol. 23, no. 12, Dec. 1990, pp. 13-23.

[Patterson 2004] D. Patterson, “Latency Lags Badtlwi Communications of the ACMol. 47, no. 10,
Oct. 2004, pp. 71-75.

[Patterson et al 1997] D. Patterson, T. AndersonCBrdwell, R. Fromm, K. Keeton, C. Kozyrakis, R.
Thomas, and K. Yelick, “A Case for Intelligent RANRAM,” IEEE Micro, vol. 17, no. 2, Mar.—Apr.
1993, pp. 34-44.

[Paulin 2006] P. Paulin, personal communication Brdel spreadsheet.

[Plishker et al 2004] W. Plishker, K. Ravindran, 8hah, K. Keutzer, “Automated Task Allocation for
Network Processors,” iNetwork System Design Conference Proceediags 2004, pp. 235-245.

[Poole et al 1998] D. Poole, A. Mackworth and R.eBel, Computational Intelligence: A Logical
Approach Oxford University Press, New York, 1998.

[Power.org 2006] Power.org home page. http://wwwigroorg

[Pthreads 2004] IEEE Std 1003.1-2004he Open Group Base Specifications Issuysegtion 2.9, IEEE
and The Open Group, 2004.

51



The Landscape of Parallel Computing Research: Av\ieom Berkeley

[Pyla et al 2004] P.S. Pyla, M.A. Perez-Quinone, Arthur, H.R. Hartson, “What we should teacht bu
don’t: Proposal for cross pollinated HCI-SE Curhigu,” in Proceedings of ASEE/IEEE Frontiers in
Education Conferen¢éct. 2004, pp. S1H/17-S1H/22.

[Rajwar and Goodman 2002] R. Rajwar and J. R. Ga@odriTransactional lock-free execution of lock-
based programs,” ifProceedings of the 10th International Conference Anchitectural Support for
Programming Languages and Operating Systems (ASPODACM Press, New York, NY, USA, Oct.
2002, pp. 5-17.

[Reason 1990] J. Reasdtuman error New York, Cambridge University Press, 1990.

[Rosenblum 2006] M. Rosenblum, “The Impact of Vdtimation on Computer Architecture and Operating
Systems,” Keynote Addresi&2th International Conference on Architectural Sogipfor Programming
Languages and Operating Systems (ASPLOS 34 Jose, California, Oct. 23, 2006.

[Rowen and Leibson 2005] C. Rowen and S. Leibgmgineering the Complex SOC : Fast, Flexible
Design with Configurable ProcessoRrentice Hall, 2nd edition, 2005.

[Scott 1996] S.L. Scott. “Synchronization and conmication in the T3E multiprocessor.” Proceedings
of the Seventh International Conference on Archirat Support for Programming Languages and
Operating Systems (ASPLOS Y@ambridge, MA, Oct. 1996.

[Seffah 2003] A. Seffah, “Learning the Ropes: Hur@entered Design Skills and Patterns for Software
Engineers’ Educationfhteractions vol. 10, 2003, pp. 36—45.

[Shah et al 2004a] N. Shah, W. Plishker, K. Ravangdiand K. Keutzer, “NP-Click: A Productive Softwar
Development Approach for Network Processol&EE Micro, vol. 24, no. 5, Sep. 2004, pp. 45-54.

[Shah et al 2004b] N. Shah, W. Plishker, and K. tkey “Comparing Network Processor Programming
Environments: A Case Study2004 Workshop on Productivity and Performance ighsEnd Computing
(P-PHEC) Feb. 2004.

[Shalf et al 2005] J. Shalf, S.A. Kamil, L. Olikeeind D. Skinner, “Analyzing Ultra-Scale Application
Communication Requirements for a Reconfigurable ridlylnterconnect,” inProceedings of the 2005
ACMI/IEEE Conference on Supercomputing (SC,’'@ggttle, WA, Nov. 12-18, 2005. (LBNL-58052)

[Singh et al 1992] J.P. Singh, W.-D. Weber, and®ipta, “SPLASH: Stanford Parallel Applications for
Shared-Memory,” irComputer Architecture Newslar. 1992, vol. 20, no. 1, pages 5-44.

[Snir et al 1998] M. Snir, S. Otto, S. Huss-Ledenmi2. Walker, and J. DongarnslPI: The Complete
Reference (Vol. 1)The MIT Press, 1998. ISBN 0262692155.

[Solar-Lezama et al 2005] A. Solar-Lezama, R. Rablid Bodik, and K. Ebcioglu, “Programming by
Sketching for Bit-Streaming Programs,” iroceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation (F23), Jun. 2005, pp. 281-294.

[Soteriou et al 2006] V. Soteriou, H. Wang, L.-8hP“A Statistical Traffic Model for On-Chip
Interconnection Networks,” iRroceedings of the 14th IEEE International Sympmosin Modeling,
Analysis, and Simulation of Computer and Teleconication Systems (MASCOTS '06gp. 2006, pp.
104-116.

[SPEC 2006] Standard Performance Evaluation Cotjpor§SPEC). http://www.spec.org/index.html
[Srinivasan et al 2002] V. Srinivasan, D. Brooks, &schwind, P. Bose, V. Zyuban, P.N. Strenski, and

P.G. Emma, “Optimizing pipelines for power and periance,” inProceedings of the 35th International
Symposium on Microarchitecture (MICRO-32D02, pp. 333—-344.

52



The Landscape of Parallel Computing Research: Av\ieom Berkeley

[Sterling 2006] T. Sterling, “Multi-Core for HPC:rBakthrough or Breakdown?” Panel discussion at the
International Conference for High Performance Comipgy Networking and Storage (SC'08Jov.
2006..Slides available at http://www.cct.Isu.edgdrtSC06.html

[Sylvester et al 1999] D. Sylvester, W. Jiang, ahdKeutzer, “Berkeley Advanced Chip Performance
Calculator,” http://www.eecs.umich.edu/~dennis/mxmdex.html

[Sylvester and Keutzer 1998] D. Sylvester and Kutfer, “Getting to the Bottom of Deep Submicrom” i
Proceedings of the International Conference on QaepAided DesignNov. 1998, pp. 203-211.

[Sylvester and Keutzer 2001] D. Sylvester and Kutker, “Microarchitectures for systems on a chip in
small process geometriestoceedings of the IEERpr. 2001, pp. 467—-489.

[Teja 2003] Teja Technologies, “Teja NP Datashe2d03.
[Teragrid 2006] NSF Teragrid home page. http://wigvagrid.org/
[Tokyo 2006] University of Tokyo, “GRAPE,” http:/fgpe.astron.s.u-tokyo.ac.jp

[Vadhiyar et al 2000] S. Vadhiyar, G. Fagg, and Dbngarra, “Automatically Tuned Collective
Communications,” iflProceedings of the 2000 ACM/IEEE Conference oni8opguting Nov. 2000.

[Vahala et al 2005] G. Vahala, J. Yepez, L. VahdaSoe, and J. Carter, “3D entropic lattice Bokkam
simulations of 3D Navier-Stokes turbulence,” Pmoceedings of the 47th Annual Meeting of the APS
Division of Plasma Phsyic2005.

[Vetter and McCracken 2001] J.S. Vetter and M.O.Qvbcken, “Statistical Scalability Analysis of
Communication Operations in Distributed Applicasghin Proceedings of the Eigth ACM SIGPLAN
Symposium on Principles and Practices of Parall@gPamming (PPOPR)2001, pp. 123-132.

[Vetter and Mueller 2002] J.S. Vetter and F. Mugll&Communication Characteristics of Large-Scale
Scientific Applications for Contemporary Clusterchitectures,” inProceedings of the 16th International
Parallel and Distributed Processing Symposium (IFD)R2002, pp. 272-281.

[Vetter and Yoo 2002] J.S. Vetter and A. Yoo, “Ammgirical Performance Evaluation of Scalable
Scientific Applications,” inProceedings of the 2002 ACM/IEEE Conference on 18opguting 2002.

[Vuduc et al 2006] R. Vuduc, J. Demmel, and K. ¥kli“OSKI: Optimized Sparse Kernel Interface,”
http://bebop.cs.berkeley.edu/oski/.

[Warren 2006] H. Warren, A Hacker’'s Assistant. httpww.hackersdelight.org

[Wawrzynek et al 2006] J. Wawrzynek, D. PatterddnOskin, S.-L. Lu, C. Kozyrakis, J.C. Joe, D. Qhio
and K. Asanovic, “RAMP: A Research Accelerator fdultiple Processors,” U.C. Berkeley technical
report, 2006.

[Weinburg 2004] B. Weinberg, “Linux is on the NPOrntrol plane,”EE TimesFeb. 9, 2004.

[Whaley and Dongarra 1998] R.C. Whaley and J.J. dao@a, “Automatically tuned linear algebra
software,” inProceedings of the 1998 ACM/IEEE Conference onSopguting 1998.

[Van der Wijngaart 2002] R.F. Van der Wijngaart, AN Parallel Benchmarks Version 2.4, NAS
technical report, NAS-02-007, Oct. 2002.

53



The Landscape of Parallel Computing Research: Av\ieom Berkeley

[Wind River 2006] Wind River home page.
http://www.windriver.com/products/platforms/genenalirpose/index.html

[Wolfe 2004] A. Wolfe, “Intel Clears Up Post-Tej@®nfusion,” VARBuUSsiness, May 17, 2004.
http://www.varbusiness.com/sections/news/breakingrjatml?articleld=18842588

[Woo et al 1995] S.C. Woo, M. Ohara, E. Torrie,. Bigh, and A. Gupta, “The SPLASH-2 Programs:
Characterization and Methodological ConsiderativinsProceedings of the 22nd International Symposium

on Computer Architecture (ISCA '98anta Margherita Ligure, Italy, Jun. 1995, pp-36.

[Wulf and McKee 1995] W.A. Wulf and S.A. McKee, “ttihg the Memory Wall: Implications of the
Obvious,”Computer Architecture Newsol. 23, no. 1, Mar. 1995, pp. 20-24.

[Xu et al 2003] M. Xu, R. Bodik, and M.D. Hill, “AFlight Data Recorder’ for Enabling Full-System
Multiprocessor Deterministic Replay,” iRroceedings of the 31st Annual International Syriymson
Computer Architecture (ISCA '042004.

[Zarlink 2006] Zarlink, “PDSP16515A Stand Alone FPTocessor,”
http://products.zarlink.com/product_profiles/PDSB1BA.htm.

54



