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A grand challenge for computer science is to develop software technology that
makes it possible to harness the power of leadership-class systems for scientific
discovery. To address this challenge, the Center for Scalable Application
Development Software (CScADS) is pursuing an integrated set of activities that
includes community vision-building, collaborative research, and development of
open-source software infrastructures to support efficient scientific computing on
the emerging leadership-class platforms.

Technical computing, loosely defined as comput-
ing based on mathematical models of physical phe-
nomena, spans a wide range of computational
requirements. At the low end are computations that
may take only milliseconds when programmed
using a scripting language, or even a spreadsheet.
At the other extreme are complex problems in
physics and biology that are not yet tractable. Appli-
cations may range from computational experi-
ments drafted by an individual in a few hours to
applications with millions of lines of code written
over decades by hundreds of programmers. 

Existing software for technical computing does
not make it easy to write applications that span
the space of application size and complexity, nor
the space of system size and complexity. One
major reason for this is the mismatch between
problem formulation and programming models.
Many algorithms can be expressed concisely in
mathematical notation, that is, on a single page of
a scientific paper. When translated into a script-
ing language such as Matlab, they remain reason-
ably concise. Even when they are translated to
simple loops in Fortran or C, the expansion is min-
imal if calls to standard domain libraries are used. 

Unfortunately, this situation changes dramat-
ically when one attempts to tailor applications to
achieve high performance. Without extensive
tuning, data-intensive scientific applications typ-
ically achieve less than 10% efficiency on large-
scale microprocessor-based parallel systems.
Both the scarcity and scale of leadership-class sys-
tems make code efficiency an important concern.
Boosting efficiency typically requires enormous
effort by application developers. Tuning applic-
ations requires explicitly managing all aspects of
the hardware—processor functional units, mem-
ory hierarchy, communication, and input/output
(I/O)—with great care. Today, such restructuring
is primarily the responsibility of application
developers. For this reason, programming mod-
ern high-end computer systems is an enormous
productivity sink. Furthermore, tailoring appli-
cations for high performance on a particular sys-
tem leads to code that is hard to understand,
verify, and maintain.

A final challenge is that of moving parallel
applications to new high-end computing plat-
forms. The experience of developers at the
national laboratories is that retuning an applica-
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Figure 1.  CScADS researchers have been interacting with developers of important DOE applications such as the S3D code (sidebar “Performance
Analysis and Tuning of S3D,” p40), used for direct numerical simulation in combustion research. Above is a visualization of a hydroperoxy radical
and stoichiometric mixture fraction in an autoignitive lifted turbulent hydrogen/air jet flame.

tion for new processor architectures, or even for
new models of a given architecture, can require
amounts of effort that equal or exceed the effort
to develop the application initially. Compound-
ing this problem is the arrival of hybrid super-
computing systems, such the Los Alamos
National Laboratory (LANL) Roadrunner with
both Opteron and Cell processors (“Science-
Based Prediction at LANL,” SciDAC Review, Sum-
mer 2007, p33). On hybrid systems, applications
must be partitioned and matched to the strengths
of different processors to achieve the highest level
of performance. If such systems are to be usable
by a broad range of scientific users, we must pro-
vide automated strategies for mapping applica-
tions onto them. 

Scalable Application Development Software
To increase the productivity of application devel-
opers for high-end systems, computational sci-
entists need software tools that help automate, in
full or in part, the process of scaling applications
in three different dimensions: 

•scaling from simple high-productivity lan-
guages on a laptop to efficient applications on
high-end, single-processor workstations; 

•scaling from small numbers of processors to full
processor ensembles consisting of thousands of
processors with minimal efficiency loss; 

•scaling from a single abstract program repre-
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sentation to tuned implementations for many
different high-end machines and heterogeneous
processors with minimal programming effort. 

We call software that supports scaling in these
three dimensions scalable application develop-
ment software. This idea is illustrated in figure 2.
In the figure, a base program is specified in a high-
level language, such as Matlab, Python, or R. Using
appropriate compiler technology, this specifica-
tion might be translated directly to a high-per-
formance scalable parallel implementation in
Fortran or C plus MPI; then this implementation
could be tuned independently to different plat-
forms using automatic search strategies.

While scaling along any of these axes of scaling
could be considered independently, we believe
that there is significant leverage to be gained by
considering them as aspects of a single process:
that of moving from a simple high-level applica-
tion specification to efficient, scalable parallel
implementations on a variety of computing plat-
forms. A benefit of this approach is that it encour-
ages the maintenance of a single source version
for each application, with automatic or semi-
automatic translation to high-performance plat-
forms of different types and scales.

SciDAC Center
With support from the DOE SciDAC-2 program,
the Center for Scalable  Application Development
Software (CScADS) has been established as a
partnership between Rice University, Argonne
National Laboratory  (ANL), University of Califor-
nia–Berkeley, University of Tennessee–Knoxville,
and University of Wisconsin–Madison. CScADS
aims to explore strategies to support scalable
application development with the goal of increas-
ing the productivity of scientific application devel-
opers on high-end computer systems. 

CScADS will support three basic activities: com-
munity outreach and vision-building, research on
enabling technologies, and development of open-
source software infrastructures to support the Sci-
DAC-2 mission of making petascale computing
practical. Achieving the goals of the SciDAC-2 pro-
gram involves establishing partnerships with
other academic institutions, DOE laboratories,
leading-edge computing facilities, and industry.

Figure 3 illustrates the relationships between
the Center’s activities. The flow of ideas originates
from two sources: the community outreach and
vision-building workshops, and direct collabora-
tion with application development. These activ-
ities focus research efforts on important
problems. In turn, research drives the infrastruc-
ture development by identifying capabilities that
are needed to support the long-range vision.

Infrastructure feeds back into the research pro-
gram, but also to prototype software tools that
support further application development. Finally,
experiences by developers using compilers, tools,
and libraries will spur the next cycle of research
and development.

Community Outreach and Vision-Building
Achieving petascale performance with applica-
tions will require a close collaboration between sci-
entists developing computational models and
computer science teams developing enabling tech-
nologies. To engage the community in the chal-
lenges and foster interdisciplinary collaborations,
we have established the CScADS Summer Work-
shops—a series of one-week workshops that will
focus on topics related to scalable software for the
DOE’s leadership-class systems. For summer 2007,
we have scheduled a series of four workshops. 

Automatic Tuning for Petascale Systems.
The goal of this workshop is to bring together
researchers and practitioners to discuss some of
the code generation challenges for multicore
processors that will be the building blocks of
petascale systems and to identify some of the
opportunities afforded by the use of automatic
tuning techniques.

Performance Tools for Petascale Computing.
The goal of this workshop is to bring together
tool researchers to foster collaboration on a
community infrastructure for performance
tools with the aim of accelerating development
of tools for leadership-class platforms. 

Petascale Architectures and Performance.
The goals of this workshop include familiariz-
ing participants with the effective use of the
DOE leadership-class systems. 

Libraries and Algorithms for Petascale Applications.
The goal of this workshop is to identify
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Figure 2.  Scalable application development software. 

CScADS aims to explore
strategies to support
scalable application
development with the
goal of increasing the
productivity of scientific
application developers
on high-end computer
systems.
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challenges for library and algorithm developers
from the needs of the SciDAC applications, and
to foster collaboration between the applications
and library communities. 

The first two workshops are intended to engage
researchers and vendors active in their focus
areas. The last two workshops are intended to
engage the broader community and to foster dia-
logue and collaboration between application
teams and researchers developing enabling tech-
nologies. Each workshop will produce a report
for the community that summarizes the chal-
lenges ahead and a path forward.

Research and Development
Several national reports have pointed out that
open-source software represents an opportunity
to address the shortage of software support for
programming high-end systems. The power of this
approach has been amply demonstrated by the
success of Linux in fostering the development of
operating systems for high-performance clusters.

The CScADS research program focuses on
strategies for improving the productivity of appli-
cation developers for developing high-perform-
ance codes for leadership-class machines. Rather
than attack a narrow range of problems within
this space, we will explore a broad spectrum of
issues because we believe that there is a high
degree of synergy to be exploited. 

Research on software support for high-end sys-
tems cannot be performed in a vacuum. Direct
interaction between application developers and
enabling technologies teams can clarify the prob-
lems that need to be addressed, yield insight into
strategies for overcoming performance bottle-
necks, identify how those strategies might be
automated, and produce a vision for new tools
and programming systems. To date, CScADS
researchers have been interacting with develop-
ers of important DOE applications such as the
Joule and INCITE codes, including S3D (sidebar
“Performance Analysis and Tuning of S3D,” p40),
GTC (a gyrokinetic code used to study plasma

turbulence in toroidal fusion devices), and XGC1
(a code being developed by the SciDAC-2 Center
for Plasma Edge Simulation).

Open-Source Software Infrastructure 
To facilitate the research, both within CScADS and
in the community at large, we are developing the
CScADS Open Software Suite—an open-source
software infrastructure to support compiler/pro-
gramming-language research, development, and
evaluation. This infrastructure, which is needed by
our research as well as by a range of SciDAC proj-
ects and the wider high-performance computing
(HPC) community, is not currently receiving devel-
opment and deployment support elsewhere. Upon
completion, the CScADS Open Software Suite will
include compiler infrastructure based on the
Open64 compiler as well as the Rice University D
System compiler infrastructure to support high-
level source-to-source optimization of programs,
and performance tools infrastructure to support
binary analysis, instrumentation, data collection,
and measurement interpretation that will draw
from the Rice University HPCToolkit and Univer-
sity of Wisconsin Paradyn and Dyninst tools.

Rapid Construction of Applications
An application specification is high-level if: (1)
it is written in a programming system that sup-
ports rapid prototyping; (2) aside from algorithm
choice, it does not include any hardware-specific
programming strategies (such as loop tiling); and
(3) it is possible to generate code for the entire
spectrum of different computing platforms from
a single source version. The goal of CScADS
productivity research is to explore how we can
transform such high-level specifications into
high-performance implementations for leader-
ship-class systems.

For higher productivity, we believe that devel-
opers should construct high-performance appli-
cations by using scripting languages to integrate
domain-specific component libraries. At Rice we
have been exploring a strategy, called telescop-
ing languages, to generate high-performance

Research

Application
Development

Community
Outreach

Prototype
Software

Infrastructure
Development

Figure 3.  The relationships among CScADS activities.

The CScADS research
program focuses on
strategies for improving
the productivity of
application developers
for developing high-
performance codes for
leadership-class
machines.
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compilers for scientific scripting languages. The
fundamental idea is to preprocess a library of
components to produce a compiler that under-
stands and optimizes component invocations as
if they were language primitives. As part of this
effort, we have been exploring analysis and opti-
mization based on inference about generalized
types. A goal of CScADS research is to explore
how we can adapt these ideas to optimize pro-
grams based on the Common Component Archi-
tecture (CCA). 

Scaling to Homogeneous Parallel Systems
Achieving high performance on a modern micro-
processor, though challenging, is not by itself
enough for SciDAC applications. In addition,
applications must be able to scale to the thou-
sands, or even hundreds of thousands, of proces-
sors that make up a petascale computing
platform. Two general classes of software systems
are needed to make this feasible—tools that ana-
lyze scalable performance and help the developer
overcome bottlenecks, and compiler support that
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The S3D code being developed at SNL is a
massively parallel solver for turbulent reacting
flows. The code includes multiple physical and
chemical aspects, such as detailed chemistry
and molecular transport. S3D is a focus of
analysis and optimization by a Performance
Engineering Research Institute (PERI)
performance “Tiger Team” to help optimize it
for large-scale simulation runs on the
leadership-class Cray XT3/XT4.

Figure 4 shows a flat profile of a single-
processor execution of S3D on a 2.2 GHz
dual-core Opteron 275 collected with the Rice
University HPCToolkit—a performance tool
being developed with support from both PERI
and CScADS. The tool provides a navigation
pane that contains a rank-ordered display of
program constructs (procedures, loops, and
lines), a metric pane that shows both
measured metrics (cycles, instructions,
floating point instructions, and L1 cache
accesses) and derived metrics (waste and
relative waste), and a source pane that
displays code for the selected scope. Here,
program scopes are rank-ordered by cycles—
the column selected in the metric pane. The
source code pane shows the corresponding
computation over a 5D data structure. Loops
over the DIRECTION and SPECIES are explicit
in the code; other 3D loops are implicit in the
Fortran 90 array operations. The waste column
in the metric pane represents the difference
between the theoretical peak number of
FLOPs possible on an Opteron 275 core and
the number of actual FLOPs executed. This
metric tells us how much unrealized
opportunity for floating point computation is
associated with each context. The relative
waste metric shows the fraction of theoretical
peak performance we are wasting in each
context. With this metric, we can see that this

loop nest achieves only 4% of the theoretical
peak.

Study of the loop nest reveals several
unexploited opportunities for data reuse. The
diffFlux array slice being computed in the first
vector statement is reused in subsequent
statements. Within individual vector
statements there are opportunities for reuse
across different iterations of the SPECIES and
DIRECTION loops since many array references
lack m and n subscripts. By applying a
sophisticated set of loop transformations,
these opportunities for data reuse can be
exploited.

Figure 5 shows the loop nest decorated with
a LoopTool code transformation recipe. The

recipe indicates that (a) the two “if” conditions
should be unswitched out of all loops to create
four customized loop kernels (one for each
switch setting), (b) loops for all of the 3D
vector computations should be fused, (c) the
DIRECTION loop should be unrolled completely
and jammed inside the innermost loop of the
5D loop nest, and (d) the SPECIES loop
should be unrolled by two, with pairs of its
iterations jammed into the innermost loop. 

Based on these directives, LoopTool produces
four customized loop nests. The LoopTool-
generated code for the loop nest shown in figure
5 runs 2.94 times faster than the original, which
cuts the entire program’s execution time on a
50 x 50 x 50 problem by 6.8%.

P e r f o r m a n c e  A n a l y s i s  a n d  Tu n i n g  o f  S 3 D  

Figure 4.  HPCToolkit's hpcviewer displaying a loop-level profile for S3D.

Achieving high
performance on a
modern microprocessor,
though challenging, is
not by itself
enough for SciDAC
applications.
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can take higher-level languages and map them
efficiently to large numbers of processors.

Tools for Scalable Parallel Performance Analysis 
Effectively harnessing leadership-class systems
for capability computing is a grand challenge for
computer science. Running codes that are poorly
tuned on such systems would waste these pre-
cious resources. To help users tune codes for lead-
ership-class systems, we are conducting research
on performance tools that addresses the follow-
ing challenges.

Analyzing Integrated Measurements. Under-
standing application performance requires cap-
turing detailed information about parallel
application behavior, including the interplay of
computation, data movement, synchronization,
and I/O. We are focusing on analysis techniques
that help understand the interplay of these
activities. 

Taming the Complexity of Scale. Analysis and
presentation techniques must support top-down
analysis to cope with the complexity of large
codes running on thousands of processors. To
understand executions on thousands of proces-
sors, it is not practical to inspect them individu-
ally. We are exploring statistical techniques for
classifying behaviors into equivalence classes
and differential performance analysis techniques
for identifying scalability bottlenecks.

Coping with Dynamic Parallelism. The arrival of
multicore processors will give rise to more
dynamic threading models on processor nodes.
Strategies to analyze the effectiveness of
dynamic parallelism will be important in under-
standing performance on emerging processors.

This work on performance tools extends and
complements activities in the SciDAC Perfor-
mance Engineering Research Institute (PERI). The
CScADS tools research and development will
build upon work at Rice University on HPC-
Toolkit and work at the University of Wisconsin
on Dyninst and other tools for analysis and
instrumentation of application binaries. An out-
come of this effort will be shared interoperable
components that will accelerate development of
better tools for analyzing the performance of
applications running on leadership-class systems.

Compiler Technology for Parallel Languages
The principal stumbling block to using parallel
computers productively is that parallel program-
ming models in wide use today place most of the
burden of managing parallelism and optimizing

parallel performance on application developers.
We face a looming productivity crisis if we con-
tinue programming parallel systems at such a low
level of abstraction as these parallel systems
increase in scale and architectural complexity.
As a component of CScADS research, we are
exploring a range of compiler technologies for
parallel systems ranging from technologies with
near-term impact to technologies for higher-level
programming models that we expect to pay off
further in the future. This work is being done in
conjunction with the DOE-funded Center for Pro-
gramming Models for Scalable Parallel Comput-
ing. Technologies that we are exploring include:

Partitioned Global Address Space (PGAS) Lan-
guages. Communication optimization will be
critical to the performance of PGAS languages on
large-scale systems. As part of CScADS, we are
enhancing the Open64 compiler infrastructure
to support compile-time communication analy-
sis of Co-Array Fortran and Unified Parallel C
(UPC). The University of California–Berkeley
group is also developing communication opti-
mizations for UPC, which include converting
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Figure 5. An S3D loop nest annotated with a transformation recipe for the
CScADS LoopTool.

The principal stumbling
block to using parallel
computers productively
is that parallel
programming models
in wide use today
place most of the
burden of managing
parallelism and
optimizing parallel
performance on
application developers.
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fine-grained access into non-blocking ones and
converting bulk transfer calls (upc_memget, for
example) into non-blocking ones. The group also
developed performance models for large scale
networks, to automate strip-mining optimization
for large transfers and recently added this to the
compiler as part of a “communication vectoriza-
tion” framework that converts fine-grained array
accesses into bulk or strided transfers. 

Global Array Languages. High-level languages
that support data-parallel programming using a
global view offer a dramatically simpler alterna-
tive for programming parallel systems. Program-
ming in such languages is simpler: one simply
reads and writes shared variables without worry-
ing about synchronization and data movement.
An application programmer merely specifies
how to partition the data and leaves the details of
partitioning the computation and choreograph-
ing communication to a parallelizing compiler.
Having an HPF program achieve over ten ter-
aflops on Japan’s Earth Simulator has rekindled
interest in high-level programming models
within the U.S. Research challenges include
improving the expressiveness, performance, and
portability of high-level programming models.

Parallel Scripting Languages. Matlab and other
scripting languages boost developer productivity
both by providing a rich set of library primitives
as well as by abstracting away mundane details

of programming. Ongoing work at Rice Univer-
sity is exploring compiler technology for Matlab.
Work at the University of Tennessee involves
parallel implementations of scripting languages
such as Matlab, Python, and Mathematica. As a
part of this project, we are exploring compiler
and run-time techniques that will enable such
high-level programming systems scale to much
larger computation configurations while retain-
ing support for most language features. 

Support for Multicore Platforms
Multicore chips will force at least two dimensions
of parallelism into scalable architectures—on-
chip, shared memory parallelism, and cross-chip
distributed-memory parallelism. Many architects
predict that with processor speed improvements
slowing, the number of cores per chip is likely to
double every two years. In addition, many of the
contemplated architectures will incorporate
multi-threading on each of the cores, adding a
third dimension of parallelism. Based on this
increased complexity, we see three principal chal-
lenges in dealing with scalable parallel systems
constructed from multicore chips.

Decomposing vailable parallelism and mapping
it well to available resources is one challenge. For
a given loop nest, we will need to find instruction-
level parallelism to exploit short-vector opera-
tions, multi-threaded parallelism to map across
multiple cores and outer-loop parallelism to
exploit an entire scalable system.
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Multicore architectures are a disruptive
technology for math software. The Parallel Linear
Algebra for Scalable MultiCore Architectures
(PLASMA) project at the University of Tennessee
and ORNL aims to create software frameworks
that help programmers achieve both high
performance and portability. However, the current
pace of change in architectures makes it
premature to attack this goal directly. More
experimentation is needed with new designs to
understand how prior techniques can be adapted
and to discover where novel approaches are
needed to make programming frameworks
sufficiently flexible for this new class of targets.

Our preliminary work on IBM’s Cell processor
shows that techniques for increasing parallelism
and exploiting heterogeneity can dramatically
accelerate application performance on these
types of systems. In the PLASMA project, we are
pursuing a three-pronged strategy:

Experiment with techniques. We are exploring
an execution model based on coarse-grain
data flow to exploit dynamic and adaptive
out-of-order execution patterns on multicore
processors. Early experiences with matrix
factorization techniques have led us to the
idea of dynamic look-ahead, and our
preliminary experiments show that this
technique substantially improves performance.

Develop prototypes. We are testing the most
promising techniques to study their limits and
gain insight into potential problems (such as
portability). These prototypes enable us to
assess how amenable these approaches are to
dynamic adaptation and automated tuning.

Provide a design draft for the PLASMA
framework. We have begun developing an initial
design of PLASMA frameworks for multicore and

hybrid architectures. We will distribute this design
and software prototypes for community feedback. 

We believe that in developing a
programming framework for multicore
processors there are clear advantages to our
initial focus on Linear Algebra (LA) in general
and Dense Linear Algebra (DLA) in particular.
For one thing, DLA libraries are critically
important to computational science across an
enormous spectrum of disciplines and
applications, so a framework of the type we
envision for PLASMA will be indispensable and
is urgently needed. However, DLA also has
strategic advantages as a research vehicle,
because the methods and algorithms that
underlie it have been so thoroughly studied.
Our long experience with this domain will
enable us to devise techniques that maximally
exploit emerging multicore processors. 

T h e  I m p a c t  o f  M u l t i c o r e  o n  M a t h  S o f t w a r e  

Many architects
predict that with
processor speed
improvements slowing,
the number of cores
per chip is likely to
double every two
years. In addition,
many of the
contemplated
architectures will
incorporate multi-
threading on each of
the cores, adding a
third dimension of
parallelism.
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Keeping multiple cores busy requires that more
data be transferred from off-chip memory. In the
near term, given the limitations on sockets, the
aggregate off-chip bandwidth will not scale lin-
early with the number of cores. For this reason, it
will be critical to transform applications to
achieve high levels of cache reuse.

Choreographing parallelism and data movement
is the third challenge. Rather than having cores
compute independently, coordinating their com-
putation with synchronization can improve reuse.

In CScADS, we are pursuing three approaches to
cope with the challenges for efficient multi-core
computing. First, Tennessee is exploring the design
of algorithms and component libraries for systems
employing multicore chips (sidebar “The Impact
of Multicore on Math Software” ). This work seeks
to achieve the highest possible performance, pro-
duce useful libraries, and drive the research on
compilation strategies and automatic tuning for
multicore chips. Second, Rice University is explor-
ing compiler transformations to exploit multicore
processors effectively by carefully partitioning and
scheduling computation to enhance intercore data

reuse. Third, ANL is exploring the interaction of
multithreaded application programs with systems
software such as node operating systems and com-
munication libraries such as MPI.

LoopTool: Transforming Fortran Loop Nests
The gap between memory speed and processor
speed is increasing with each new generation of
processors. As a result, lack of sufficient band-
width between the processor and various lev-
els of the memory hierarchy has become a
principal obstacle to achieving high perform-
ance with data-intensive applications. When
applications programs are written in a clear style
that facilitates code development and maintain-
ability, they often fail to exploit opportunities
for data reuse. Although significant perform-
ance gains can be achieved by hand optimiza-
tion to exploit reuse, automation is needed for
improving productivity, portability, and main-
tainability.

Ideally, compilers would automatically tune
loop nests. In practice, compilers often fail to
achieve the desired result automatically. For this

Figure 6.  The framework for PLASMA—Parallel Linear Algebra for Scalable Multicore Architectures.
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where the tasks are scheduled
dynamically at run time based
on the dependences among
them, the availability of resources
and the execution progress.

{

The dynamic asynchronous
scheduling of the tasks allows the
overlapping of slow serial tasks with
more efficient ones and removes
all the synchronizations introduced
by the fork–join execution model.
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reason, Rice University is enhancing LoopTool—
a compiler-based tool that assists expert human
programmers by transforming Fortran loop nests
for high performance. LoopTool enables applica-
tion developers to apply a complex set of well-
known loop transformations to improve data
reuse at various levels of the memory hierarchy.
Here we provide an overview of some of Loop-
Tool’s key transformations. An example of Loop-
Tool’s use and utility is described in the sidebar,
“Performance Analysis and Tuning of S3D” (p40).

Controlled multi-level loop fusion (figure 7).
LoopTool performs multi-level loop fusion by
adjusting the alignment of statements in differ-
ent loops relative to a common iteration space.
Loop fusion improves cache reuse by reducing
the reuse distance between accesses to data
within a cache line. Guided by user directives
that specify exactly which loops to fuse, Loop-
Tool verifies the legality of fusion before per-
forming the transformation. 

Unroll-and-jam (figure 8). Applying the unroll-
and-jam transformation to a loop nest unrolls
an outer loop and then fuses resulting copies of
the loop it encloses.  This transformation is use-
ful for exploiting temporal reuse across itera-
tions of an outer loop. Applying this
transformation to a loop nest brings the reuse
in the outer loops closer together, which can
improve cache and sometimes register reuse. 

Array contraction (figure 9). If both the defini-
tions and all uses of a temporary array fall in

the same loop nest after fusion,  often Loop-
Tool can automatically reduce the storage foot-
print by applying array contraction if it can
prove that only a subset of the values need to be
live simultaneously. Reducing a computation’s
storage footprint enhances data reuse and can
reduce the memory bandwidth required if the
reduced-size array fits into cache at some level.

Loop unswitching (figure 10). Unswitching a
loop means hoisting a conditional within a loop
nest out of one or more levels of enclosing
loops and creating a custom version of the loop
nest for the true and false branches of the con-
ditional. By creating condition-free loop bodies,
unswitching enables instructions to be sched-
uled more effectively.

Guard-free core generation (figure 11). Using a
symbolic set manipulation package, we com-
pute the iteration space for a guard-free core
loop nest from a fused computation. Pieces of
iteration spaces are clipped off along each
dimension of the fused loop nest to uncover a
guard-free rectangular core.

Portability and Support for Heterogeneous Platforms
The third dimension of scalability is mapping an
application to different sequential and parallel
computing platforms. Over the lifetime of an
application, the effort spent in porting and retun-
ing for new platforms can often exceed the origi-
nal implementation effort. In support of
portability, we are initially focusing on obtaining
the highest possible performance on leadership-
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do k = 1, n

do j = ...

enddo

enddo

do k = 1, n, 2

do j = ...

enddo

enddo

S1(j,k)
S1(j,k+1)S1(j,k)

K

J

I

A(L, M, N) A_$(L, M, 0:1)

S1

S2

S3

S4

S1

S2

S3

S4

Figure 7.  Multi-level fusion. Arcs in the figure indicate
loops; loops in the same fusion group (indicated by the
same color arc at the same nesting level) are fused and
others are not.

Figure 8.  Unroll and jam of the outer loop into an inner loop.

Figure 9.  Contracting the third dimension of a 3D array
down to two planes.

Over the lifetime of an
application, the effort
spent in porting and
retuning for new
platforms can often
exceed the original
implementation effort.
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class machines. In addition, we will explore
compilation and optimization of applications to
permit them to run efficiently on computer sys-
tems that incorporate different kinds of computa-
tional elements, such as vector/single instruction
multiple data (SIMD) and scalar processors. 

Automatic Tuning to New Platforms
The success of libraries (such as Atlas and FFTW)
has increased interest in automatic tuning of
components and applications. The goal of
research in this area is to develop compiler and
run-time technology to identify which loop nests
in a program are critical for high performance
and restructure them appropriately to achieve the
highest performance on a target platform. 

The search space for alternative implementa-
tions of loop nests is too big to explore exhaus-
tively. We have been exploring several strategies
to reduce the cost of searching for the best loop
structure. By leveraging capabilities of the Rice
University HPCToolkit, we can pinpoint sources
of inefficiency at the loop level, which can guide
exploration of transformation parameters. We
have been employing model guidance along with
search to dramatically reduce the size of the
search required needed for good performance.

As part of CScADS, the Rice University and
University of Tennessee groups are continuing
their efforts based on LoopTool,  HPCToolkit, and
Atlas 2, with a focus on pre-tuning component
libraries for various platforms. This work will
provide variants of arbitrary component libraries
optimized for different platforms and different
application contexts, much as Atlas does today.
A second group at Rice University, led by Dr.
Keith Cooper, is extending adaptive code opti-
mization strategies to tune components. This
work will explore adaptive transformations and
aggressive interprocedural optimization.

Compiling to Heterogeneous Computing Platforms
Emerging high-end computing architectures are

beginning to have heterogeneous computational
components within a single system. Exploiting
these features—or even coping with them—will
be a challenge. We believe that new techniques
must be incorporated into compilers and tools to
support portable high-performance program-
ming. To date, our work has explored compilation
for chips with attached vector units, such as
Streaming SIMD Extenstions (SSE) on Intel chips
and Altivec on the IBM G5. We are building upon
this work to develop compiler techniques for par-
titioning and mapping computations onto the
resources to which they are best suited. These
techniques will be critical for effective use of sys-
tems that incorporate both vector and scalar ele-
ments in the same machine, such as those outlined
in Cray’s strategy for “adaptive supercomputing.”

Conclusions
Our early experiences with S3D demonstrate the
value of the CScADS approach of tightly coupling
computer science research with application devel-
opment and tuning. Performance challenges iden-
tified in S3D with HPCToolkit led directly to
development of support for scalarization and
loop unswitching in LoopTool. In turn, Loop-
Tool-optimized code is being incorporated into
the reference version of S3D in preparation for
large-scale simulation runs on the Oak Ridge
National Laboratory (ORNL) Cray XT3/XT4. 

As CScADS moves forward with development
of components in the Open Software Suite, main-
taining a close connection with applications will
ensure that the Center’s research will continue to
address the fundamental challenges facing appli-
cation teams developing codes for DOE leader-
ship-class platforms. ●

Contributors: Dr. John Mellor-Crummey and Dr. Ken
Kennedy, Rice University; Dr. Peter Beckman, ANL;
Dr. Jack Dongarra, University of Tennessee–Knoxville;
Dr. Barton Miller, University of Wisconsin–Madison; and
Dr. Katherine Yelick, University of California–Berkeley
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If P then S1
else S2
S3

If P then

else

S1

S3

S2

S3

Guard
Free
Core

Top

Bottom

Left Right

J
I

Figure 10.  Unswitching a conditional out of two
enclosing loops (represented by arcs).

Figure 11.  Generating a guard-free core for the intersection of multiple overlapping 2D
iteration spaces.

As CScADS moves
forward with development
of components in the
Open Software Suite,
maintaining a close
connection with
applications will ensure
that the Center’s research
will continue to address
the fundamental
challenges facing
application teams
developing codes for DOE
leadership-class
platforms.
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