
Graph Partitioning and Semi-definite
Programming Hierarchies

Ali Kemal Sinop

CMU-CS-12-121

May 2012

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Venkatesan Guruswami, Chair

Anupam Gupta
Ryan O’Donnell

Ravi Kannan, M.S.R. India

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2012 Ali Kemal Sinop

This research was sponsored by the National Science Foundation under grant numbers CCF-
0635257, CCF-0747250, CCF-0915893, CCF-0953155, and CCF-1115525. The views and conclusions
contained in this document are those of the author and should not be interpreted as representing
the official policies, either expressed or implied, of any sponsoring institution, the U.S. govern-
ment or any other entity.

Keywords: approximation algorithms, certificate of infeasibility, column se-
lection, graph partitioning, graph spectrum, Lasserre hierarchy, local rounding,
semi-definite programming, strong duality.

To my mother, father and sister.

iv

Abstract

Graph partitioning is a fundamental optimization problem that has
been intensively studied. Many graph partitioning formulations are
important as building blocks for divide-and-conquer algorithms on
graphs as well as to many applications such as VLSI layout, packet
routing in distributed networks, clustering and image segmentation.
Unfortunately such problems are notorious for the huge gap between
known best known approximation algorithms and hardness of approx-
imation results. In this thesis, we study approximation algorithms for
graph partitioning problems using a strong hierarchy of relaxations
based on semi-definite programming, called Lasserre Hierachy.

Our main contribution in this thesis is a propagation based round-
ing framework for solutions arising from such relaxations. We present
a novel connection between the quality of solutions it outputs and col-
umn based matrix reconstruction problem. As part of our work, we
derive optimal bounds on the number of columns necessary together
with efficient randomized and deterministic algorithms to find such
columns. Using this framework, we derive approximation schemes
for many graph partitioning problems with running times dependent
on how fast the graph spectrum grows.

Our final contribution is a fast SDP solver for this rounding frame-
work: Even though SDP relaxation has nO(r) many variables, we achieve
running times of the form 2O(r) poly(n) by only partially solving the
relevant part of relaxation. In order to achieve this, we present a new
ellipsoid algorithm that returns certificate of infeasibility.

vi

Acknowledgments

First and foremost, I owe my deepest gratitude to my advisor Venkat Guruswami.
During the most turmoiled time of my PhD, just as I was planning to drop out of
grad school; I was in for one of the most pleasant surprises of my life: Venkat
transferred from UW to CMU and agreed to take me as a student. In fact, I could
never have asked for a better advisor: Any of my success is due to him, and all
my failures are due to me. Thanks, Venkat!

I will be forever indebted to Engin Dikici, my lifelong friend whom I met at
UPenn; and Leo Grady, my mentor at SCR. If it was not for their help, I wouldn’t
even have been able to start PhD at CMU. Similarly I can never overstate the
support of Gary Miller in starting the grad school.

I also want to thank Anupam Gupta, Ryan O’Donnell and Ravi Kannan for
serving on my thesis committee. It was a reading group organized by Ryan which
gave me the inspiration behind my thesis. I also thank Alan Frieze, from whom I
learnt a lot.

I couldn’t have made it through all these years without the support of my
friends. I especially want to thank Ravishankar Krishnaswamy, B. Aditya Prakash,
Bekir Mugayitog̃lu and Dafna Shahaf for all the good times at CMU and Pitts-
burgh. I also thank Deborah Cavlovich and Catherine Copetas for their continu-
ous help in my PhD at CMU.

I do research solely to satiate my curiosity: An infinite scientific curiosity in-
stilled by my parents. It should be no surprise then that my biggest thanks goes
to them and my sister: Nazife, Yafes and Azize Sinop. Their continuous love,
sacrifice, support and encouragement have allowed me to pursue my ambitions.

vii

viii

Contents

1 Introduction 1
1.1 Approximation Algorithms . 2

1.1.1 Convex Relaxations and Rounding Algorithms 2
1.1.2 Integrality Gaps as Limitations 3
1.1.3 Hierarchies of Relaxations . 3

1.2 Hardness of Approximation . 5
1.2.1 Unique Games Conjecture . 5
1.2.2 Small Set Expansion Conjecture 6

1.3 Our Motivation . 6
1.4 Lasserre Hierarchy Relaxation . 7
1.5 Our Contributions and Thesis Structure 9
1.6 Bibliographic Note . 11

2 Background 13
2.1 Sets and Families . 13
2.2 Linear Algebra . 14
2.3 Geometry . 17
2.4 Convex Optimization and Semi-definite Programming 18
2.5 Conic Ordering . 19
2.6 Generalized Eigenvalues . 20
2.7 Graphs and Laplacian Matrices . 21
2.8 Some Probabilistic Inequalities . 23

3 Moment Based SDP Relaxations 25
3.1 Algebraic Background . 25

3.1.1 Polynomial Ideals and Quotient Algebra 27
3.1.2 Pseudo-Moments . 30
3.1.3 Sum of Squares Ordering . 34

ix

3.2 Moment Based SDP Relaxations . 35
3.3 Labeling Vectors . 37

3.3.1 Binary Labeling Vectors . 38
3.3.2 k-Labeling Vectors . 42

4 Case Study: Minimum Bisection 45
4.1 Lasserre Hierarchy Relaxation . 46
4.2 Main Theorem on Rounding . 46
4.3 The Rounding Algorithm . 47
4.4 Factor 1 + 1

λr
Approximation of Cut Value 49

4.5 Improved Analysis and Factor 1
λr

Approximation on Cut Value . . 51
4.6 Bounding Set Size . 52

5 Local Rounding Framework and Faster Solvers 55
5.1 Introduction . 55
5.2 Our Rounding Framework and Method Overview 57

5.2.1 An Algorithm for a Simple Case 59
5.2.2 Our Algorithm . 59
5.2.3 Our Contribution: A Separation Oracle with Restricted Sup-

port . 60
5.3 Preliminaries . 61

5.3.1 Convex Geometry . 61
5.3.2 Ellipsoid Method . 62

5.4 Finding Separating Hyperplanes on a Subspace 62
5.4.1 An Equivalent Convex Problem 63
5.4.2 Ellipsoid Algorithm with Certificate of Infeasibility 66

5.5 Faster Solver for Local Rounding Algorithms 68
5.6 Separation Oracle for Lasserre Hierarchy 71

6 Our Results 73

7 Graph Partitioning with Linear Constraints 75
7.1 Seed Based Rounding . 75
7.2 Choosing Good Seeds . 78
7.3 Combining with Our Faster Solver 83
7.4 Applications . 85

7.4.1 Minimum Bisection . 85
7.4.2 Small Set Expansion . 86
7.4.3 k-Way Partitioning Problems 88

x

7.5 Independent Set . 90
7.6 Variance Reduction Perspective . 93
7.7 Analysis of Other Rounding Algorithms 95

7.7.1 Partial Coloring of 3-Colorable Graphs 96
7.7.2 Approximating 2-CSPs . 99

8 Maximum Cut, Unique Games and Similar Problems 103
8.1 Introduction . 103
8.2 Related Work . 104
8.3 Maximum Cut . 105
8.4 Unique Games . 107

9 Sparsest Cut and Other Expansion Problems 113
9.1 Introduction . 113

9.1.1 Previous approximation algorithms for sparsest cut 114
9.1.2 Overview of Our Contributions 115

9.2 Our Algorithm and Its Analysis . 116
9.2.1 Intuition Behind Our Rounding 117
9.2.2 Seed Based `1-embedding . 118
9.2.3 Choosing Seed Edges . 122

9.3 Using Subspace Enumeration for Uniform Sparsest Cut 125

10 Column Based Matrix Reconstruction 129
10.1 Introduction . 129
10.2 Related Work . 131
10.3 Our Techniques . 133
10.4 Preliminaries . 134
10.5 Bound on Ratio of Symmetric Functions 135
10.6 Bounds on Column Reconstruction 137
10.7 Fast Volume Sampling Algorithm . 138
10.8 Deterministic Column Selection Algorithm 140
10.9 Lower Bound on Number of Columns Needed 142

11 Existence of Primal and Dual Optimal Solutions 145
11.1 Preliminaries . 145

11.1.1 Linear Conic Programming 145
11.1.2 Closed Convex Cones . 147

11.2 Existence of Primal and Dual Optimal Solutions for Select Problems 150
11.2.1 Minimum Bisection . 150

xi

11.2.2 Sparsest Cut . 152

12 Conclusion 155

Bibliography 157

xii

List of Tables

10.1 Comparison of Various Column Selection Algorithms 131

11.1 Primal and Dual Formulations for Minimum Bisection. 151
11.2 Primal and Dual Formulations for Sparsest Cut. 153

xiii

xiv

List of Algorithms

1 Ellipsoid Algorithm with Certificate of Infeasibility. 67
2 Faster Solver . 69
3 Recursive Separation Oracle . 70
4 Seed Based Independent Rounding 76
5 QIP Seed Selection . 79
6 QIP Seed Selection Adapted for Faster Solver 84
7 Semi-Coloring Seed Selection Adapted for Faster Solver 96
8 Rounding Procedure for Non-Uniform Sparsest Cut 126
9 Non-Uniform Sparsest Cut Seed Selection Adapted for Faster Solver 127
10 Main approximation algorithm for Non-Uniform Sparsest Cut. . . . 127
11 Randomized Column Selection . 139
12 Deterministic Column Selection . 141

xv

xvi

Chapter 1

Introduction

Graphs are ubiquitous structures in computer science, mathematics, and the nat-
ural and social sciences. For example, they are useful for modeling various net-
works like the internet, genetic networks, and social networks. An amazingly
vast array of tasks arising in computer science, operations research, biology, so-
cial sciences, chemistry and physics can be cast as a certain class of combinatorial
optimization problems on graphs, where we want to find a solution with mini-
mum cost where cost is a function of how many edges are cut in various graphs.
We collectively refer to this class as graph partitioning problems. For an example,
consider sparsest cut problem.
Non-Uniform Sparsest Cut. Given two graphs G and H on n nodes, partition the
nodes into two non-empty sets so as to:

Minimize
number of edges cut in G
number of edges cut in H

.

If we replace H with a clique graph, K, we obtain what is known as Uniform
Sparsest Cut problem. This problem arises as a building block for divide-and-
conquer algorithms on graphs as well as to many applications such as: Image
segmentation [Shi and Malik, 2000, Sinop and Grady, 2007], VLSI layout [Bhatt
and Leighton, 1984], packet routing in distributed networks [Awerbuch and Peleg,
1990], etc.

Instead of penalizing cut edges, we can also penalize not cutting an edge:
Minimum Uncut (Maximum Cut). Given a graph G on n nodes, partition the
nodes into two sets so as to:

Minimize the number of uncut edges in G.

1

Similar to sparsest cut, there is a diverse list of applications ranging from solid
state physics to printed circuit board design for this problem [Barahona et al.,
1988].

Unfortunately, for an overwhelming majority of combinatorial optimization
problems, finding the optimal solution turns out to be NP-hard. Therefore, un-
less P = NP, there are no efficient algorithms to solve any of the above problems
optimally.

1.1 Approximation Algorithms

To cope with this intractability, one settles for solutions that are approximately
optimal. For instance, can we design an efficient algorithm that always outputs
a solution whose cost is at most twice that of the optimum? Formally, we define
α-factor approximation algorithm for a problem as an algorithm which on every
instance, outputs a solution whose cost is at most α times that of the optimal
solution.

Over the last thirty-five years, this approach has been fruitful, giving rise to
the field of approximation algorithms and leading to practical algorithms for a
plethora of real-world optimization problems. We refer the reader to the book of
Vazirani [2001] for an overview of this vast area. We will now review a common
paradigm for obtaining approximation algorithms.

1.1.1 Convex Relaxations and Rounding Algorithms

A common approach for designing approximation algorithms is to give a convex
formulation on which any optimal integer solution has a corresponding feasible
solution with the same objective value. Such formulations are known as convex
relaxations of the original problem and one can solve such convex optimization
problems optimally (or near optimally for arbitrarily small error) using algorithms
such as ellipsoid method Grötschel et al. [1993] in polynomial time.

This means in polynomial time, one can obtain a lower bound for the opti-
mum value of original NP-hard problem. But our initial goal was to find an ap-
proximate integral solution. Furthermore there is no guarantee on the quality of
estimate obtained from convex relaxation. If we think of the optimal solution for
convex relaxation as a “fractional solution”, we can try to “round” it to an inte-
gral solution. If we can also make sure that the rounding procedure produces
solutions whose cost is at most α times that of the relaxation optimum, it means

2

solving the convex relaxation together with our rounding algorithm is an α-factor
approximation for the original integral problem.

The use of relaxations based on linear programming (LP) in approximation
algorithms, is a well-established approach which has spawned much work and
a large variety of techniques. On the other hand, the use of semi-definite pro-
gramming (SDP) relaxations in approximation algorithms is a more recent devel-
opment, starting with the seminal work of Goemans and Williamson [1995] for
Maximum Cut problem achieving a better approximation than is achievable by
known LP approaches.

1.1.2 Integrality Gaps as Limitations

Suppose OPTint(I) and OPTconvex(I) are optimal values of integer problem and its
convex relaxation respectively on instance I . Being a convex relaxation, we always
have OPTint

OPTconvex
≥ 1. Any rounding algorithm as described above that achieves a

factor α approximation implies that:

Integrality Gap def
= max

I

OPTint(I)

OPTconvex(I)
≤ α.

In the other direction, we can also try to lower bound this ratio. In order to do so,
we need to exhibit an instance I such that:

• I has no integral solution with value ≤ s which means OPTint(I) ≥ s,

• I has a feasible solution under our convex relaxation whose value is ≤ c
which means OPTconvex(I) ≤ c.

Then for such instance,

Integrality Gap ≥ OPTint(I)

OPTconvex(I)
≥ s

c
.

This means there is no factor- s
c

rounding algorithm for our convex relaxation.

1.1.3 Hierarchies of Relaxations

Towards obtaining better approximations, a natural avenue is to utilize stronger
relaxations that include greater number of constraints. There are numerous choices

3

of additional constraints that can be included to strengthen a given convex relax-
ation. Relaxation hierarchies are systematic procedures which work round-by-
round: At each round, they produce a stronger convex relaxation at the cost of
larger problem size. First such hierarchy was given by Sherali and Adams [1990]
followed by Lovász and Schrijver [1991], both based on linear programming. The
strongest known hierarchy is based on semi-definite relaxation given by Lasserre
[2002], which forms the basis for all our approximation algorithms also. Typically
these at rth round, these hierarchies produce problems of size nO(r).

Even few rounds of Lasserre is already as strong as the SDPs used to obtain
the best known approximation algorithms for several problems — for example,
3 rounds of Lasserre is enough to capture the ARV SDP relaxation for Sparsest
Cut [Arora et al., 2009], and Chlamtac [2007] used the third level of the Lasserre
hierarchy to get improvements for coloring 3-colorable graphs.

Furthermore such hierarchies are known to converge to a 0/1 solution, i.e. have
an integrality gap of 1, as number of rounds gets closer to n. However in such case,
it takes an exponential time to solve these hierarchies anyway. The interesting
question is then to characterize the problems for which small number of rounds
of these hierarchies yields a better approximation. On the other hand, a lower
bound showing that the integrality gap of the program obtained after many (say
even Ω(n)) levels of a hierarchy remains large, is a strong lower bound against a
class of algorithms capturing most known ones.

For weaker hierarchies, many strong integrality gaps were known (see a re-
cent survey of Chlamtac and Tulsiani [2011]). Starting with the seminal works
of Schoenebeck [2008] and Tulsiani [2009], integrality gaps matching various known
hardness of approximation results for Lasserre Hierachy were also found. These
were extended to some graph partitioning problems such as densest sub-graph Bhaskara
et al. [2012], uniform sparsest cut, balanced separator and maximum cut Gu-
ruswami et al. [2012]. However these integrality gaps are still not any close to
ruling out potential of Lasserre Hierarchy to obtain, say, constant factor approxi-
mation.

In terms of positive results that use a larger (growing) number of Lasserre
rounds, to the best of our knowledge, only two results existed prior to our work.
Chlamtac and Singh [2008] used O(1/γ2) rounds of Lasserre hierarchy to find an
independent set of size Ω(nγ

2/8) in 3-uniform hyper-graphs with an independent
set of size γn. Karlin et al. [2010] showed that 1/ε rounds of Lasserre SDP gives a
(1 + ε) approximation to the Knapsack problem.

4

1.2 Hardness of Approximation

What if beating the known approximation factors is NP-hard? Formally we say
finding α-factor approximation is hard, if beating factor α is as hard as solving
3-SAT for example. This would mean that, unless P=NP, there can be no efficient
algorithm to find α-approximate solutions. Starting with the breakthrough result
known as PCP theorem [Arora et al., 1998, Arora and Safra, 1998] through the
seminal works of Raz [1998] and Håstad [2001], it turned out indeed this was the
case for many combinatorial optimization problems – the known approximation
algorithms were also the best possible, assuming P6=NP.

Unfortunately proving hardness of approximation for almost all NP-hard graph
partitioning problems remained elusive. In fact, to the best of our knowledge,
the best hardness factor we know is for minimum uncut problem which is 5

4
due

to Trevisan et al. [2000]. The difficulty faced in obtaining strong hardness of ap-
proximation results motivated two conjectures.

1.2.1 Unique Games Conjecture

Definition 1.2.1 (Unique Games Problem). Given L = (G, k, π) where k is a positive
integer, G = (V,E) is a graph, and π = (πu,v)(u,v)∈E is a collection of permutation
constraints associated with each edge e = (u, v) ∈ E of the form πu,v : {1, . . . , k} →
{1, . . . , k} where πu,v is a bijection, the fraction of constraints satisfied by a k-labeling
f : V → {1, 2, . . . , k} is defined as the fraction of edges (u, v) ∈ E for which πu,v(f(u)) =
f(v).

Khot [2002] conjectured that for any ε > 0 and k, it is NP-hard to decide if given
L has a labeling that satisfies at least 1−ε fraction of constraints or no labeling can
satisfy more than ε-fraction.

Surprisingly this conjecture led to a flurry of inapproximability results match-
ing known approximation algorithms, thus proving their optimality; such as ver-
tex cover [Khot, 2002], maximum cut [Khot et al., 2007], later extended by Raghaven-
dra [2008] to all constraint satisfaction problems, non-uniform sparsest cut [Chawla
et al., 2006], multi-way cut and 0-extension problems [Manokaran et al., 2008], or-
dering problems [Guruswami et al., 2011], independent set on bounded degree
graphs [Austrin et al., 2011] and so on.

5

1.2.2 Small Set Expansion Conjecture

However a certain class of problems related to graph expansion resisted any at-
tempts for proving hardness even under UGC. One such problem is uniform
sparsest cut, which asks for a partitioning with minimum sparsity. Here spar-
sity of a partitioning on graph G is the ratio of total weight of separated edges to
the total number of separated pairs. For Uniform Sparsest Cut problem as well
as related problems, the best hardness of approximation factor we know is only
1 + α for some constant 0 < α < 0.001 assuming a weaker form of Exponential
Time Hypothesis 1 due to Khot [2006] and Ambühl et al. [2011].

Definition 1.2.2 (Small Set Expansion Problem). Given a positive constant µ ∈ (0, 1),
for any graph G = (V,E), small set expansion (SSE) on G is defined as the minimum
sparsity over all binary partitions whose smaller side has size µ(1± ε)|V |.

Raghavendra and Steurer [2010] conjectured that the decision problem for Small
Set Expansion is hard, which was shown by Raghavendra et al. [2012] to be equiv-
alent to the following: For any constant Φ > 0 there exists µ > 0 such that it is
NP-hard to decide whether if there exists a set of size µ|V | whose expansion is
≤ Φ or any set of size (µ/2, 2µ)|V | has expansion > 1− Φ.

1.3 Our Motivation

A rich body of recent research has shown that for many optimization problems,
the Unique Games conjecture (UGC) serves as a barrier to further improvements
to the approximation factor achieved by efficient algorithms. In many cases, in-
cluding all constraint satisfaction problems and various graph partitioning prob-
lems, the best algorithms are based on fairly simple semi-definite programming
(SDP) relaxations. The UGC foretells that for these problems, no tighter relaxation
than these simple SDPs will yield a better approximation ratio in the worst-case.

Hierarchies of convex relaxations. A natural question thus is to understand the
power and limitations of potentially stronger SDP relaxations, for example those
from various hierarchies of relaxations. These hierarchies are parameterized by an
integer r (called rounds/levels) which capture higher order correlations between
(roughly r-tuples of) variables (the basic SDP captures only pairwise correlations,
and certain extensions like triangle inequalities pose constraints on triples). Larger
the r, tighter the relaxation. The optimum of n’th level of the hierarchy, where n

1 NP 6⊆ ∩ε>0BPTIME(2n
ε

).

6

is the number of variables in the underlying integer program, usually equals the
integral optimum.

There are several hierarchies of relaxations that have been studied in the liter-
ature, such as Sherali-Adams Hierarchy of linear programs by Sherali and Adams
[1990], Lóvasz-Schrijver Hierarchy by Lovász and Schrijver [1991], a “mixed” hi-
erarchy combining Sherali-Adams linear programs with the base level SDP, and
Lasserre Hierachy by Lasserre [2002] (see a recent survey of Chlamtac and Tul-
siani [2011] focusing on their use in approximate combinatorial optimization). Of
these hierarchies, the most powerful one is the Lasserre Hierachy (see [Laurent,
2003] for a comparison), and therefore holds the most potential for new break-
throughs in approximation algorithms. Arguably, Lasserre SDPs pose the cur-
rently strongest known threat to the k-Unique Games conjecture, as even the pos-
sibility of the 4’th level of Lasserre SDP relaxation improving upon the Goemans-
Williamson 0.878 approximation factor for Maximum Cut has not been ruled out.
Recently, it has also been shown that O(1) rounds of Lasserre Hierachy are able
to solve all candidate gap instances of Unique Games by Barak et al. [2012]. (On
the other hand, for some of the weaker hierarchies, integrality gaps for super-
constant rounds are known for various Unique-Games hard problems [Khot and
Saket, 2009, Raghavendra and Steurer, 2009].) In light of the above, the power and
limitations of the Lasserre Hierachy merit further investigation.

1.4 Lasserre Hierarchy Relaxation

Suppose we are given two degree-d multi-linear polynomials over variables V ,
XV = [Xu]u∈V : p, q ∈ R[XV]. Our goal is to find an assignment, x ∈ {0, 1}V , which
minimizes eq. (1.1):

Minimize p(x)
subject to q(x) ≥ 0.

x ∈ {0, 1}V .
(1.1)

Observe that we can convert majority of our 0/1 programming problems to this
form easily, which means finding optimal solution to eq. (1.1) or even a feasible
one is NP-hard. But is it at least possible to formulate eq. (1.1) as convex problem,
say with size at most exponential in n? We will give a sequence of transformations
and end up with an equivalent Semi-Definite Programming (SDP) problem with
size 2O(n). Rather than proving equivalence our transformations, we only prove it
for the final problem eq. (1.4). We give a formal study later in Chapter 3.

7

Substituting Moments. First, we will express objective and constraints from eq. (1.1)
as linear functions. To do so, we replace each

∏
u∈S xu with a new variable, xS ,

over all S. Here the sequence [xS]S⊆V is intended to be a moment sequence for
some optimal x. Note x∅ = 1. Since xS ∈ {0, 1}, it satisfies x2

S = xS for any subset
S. In particular for any A,B ⊆ V , we should have:

xA · xB = xA∪B.

One can easily check that if such reals, [xS], exist then indeed we have xS ∈ {0, 1}
for all S. If we use pS to denote the coefficient of polynomial p on monomial∏

i∈S xi:
p(x) =

∑
S

pSxS

with a similar relation for qS as well. Thus we get the following re-formulation
for eq. (1.1):

Minimize
∑

S pSxS
subject to

∑
S qSxS ≥ 0,

x∅ = 1,
xA · xB = xA∪B for all A,B ⊆ V ,
xA ∈ R, for all A.

(1.2)

Introducing Vectors. Our next transformation is a technique common in semi-
definite relaxations: Introduce a vector ~xA for each subset A and use 〈~xA, ~xB〉 in-
stead of xA · xB. We will refer to these vectors as moment vectors. Then:

Minimize
∑

S pSxS
subject to

∑
S qSxS

x∅ = 1,
〈~xA, ~xB〉 = xA∪B for all A,B ⊆ V ,

rank([~xA]A) = 1, [~xA]A ∈ RΥ,2V .

(1.3)

Handling the Polynomial Constraints. Recall we intended xA’s to be {0, 1} vari-
ables (and they still are, though this is not relevant at the time being). Thus in any
feasible solution, for each P , the vectors [~y(q)A] defined as ~y(q)A ←

√
〈q, x〉~xA also

satisfies
〈~y(q)A, ~y(q)B〉 =

∑
S

qSxA∪B∪S.

8

Moment Matrix. Basic linear algebra tells us that such vectors exist iff their Gram
matrix is positive semi-definite (PSD), denoted by � 0. Here Gram matrix refers
to the matrix whose entries represent inner products:

[~xA]A exists iff M(x)
def
= [xA∪B]A,B⊆V =

x∅ x{u} x{v} xS
x{u} x{u} x{u,v} . . . xS∪{u} . . .
x{v} x{u,v} x{v} xS∪{v}

...
xS xS∪{u} xS∪{v} . . . xS . . .

...
... . . .

� 0.

After some algebra, we can express the non-negativity constraint as:

M(P ∗ x) � 0,

where ∗ : R2V × R2V → R2V is a bi-linear operator with [q ∗ x]A =
∑

B qBxA∪B.

Obtaining an SDP. We are only one “rank constraint ” away from an SDP. We will
simply throw it away and obtain the following SDP:

Minimize 〈Q, x〉
subject to M(P ∗ x) � 0 for all P ∈ P ,

M(x) � 0,

x∅ = 1, x ∈ R2V .

(1.4)

Rather surprisingly, Theorem 3.2.1 shows that this is still equivalent to eq. (1.1).

Lasserre Hierarchy Relaxation. Unfortunately eq. (1.4) is too large: it has 2n vari-
ables. Therefore we relax the problem by imposing PSD-ness constraint only on
the principal minor of M(x) with rows and columns corresponding to≤ r-subsets
instead. The resulting formulation is called Lasserre Hierachy relaxation and was
introduced by Lasserre [2002].

1.5 Our Contributions and Thesis Structure

In Chapter 2, we begin by reviewing our notation, then present basic mathemat-
ical background on linear algebra, generalized spectrum of two matrices, graphs

9

and basic matrices related to graphs, such as adjacency matrix, degree matrix,
node-edge incidence matrix and most important of all, Laplacian matrix. Finally
we end this chapter by giving some basic probabilistic inequalities: Markov in-
equality, Chernoff and Hoeffding bounds.

In Chapter 3, we first introduce some (minimal) algebraic background necessary
to formally introduce 0/1 programming problems over polynomials and their SDP
relaxations based on moments. We end this chapter by presenting constructions
for SDP vectors corresponding to the relaxations of indicator variables for all pos-
sible configurations and prove certain properties on them using the algebraic con-
nection: These labeling vectors and their properties form a crucial part of our
rounding algorithms.

In Chapter 4, we do a case study of approximating minimum bisection problem
on a simple setting and present main ideas behind our rounding algorithm along
with its analysis, where we relate the solution quality to column based matrix
reconstruction. We intend this chapter to be an introduction for our rounding
algorithm, and not as a formal treatment of minimum bisection problem. We will
present a formal treatment later in Chapter 7 including comparison with existing
literature.

In Chapter 5, we propose a simple algorithmic framework which turns out to be
general enough to capture not only our rounding, but also other rounding al-
gorithms known in the literature. The benefit of this abstraction becomes clear
when we demonstrate how to, in principle, avoid constructing the whole solution,
which has size nO(r), and instead only compute relevant portions of the solution
with size 2O(r)nO(1) as need arises. Our main technical contribution is a separation
oracle based ellipsoid algorithm which can also output a certificate of infeasibil-
ity. Using this algorithm, we show how to implement this framework so that we
reduce the final running time to something of the form 2O(r)nO(1).

Chapters 7 and 8 are continuation of Chapter 4 and we present various approx-
imation guarantees. However all our final algorithms and theorem statements
now take advantage of the fast solver framework we developed in Chapter 5.

In Chapter 7, we analyze it in the context of quadratic integer programming prob-
lems. Then we re-state the rounding procedure in terms of our framework from Chap-
ter 5 and bound the running time. Finally we end our chapter with an application
of this method to individual problems: Minimum bisection, small set expansion,
their k-way generalizations and independent set.

10

In Chapter 8, we consider the problems of minimum uncut and unique games: A
direct application of the rounding from previous chapter yields poor bounds due
to a dependence on lifted graph. In order to remove this dependence, we extend
our rounding method from previous chapter using an embedding, enabling us
to by-pass the lifted graph and relate the analysis to original constraint graph
instead.

In Chapter 9, we present an extension of our basic rounding procedure for the
problem of generalized sparsest cut.. In the special case of uniform sparsest cut,
we compare the guarantees of our algorithm and another one based subspace
enumeration and cut improvement. Finally we argue why subspace enumeration
based methods will fail in the case of non-uniform sparsest cut. In the analysis of
all our rounding methods, the crucial step is always a relation between the cost
of solution for a specific seed set to how well the corresponding columns for the
seeds approximate a related matrix in terms of Frobenius norm.

In Chapter 10, we present our contribution for the problem of choosing minimum
number of columns from a matrix so as to minimize the reconstruction error in
Frobenius norm. Basically we prove upper bounds for the number of columns
necessary and show how to find such columns efficiently by presenting both ran-
domized and deterministic algorithms. Finally we prove that our upper bounds
are best possible up to low order terms by exhibiting a class of matrices.

In Chapter 11, we analyze the structure of primal and dual formulations for mo-
ment based SDP relaxations (including Lasserre hierarchy) which we introduced
back in Chapter 3. First note that there are two potential pitfalls associated with
primals and duals of convex programs: (1) There might be a positive duality gap;
(2) Even in the absence of a duality gap, primal or dual optima might not be at-
tained. Unlike LP’s, there are many SDP formulations for which these problems
occur. Our main contribution in this chapter is an analysis of our relaxations from
a dual perspective and prove that above issues do not occur.

In Chapter 12, we conclude our thesis, summarize our contributions and discuss
possible directions for future research.

1.6 Bibliographic Note

Most of the research that appears in this thesis was either published elsewhere in
some form, or is under submission. Chapters 4, 7 and 8 are based on [Guruswami
and Sinop, 2011]. Chapter 5 is based on [Guruswami and Sinop, 2012b]. Chapter 9

11

is based on [Guruswami and Sinop, 2013]. Chapter 10 is based on [Guruswami
and Sinop, 2012a].

12

Chapter 2

Background

We start by presenting basic mathematical background and notations we use through-
out the whole thesis.

2.1 Sets and Families

For any positive integer n, let [n]
def
= {1, 2, . . . , n}. We will use ∅ to denote empty

set.

Notation 2.1.1 (Subsets and Power Sets). Given set A, let 2A be its power set, i.e. set
of all subsets. For any real k, we will use

(
A
k

)
,
(
A
≤k

)
and

(
A
≥k

)
(equivalentlyA=k, A≤k, A≥k)

to denote the set of all subsets of A having size exactly k, at most k and at least k respec-
tively.

Observe that 2A =
(
A
≥0

)
= A≥0, ∅ =

(
A
0

)
= A=0 and

(
A
≥1

)
= A≥1 is the set of

non-empty subsets of A.

Notation 2.1.2 (Family of Subsets). Given V , F is a family over V if F ⊆ 2V .

Notation 2.1.3 (Elementwise Union). For any pair of families F,G ⊆ 2V , let F
⊎
G ⊆

2V be the family obtained by element-wise unions of F and G:

F
⊎

G
def
=
{
A ∪B

∣∣A ∈ F, B ∈ G
}
.

Definition 2.1.4 (Downward Closedness). For any set V , given a family of its subsets
F ⊆ 2V , F is a downward closed family if whenever S ∈ F, F also contains all subsets
of S:

S ∈ F ⇐⇒ 2S ⊆ F.

We call such F a down family over V .

13

Example 2.1.5. • F ← {∅, {1}, {1, 2}} 63 {2} is not a down family.

• G← {∅, {3}} is a down family.

• F
⊎

G = {∅, {1}, {1, 2}, {3}, {1, 3}, {1, 2, 3}}.

Claim 2.1.6. • 2S
⊎

2T = 2S∪T .

• V≤p
⊎
V≤q = V≤p+q.

• F
⊎

F iff F = 2S for some S.

Definition 2.1.7 (k-way Partitionings). Given set V , for any k-collection of its subsets,
(U1 ⊂ V, . . . , Uk ⊂ V) we say it is a k-way partitioning of V if and only if all Ui’s are
disjoint with their union equal to V :

V = U1 t U2 t . . . t Uk.

We will refer to it as a proper partitioning if all Ui’s are non-empty in addition.

2.2 Linear Algebra

Notation 2.2.1 (Reals, Rationals and Integers). Let R, Q, Z and N be the set of reals,
rationals, integers and natural numbers. Given a subset of reals F ⊆ R, we use F+

and F++ to denote set F restricted to non-negative and positive numbers respectively.

Notation 2.2.2 (Vectors and Matrices). Given finite sets A,B and a subset of reals
R ⊆ R, we will use RA and RA,B to denote set of vectors and matrices over R whose
rows and columns are identified with elements ofA andB respectively. For any function
f : A → R (resp. g : A × B → R), we will use [f(u)]u∈A (resp. [g(u, v)](u,v)∈A×B) to
denote the vector (resp. matrix) whose value at row u (resp. row u and column v) is equal
to f(u) (resp. g(u, v)).

Notation 2.2.3 (Matrices as Collection of Vectors). Given A,B and a vector valued
function ~f : B → RA, we use [~f(u)]u∈B ∈ RA,B to refer to the matrix whose columns are
~f(u) over all u ∈ A.

Notation 2.2.4 (Minors). Given vector x ∈ FA and matrix Y ∈ FA×B, for any C ⊆ A
and D ⊆ B let xC ∈ FC and YC,D ∈ FC×D denote the minors of x, Y on rows C and
columns D.

14

Notation 2.2.5 (Direct Sum). Given two sets K ⊆ RA, L ⊆ RB, we define their direct
sum as:

K ◦ L def
=
{

(xA, yB\A)
∣∣x ∈ K, y ∈ L} ⊆ RA∪B.

Notation 2.2.6 (Norms, Inner Products and Normalized Vectors). Let ‖x‖p be its
p-norm with ‖x‖ def

= ‖x‖2. For any x 6= 0, we will use x def
= x/‖x‖ to denote the

normalized vector for x. As a convention, if x = 0, we will take x = 0 as well. For any
x, y ∈ RA, let 〈x, y〉 = xTy be their inner product

∑
a∈A xaya.

Notation 2.2.7 (Standard Matrix Functions). We will use ‖Y ‖F , Tr(Y), |Y |, Y T , Y −1,
Y † and Y p to denote Frobenius norm of a matrix Y , its trace, transpose, inverse, pseudo-
inverse and pth power respectively, whenever defined.

Notation 2.2.8 (Symmetric Matrices). Given finiteA, let SA be the set of real symmetric
matrices over rows and columns A.

Notation 2.2.9 (Constant Valued Vectors, Matrices and Identity Matrix). Given fi-
nite set of rows A and columns B, we use 0A and 11A to denote all 0’s and all 1’s vector
overA. Similarly we use 0A,B, 11A,B and IA,B to denote all 0’s, all 1’s and identity matrix
over A and B. When there is no room for ambiguity, we will drop the subscripts and use
0, 11, I instead.

Notation 2.2.10 (Indicator Vectors and Canonical Basis). Given finite A, for any
predicate of the form f : A→ {false, true}, we use 1f ∈ {0, 1}A to denote the indicator
vector of f so that for any j ∈ A:

(1f)j =

{
1 if f(j) is true,
0 else.

If f is the membership predicate for some set B, then 1f corresponds to the indicator
vector for B, which we will denote by 1B instead.

We denote the canonical basis of RA as {1a | a ∈ A}.

Notation 2.2.11 (Indicator Functions). Given a predicate of the form f : A→ {false, true}
for some infinite set R, we use JfK to denote the indicator function of f . For any x ∈ R:

JfK(x) =

{
1 if f(j) is true,
0 else.

15

Definition 2.2.12 (Partitioning Representation and k-labeling Functions). We rep-
resent any partitioning U1 t . . . t Uk = V with its indicator vector x = [x(u,i)] ∈
{0, 1}V×[k] where x(u,i) is 1 if u ∈ Ui and 0 else. When k = 2, we will use x = [xu] ∈
{0, 1}V instead.

We also associate partitions with labeling functions: We want to assign a label from
[k] to each element of V . For any S ⊆ V , we use [k]S to denote the set of all k-labelings of
S, [k]S

def
=
{
f
∣∣f : S → [k]

}
.

Definition 2.2.13 (Positive (Semi)Definite Ordering). We say a matrix Y ∈ SA is
positive semi-definite (PSD), denoted by Y � 0 if ∀x : xTY x ≥ 0. Further we say Y is
positive definite (PD), Y � 0, if ∀x : xTAx > 0 whenever x 6= 0.

Finally we use SA+ and SA++ to denote the set of all PSD and PD matrices on rows and
columns A respectively. Note SA++ ⊂ SA+ ⊂ SA.

The following are well known characterizations of PSD-ness, therefore we skip
their proofs.

Proposition 2.2.14. Given X ∈ SA, X � 0 iff Tr [X · Y] ≥ 0 for all Y � 0.

Theorem 2.2.15 (Schur’s Complement Criteria). Given disjoint sets A,B and matri-
ces X ∈ SA, Y ∈ RA,B, Z ∈ SB:

W
def
=

[
X Y T

Y Z

]
� 0 ⇐⇒ X � 0 and Z − Y TX†Y︸ ︷︷ ︸

Schur’s complement

� 0.

SA+ can be thought of as generalization of R+. For example, we can take square
roots:

Theorem 2.2.16. Given Y ∈ SV , Y � 0 iff there exists matrix ~X = [~xu]u∈V ∈ RΥ,V

such that ~XT ~X = Y for some set Υ : |Υ| ≤ |V |. Given such ~X , we refer to Y as the
Gram matrix of ~X . Similarly we refer to ~X as the Gram decomposition of Y .

Theorem 2.2.17. Given Y ∈ SV , there exists reals λ1 ≤ . . . ≤ λ|V | and unit vectors
~z1, ~z2, . . . , ~z|V | ∈ RV such that:

Y =
∑
i

λi~zi~z
T
i , 〈~zi, ~zj〉 =

{
1 if i = j,
0 else.

We call this eigen decomposition of Y . Moreover λ1 ≥ 0(resp. λ1 > 0) iff Y �
0(resp. Y � 0).

16

Notation 2.2.18 (Projection Operators). For any matrixX ∈ RA,B, we will useXΠ and
X⊥ to denote the projection matrices onto the column span ofX and onto its orthogonal
complement respectively.

Notation 2.2.19 (Support). For any vector x ∈ RA, we will use support(x) to denote
the set of its non-zero coordinates:

support(x)
def
= {i ∈ A : xi 6= 0}.

Observe that ‖x‖0 = | support(x)|.

2.3 Geometry

Definition 2.3.1 (Convex Set). Given X ⊆ RA, X is a convex set if for any y, z ∈ X
and real θ ∈ [0, 1], θy + (1− θ)z ∈ X .

Definition 2.3.2 (Convex Hull). Given X ⊆ RA, convex hull of X is defined as:

convex(X)
def
=

⋂
C is convex
C⊇X

C.

Notation 2.3.3 (Minkowski Sum). Given two sets K,L ⊆ RA, their Minkowski sum
is defined as the following set:

K + L
def
=
{
x+ y

∣∣x ∈ K, y ∈ L} ⊆ RA.

Notation 2.3.4 (Balls). Given a set K ⊆ RA and non-negative real ε ≥ 0, we define
B(K,±ε) in the following way.

B(K, ε)
def
=
{
x ∈ RA|∃y ∈ K s.t. ‖y − x‖2 ≤ ε

}
.

B(K,−ε) def
= K \ B(RA \K, ε).

Observe that for y ∈ RA, B(y, ε) is the |A|-dimensional sphere with origin y, with B(K, ε)
being Minkowski addition of sphere of radius ε to K and B(K,−ε) being Minkowski
subtraction of sphere of radius ε from K.

Observation 2.3.5. For any convex body K ⊆ RA and non-negative reals ε, ε1, ε2, the
following hold:

17

1. B(B(K, ε),−ε) = K, B(B(K,−ε), ε) ⊆ K.

2. B(B(K, ε1), ε2) = B(K, ε1 + ε2).

3. B(B(K,−ε1),−ε2) = B(K,−ε1 − ε2).

Proof. [See Grötschel et al., 1993]

Notation 2.3.6 (Volumes). Given K ⊆ RA with |A| = d, we will use vold(K) to denote
d-dimensional volume of K, provided it exists. Furthermore for any non-negative real
ε ≥ 0, let vold(ε) be the volume of d-dimensional ball of radius ε. We will use vol−1

d (K)
to denote the radius of a d-dimensional sphere whose volume is equal to vold(K) so that

vold(K) = vold(vol−1
d (K)).

2.4 Convex Optimization and Semi-definite Program-
ming

As mentioned in the introduction, our approach for approximating graph parti-
tioning problems is to express a certain convex relaxation for them, called semi-
definite programming: These problems form one of the strongest convex formu-
lations we know and they have been indispensable in designing approximation
algorithms, starting with the seminal work of Goemans and Williamson [1995].
We first define basic terminology associated with convex optimization problems.

Definition 2.4.1 (Convex Optimization). Given a convex set K ⊆ RA and a convex
function f : RA → R, consider the following:

Infimum f(x) subject to x ∈ K. (2.1)

We call such problems as convex optimization problems. Here f is the objective
function and K is the feasible set. For any x ∈ RA if x ∈ K we say x is a feasible
solution to eq. (2.1). We refer to the objective value achieved by x, f(x), as the value
of solution x. If no such x exists, i.e. K = ∅, we say eq. (2.1) is infeasible. Let
OPT ∈ R ∪ {±∞} denote the optimum value of eq. (2.1). We assume the following
convention:

OPT =

+∞ if eq. (2.1) is infeasible,
−∞ if eq. (2.1) is unbounded from below,
∈ R else.

Finally if there exists feasible solution x with f(x) = OPT we say x is an optimal
solution to eq. (2.1).

18

Definition 2.4.2 (SDPs). Given a linear function M : RA → SB, which maps vectors
from RA to symmetric matrices SB, and a symmetric matrix C ∈ SB consider the follow-
ing convex optimization problem:

Infimum Tr [C ·M(x)] subject to M(x) � 0. (2.2)

We refer to problems of the form eq. (2.2) as semi-definite programming (SDP) prob-
lems.

Remark 2.4.3. Equation (2.2) might seem rather unusual as the standard definition is:

Infimum 〈c, x〉 subject to M(x) � 0 (2.3)

for some vector c ∈ RA. It is an easy exercise to show that eqs. (2.2) and (2.3) are equiva-
lent. However we prefer eq. (2.2) as it naturally fits in the geometric theme of our thesis.

The way we formulated in eq. (2.2), it is rather difficult to “imagine” what
feasible (let alone optimal) solutions look like. But together with M(x) � 0, we
can use Theorem 2.2.16 to interpret M(x) as Gram matrix of some vectors and
obtain the following more intuitive characterization:

Proposition 2.4.4. The following is equivalent to eq. (2.2):

Infimum
∑
i,j∈B

Ci,j〈~xi, ~xj〉 subject to M(x) =

[
〈~xi, ~xj〉

]
i,j

for some x ∈ RA. (2.4)

Remark 2.4.5 (SDP Duality). SDP problems, such as the one given in eq. (2.2), are
part of a certain class of convex optimization problems, called linear conic programming,
which we will present later in Chapter 11. This abstraction will prove to be extremely
useful when we want to talk about duality.

2.5 Conic Ordering

When we are talking about polynomials, it will be more convenient to work with-
out an explicit embedding into a real space.

Definition 2.5.1 (Bilinear Form). Given two linear spaces E1, E2 and a function f :
E1×E2 → R, we call f a bilinear form (or inner product) between E1 and E2 provided
that:

• f(p+ q, r) = f(p, r) + f(q, r) for any p, q ∈ E1, r ∈ E2;

19

• f(p, q + r) = f(p, q) + f(p, r) for any p ∈ E1, q, r ∈ E2;

• f(αp, q) = f(p, αq) = αf(p, q) for any p ∈ E1, q ∈ E2, α ∈ R.

Lemma 2.5.2 (Adjoint). Given any inner product f : E1 × E2 → R, any linear trans-
formation T : E1 → E1 (resp. U : E2 → E2) has an adjoint transformation over f ,
T̂ : E2 → E2 (resp. Û : E2 → E2) such that for any p ∈ E1, q ∈ E2:

f(T (p), q) = f(p, T̂ (q))(resp.f(p, U(q)) = f(Û(p), q)).

Definition 2.5.3 (Cone). Given a linear space E1, K ⊆ E1 is a cone if for any x ∈ K
and non-negative real α, αx ∈ K.

Definition 2.5.4 (Dual Cone). Given linear spaces E1, E2 and subset K ⊆ E1; for any
inner product f : E1 × E2 → R, dual cone of K over f is defined as:

K∗
def
= {q ∈ E2 | f(p, q) ≥ 0 for all p ∈ K} ⊆ E2.

Notation 2.5.5 (Conic Ordering). Given a convex cone K ⊆ E1, for any p, q ∈ E1, we
say

x ≥K y ⇐⇒ x− y ∈ K.
We define ≤K , >K and <K similarly.

2.6 Generalized Eigenvalues

In this section, we will introduce the generalized eigenvalues and eigenvectors of
a pair of symmetric matrices, X ∈ SA and Y ∈ SA+.

Definition 2.6.1 (Generalized Eigenvalues and Eigenvectors). Given X ∈ SA and
Y ∈ SA+, for any positive integer j ≤ rank(Y) we inductively define jth smallest gener-
alized eigenvalue of X and Y , λj along with corresponding generalized eigenvector
zj as:

zj
def
= argmin

{
zTXz

zTY z

∣∣∣∣z ∈ RA, zTY z = 1 and zTY zi = 0 for all i < j.
}
,

λj(X;Y)
def
=
zTj Xzj

zTj Y zj
.

We refer to (λ1, λ2, . . . , λrank(Y)) as the generalized spectrum of matrices X and Y . As
a shorthand, we use:

λmin(X;Y)
def
= λ1, λmax(X;Y)

def
= λrank(Y).

20

Definition 2.6.2 (Eigenvalues). When Y is the identity matrix, Y = I , we refer to
λi = λi(X, I) simply as eigenvalues of X .

Definition 2.6.3 (Normalized Eigenvalues). When Y = diag(X), we refer to λi =
λi(X, diag(X)) as normalized eigenvalues of X .

Observe that the above definition coincides with the variational (Courant-Fischer)
characterization of eigenvectors when Y is the identity matrix.

Remark 2.6.4. At the first glance our variational definition might seem odd, as the tra-
ditional way to define eigenvalues and eigenvectors is through the solutions of equation
Xz = λY z. Even though these definitions coincide in the case when Y is non-singular
(i.e. Y ∈ SA++) variational characterization is stronger when Y is a singular matrix.

Theorem 2.6.5. Given X ∈ SA+ and Y ∈ SA+, the following holds. There exists rank(Y)
many generalized eigenvectors which satisfies the following:

X �
rank(Y)∑
j=1

λjzj · zjT ; Y =

rank(Y)∑
j=1

zj · zjT ; zTi Y zj =

{
1 if i = j,
0 else;

Here zj = zj(X;Y) and λj = λj(X;Y).
Provided that range(X) ⊆ range(Y), this inequality is tight and:

λmin(X;Y) · Y � X � λmax(X;Y) · Y. (2.5)

2.7 Graphs and Laplacian Matrices

Notation 2.7.1 (Graphs). All our graphs will be: (1) Loop-less, (2) Undirected, (3) Non-
negatively weighted. We will use G = (V,E,W) to denote such a graph defined on
the set of nodes V and edges E ⊆

(
V
2

)
with edge weights W = [wGu,v ∈ R+]u,v∈V .

We assume there is an edge {u, v} if and only if the corresponding weight is positive i.e.
support(W) = E. The degree of a node u ∈ [n], dGu , is defined as dGu

def
=
∑

v w
G
u,v, with

dGmin
def
= minu d

G
u , d

G
max

def
= maxu d

G
u being the minimum and maximum degrees respec-

tively.
For any two subsets A,B ⊆ V , the weight of edges between A and B, wG(A,B) is

defined as:
wG(A,B) =

∑
u∈A,v∈B

wGu,v.

21

When dealing with unweighted graphs we will use G = (V,E) with edge weights

being implicitly defined as wGu,v =

{
1 if {u, v} ∈ E,
0 else.

When there is no room for ambi-

guity, we will drop the superscript G and use du, dmin, dmax, wu,v instead.

Most of the problems we study revolve around the relaxation of “disconnect-
edness” which involve measuring how close a given partitioning is to being dis-
connected measured by its cut cost, formalized below:

Definition 2.7.2 (Cut Cost). Given G = (V,E,W) and a k-way partitioning of V ,
(U1, . . . , Uk) we define cut cost of (U1, . . . , Uk) as the total weights of edges crossing dif-
ferent subsets:

costG(U1, . . . , Uk)
def
=

∑
u∈Ui,v /∈Ui

wGu,v =
1

2

∑
i

wG(Ui, V \ Ui).

A convenient way to algebrize cut costs is to introduce Laplacian matrix of a
graph.

Definition 2.7.3 (Node-Edge Incidence and Laplacian Matrices). LetB = [B{a,b},c] ∈
R(V2),V be the node-edge incidence matrix of a complete graph where

B{a,b},c =

{
+1 if c = a with a < b ,
−1 else.

Given graph G, we define the diagonal matrix of edge weights, WG ∈ R(V2),(
V
2) as

(WG){a,b},{c,d} =

{
wGa,b if {a, b} = {c, d},
0 else.

Finally the Laplacian matrix of graph G, LG ∈ SV+ is defined as LG
def
= BTWGB which is

equal to

(LG)u,v
def
=

{∑
a∈V \{u}w

G
u,a if u = v,

−wGu,v else.

Definition 2.7.4 (Degree and Adjacency Matrix). GivenG = (V,E,W), we useDG ∈
SV and AG ∈ SV to denote G’s diagonal matrix of degrees and adjacency matrix:

(DG)u,v =

{
dGu if u = v,
0 else.

, (AG)u,v = wGu,v.

Observe that LG = DG − AG.

22

Claim 2.7.5. For any subset U ⊆ V whose indicator vector is given by x ∈ {0, 1}V , the
cut cost of partitioning (U, V \ U) is equal to the following:

costG(U, V \ U) = xTLGx.

Similarly, given a k-way partitioning of V with indicator vector x ∈ {0, 1}V×[k] so that
x(V,i) ∈ {0, 1}V over all i ∈ [k], we can express its cut cost on graph G as:

1

2

∑
i

xT(V,i)LGx(V,i).

Notation 2.7.6 (Clique graph). Let K be the n-clique where for any u 6= v, wKu,v = 1
n

,
and wKu,u = 0 so that its Laplacian matrix LK satisfies LK = IV,V − 1

n
11V,V = I − 1

n
1111T .

Definition 2.7.7 (Generalized Eigenvalues for Graphs). Given two graphs G and H ,
for any positive integer j, we define λj(G) and λj(G;H) as the jth smallest normalized
eigenvalue of LG and jth smallest generalized eigenvalue of LG and LH , i.e.

λj(G)
def
= λj(LG), λj(G;H)

def
= λj(LG;LH).

Observation 2.7.8. For any pair of graphs G and H , the following hold:

1. LG11 = LH11 = 0;

2. z1(G) = D
1/2
G 11;

3. For any matrix X = [Xu]u∈V , Tr(XTXLG) =
∑

u<v w
G
u,v‖Xu −Xv‖2;

4. LG, LH � 0;

5. 0 = λ1(G;H) ≤ λ2(G;H) ≤ . . . ≤ λn(G;H);

6.
∑

i λi(G) = |V | = n.

2.8 Some Probabilistic Inequalities

We will review some basic probabilistic inequalities.

Theorem 2.8.1 (Markov Inequality). Given a random variable Y over non-negative
numbers, R+ the following holds:

Prob

[
Y ≥ 1

ε
E
[
Y
]]
≤ ε.

23

Theorem 2.8.2 (Hoeffding Bound). If X is a distribution over {0, 1}A with each co-
ordinate being independent, then for any vector a ∈ RA and positive real ε > 0 we
have

Probx∼X

[∣∣〈x, a〉 − Ex′∼X
[
〈x′, a〉

]∣∣ ≥ O

(√
log

1

ε
‖a‖2

)]
≤ ε,

where µ def
= Ex′∼X

[
〈x′, a〉

]
.

Theorem 2.8.3 (Chernoff Bound). If X is a distribution over {0, 1}A with each coordi-
nate being independent, then for any vector a ∈ RA

+ with ‖a‖∞ ≤ µ
log(1/ε)

, we have:

Probx∼X

[∣∣〈x, a〉 − Ex′∼X
[
〈x′, a〉

]∣∣ ≥ O

(√
‖a‖∞µ log

1

ε

)]
≤ ε.

24

Chapter 3

Moment Based SDP Relaxations

In this chapter, we will formally introduce a class of semi-definite programming
(SDP) based relaxations for 0/1 problems, based on pseudo-moments. This class
contains Lasserre Hierachy for which we presented a simpler derivation back
in Section 1.4. We start with some algebraic background.

3.1 Algebraic Background

Throughout the whole chapter, we always denote the set of variables with V , X =
[Xu]u∈V .

Definition 3.1.1 (Real Polynomials). Let R[X] be the set of polynomials with real coef-
ficients over variables X = [Xu]u∈V where f ∈ R[X] if it can be expressed as

f =
∑

α:V→Z+

fα
∏
u∈V

Xα(u)
u︸ ︷︷ ︸

def
= X(α)

,

for some [fα ∈ R]α:V→Z+ such that at most finitely many fα are non-zero. For any S ⊆ V ,
we will use X(S) def

= X(1S) =
∏

u∈S Xu and fS
def
= f1S . For small cardinality sets, we will

directly use X(u,v) instead of X({u,v}).
Given x ∈ RV , we use f(x) to denote evaluation of f at x ∈ RV :

f(x) =
∑

α:V→Z+

fα
∏
u∈V

xα(u)
u .

25

Notation 3.1.2 (Degree). We define degree of f as

degr(f)
def
= max

α:V→Z+
fα 6=0

∑
u∈V

αu.

Definition 3.1.3 (Multilinear Polynomials). Given f ∈ R[X] we call f a multilinear
polynomial if f is linear in each variable, i.e., when no variable occurs to a power of 2 or
higher. We use ML[X] to denote the set of multilinear polynomials. In particular, for
any f ∈ R[X]:

f ∈ML[X] ⇐⇒ f =
∑
S

fSX
(S). for some [fS]S ∈ R2V .

Observation 3.1.4. For any multilinear polynomial f ∈ML[X], degr(f) = maxS:fS 6=0 |S|.

Notation 3.1.5 (Support of a Multilinear Polynomial). We define the support of mul-
tilinear polynomial f as:

support (f)
def
=
{
S ⊆ V | fS 6= 0

}
⊆ 2S.

Notation 3.1.6 (Multilinear Polynomials on Restricted Support). Given a set of vari-
ables V , family F over V , we use

MLF[X]
def
=
{
p ∈ML[X] | support(p) ⊆ F

}
to denote the set of multilinear polynomials whose support is contained in F.

Notation 3.1.7 (Coefficient Vectors for Multilinear Polynomials). Given family F

over V , let~· : MLF[X]→ RF be the coefficient vector operator. Given f ∈MLF[X]:

~f
def
= [fS]S∈F ∈ RF.

Lemma 3.1.8. Given f ∈MLF[X],

f(1S) = 0 for all S ∈ F ⇐⇒ f = 0.

Here 1S = [(1S)u]u∈V ∈ {0, 1}V denotes the indicator vector for set S:

(1S)u =

{
1 if u ∈ S,
0 else.

26

Proof. (⇒) Consider the matrix M = [X(S)(1T)]T∈F,S∈F. For~f = [fS]S∈F being the
coefficient vector of f, we have (M~f)T = f(1S). We will prove that determi-
nant of M is zero, |M | = 0, which will imply rank(M) = |F|. In other words
M~f = 0 ⇐⇒ ~f = 0 ⇐⇒ f = 0.

|M | =
∑

π∈sym(F)

(−1)sign(π)
∏
S∈F

Mπ(S),S =
∑

π∈sym(F)

(−1)sign(π)
∏
S∈F

X(S)(1π(S))

=
∑

π∈sym(F)

(−1)sign(π)JS ⊆ π(S) for all S ∈ FK

Whenever π is identity, this product is one. We will show that for any other
π, this product is zero by contradiction; which means |M | = 1. Suppose π is
non-identity where this product is non-zero. consider non-identity permuta-
tion π. Let S∗ ∈ F be a largest set with π(S∗) 6= S∗: S∗ ← argmaxS∈F:S 6=π(S) |S|.
For such S∗, consider T def

= π(S∗):

• T ∈ F since π is a permutation on F.

• |T | > |S∗| since S∗ ⊆ π(S∗) but S∗ 6= π(S∗) = T .

This contradicts maximality of S∗.

(⇐) Trivial.

3.1.1 Polynomial Ideals and Quotient Algebra

All our problems are based on finding some x ∈ {0, 1}V subject to polynomial
constraints of the form f(x) ≥ 0 or g(x) = 0. Therefore we need focus on poly-
nomials restricted to {0, 1}V and roots of such polynomials. In this section, we
will review polynomial ideals and quotient algebra which will allow us to reason
about such polynomials and solutions algebraically.

Polynomial Ideals. Let’s start with the most basic question: When are two poly-
nomials f, g ∈ R[X] equal when restricted to {0, 1}V ? In RV , checking when two
polynomials are equal is easy – we can simply compare each coefficient. But this
is not true anymore with the simplest example being X2

u ≡ Xu for any u ∈ V . One
way to check such equivalence is to find some other polynomial h ∈ R[X] such
that

h({0, 1}V) = 0 and f = g + h.

27

Let I({0, 1}V) be the set of such polynomials:

I({0, 1}V)
def
=
{
h ∈ R[X] | h({0, 1}V) = 0

}
.

It turns out I can be expressed in terms of “linear subspace” over polynomials
(see Lemma 3.1.15): h ∈ I iff there exists h(u) ∈ R[X] for each u ∈ V such that

h =
∑
u

h(u) · (Xu −X2
u).

This motivates the definition of ideals:

Definition 3.1.9 (Ideals). A subset I ⊆ R[X] is an ideal if it satisfies the following:

• p ∈ I =⇒ f · p ∈ I for any f ∈ R[X] (note this implies 0 ∈ I,)

• p, q ∈ I =⇒ p + q ∈ I.

Given an ideal as sets of polynomials, we can define the “dual” set in terms of
their vanishing points:

Definition 3.1.10 (Varieties). Given a polynomial ideal I, we define its real variety as
the set of real solutions to p(x) = 0 for all p ∈ I:

Variety(I)
def
=
{
x ∈ RV | p(x) = 0 for all p ∈ I

}
.

Definition 3.1.11 (Two Ideal Constructions). The ideal generated by a finite set of
polynomials {p1, . . . , pm} ⊂ R[X] is defined as set of all polynomial combinations of pi’s:(

p1, . . . , pm
)

def
=

{∑
i

pihi | hi ∈ R[X] for all i

}
.

Similarly we define vanishing ideal of a set X ⊆ RV as:

I(X)
def
= {p ∈ R[X] | p(x) = 0 for all x ∈ X} .

Notation 3.1.12 (Binary Ideal). Given a down family F over V , we will use BV (F) to
denote the binary ideal,

BV (F)
def
=
({

X2
u −Xu

∣∣ u ∈ V } ∪ {X(S)
∣∣ S /∈ F

})
.

We use BV as a shorthand for BV def
= BV (2V). It is easy to see that Variety[BV (F)] ⊆

{0, 1}V = Variety(BV).

28

Definition 3.1.13 (Quotient Algebra). Given an ideal I, we use R[X]/I to denote its
quotient algebra under the equivalence relation:

f ≡ g (mod I) iff f = g + h for some h ∈ I.

For any f ∈ R[X], we use
[
f
]

to denote a representative chosen in some canonical way
from its equivalence class so that

[
f
]
≡ f and

[
f
]

= f.

Notation 3.1.14 (Multilinear Representatives). We define representatives for R[X]/BV (F)
with the following linear map, [·] : R[X]→MLF[X]. For any p ∈ R[X],

[
p
] def

=
∑
S∈F

(∑
α:S→N

pα

)
X(S) ∈MLF[X],

so that
[[
p
]]

=
[
p
]
. We will prove [p] ≡ p (mod BV (F)) in the next lemma.

Lemma 3.1.15. The following hold for any f, g ∈ R[X].

(i) For any u ∈ V if {u} ∈ F then for any k ∈ N, Xk
u ≡ Xu (mod BV (F)).

(ii) For any S /∈ F, X(S) ≡ 0 (mod BV (F)).

(iii) For any α : V → Z+, Xα ≡ Xsupport(α).

(iv) f ≡
[
f
]

(mod BV (F)).

(v) If f, g ∈MLF[X] and f ≡ g (mod BV (F)) then f = g.

(vi) f(x) = g(x) for all x ∈ {0, 1}V ⇐⇒ f ≡ g (mod BV (F)).

Therefore
[
f
]

is the unique multilinear polynomial with f ≡
[
f
]

1 and

I({0, 1}V) = BV (F). 2

Proof. (i) Follows from Xa = Xk
a +

(
Xk−2
a + Xk−3

a + . . .+ 1
)

(Xa −X2
a).

(ii) By induction on |{u | α(u) ≥ 2}| and using the previous item.

(iii) By induction on |{α : V → N | α(u) ≥ 2 for some u and fα > 0}|.
1 Therefore R[X]/BV (F) is isomorphic to MLF[X], R[X]/BV (F) ∼= MLF[X].
2BV (F) is radical ideal.

29

(iv) Then f − g ∈ML[X] and f − g ≡ 0 (mod BV (F)) which implies (f − g)(x) = 0
for all x ∈ {0, 1}V . By Lemma 3.1.8, f − g = 0.

(v) (⇐) Trivial.

(⇒) (f − g)(x) = 0 for all x ∈ {0, 1}V . Then
[
f − g

]
≡ 0 (mod BV (F)) and

unique by previous items. Since 0 ∈ ML[X], this means
[
f
]

=
[
g
]

=⇒ f ≡ g
(mod BV (F)).

Above claim says that for the quotient algebra of BV (F), we can choose our
representatives as multilinear polynomials, which turns out to be unique.

Example 3.1.16. We can algebraically express the fact that any partitioning of an odd
cycle graph must leave at least one edge uncut as follows.

Let V = {1, 2, . . . , 2k + 1} for some positive integer k. Then

(X1 −X2)(X2 −X3) . . . (X2k+1 −X1) ≡ 0 (mod BV).

Proof. Assume there is a non-root x ∈ {0, 1}V . Then:

x1 6= x2 =⇒ x1 + x2 = 1
x2 6= x3 =⇒ x2 + x3 = 1

...
...

x2k+1 6= x1 =⇒ x2k+1 + x1 = 1
+

2(
∑

i xi) = 2k + 1.

A contradiction. Using Lemma 3.1.15, we conclude that (X1−X2)(X2−X3) . . . (X2k+1−
X1) ≡ 0.

Claim 3.1.17. Given polynomials f, g ∈ R[X] and down family F over V :

[
f · g

]
=
∑
S∈F

(∑
A,B:A∪B=S

[
f
]
A
·
[
g
]
B

)
X(S).

3.1.2 Pseudo-Moments

Definition 3.1.18 (Moment Matrix and Moment Sequence). Given a set of variables
V , let moment matrix of x ∈ R2V , MV : R2V → S2V be the following linear map:

MV (x) = [xA∪B]A,B∈⊆V .

30

We call x ∈ R2V a moment sequence iff MV (x) � 0.
For subsets of small cardinality such as {a, b}, we will use xa,b instead of x{a,b}.

As mentioned in Section 1.4, our relaxations are based on enforcing positive
semi-definiteness condition only on certain principal minors of MV (x) whose
rows and columns correspond to set families over V .

Notation 3.1.19 (Principal Minors of Moment Matrix). Given down family F over V ,
we define the linear map MF : RF

⊎
F → SF as the function corresponding to the principal

minor F of MV so that:
MF(x) = [xS∪T]S∈F,T∈F .

Observe that MF(x) is only a function of xF⊎
F.

Example 3.1.20. Suppose V = {a, b} and F = {∅, {a}, {b}}. Then

MF(x) =

 x∅ xa xb
xa xa xa,b
xa,b xa,b xb

 .
Now we can formally define pseudo-moments:

Definition 3.1.21 (Pseudo-Moments). Given a down family F over V , we call x ∈
RF

⊎
F a pseudo-moment sequence if

MF(x) � 0.

We denote the set of such pseudo-moments by Σ∗F:

Σ∗F
def
= 3

{
x ∈ RF

⊎
F
∣∣MF(x) � 0

}
.

Claim 3.1.22. Given a family F over V and pseudo-moments x ∈ Σ∗F, for any A,B ∈ F:

xAxB ≥ x2
A∪B.

In particular, if x∅ = 0, then x = 0.

Proof. Since (MF(x)){A,B},{A,B} =

[
xA xA∪B
xA∪B xB

]
� 0:

0 ≤
[
1 −1

] [xA xA∪B
xA∪B xB

] [
1
−1

]
= xAxB − x2

A∪B.

3 We will prove in Theorem 3.1.34 that Σ∗F indeed corresponds to the dual cone for a natural
family of polynomials.

31

In some sense, a pseudo-moment sequence will corresponding to the expec-
tation of X(S)(x) for x drawn from an unknown distribution. We will make this
connection formal later in Theorem 3.2.1.

Definition 3.1.23 (Pseudo-Moment Vectors). Given down family F over V , we call
~X = [~xS ∈ RΥ]S∈F ∈ RΥ,F pseudo-moment vectors if

〈~xA, ~xB〉 = 〈~xS, ~xT 〉 for all A,B, S, T ∈ F with A ∪B = S ∪ T .

We say ~X represents x ∈ RF
⊎

F if xS∪T = 〈~xS, ~xT 〉 for all S, T ∈ F (i.e. ~XT ~X =
MF(x)).

Up to rotations, there is a one-to-one correspondence between the set of pseudo-
moment vectors on F and pseudo-moment sequences:

Proposition 3.1.24. x ∈ Σ∗F iff there exists representing moment vectors ~X = [~xS].

Proof. Immediate from Gram decomposition (Theorem 2.2.16).

Remark 3.1.25. Proposition 3.1.24 says we can prove properties on moment sequences by
proving them on moment vectors and vice versa. One such example is the proof of eq. (3.4)
from Theorem 3.1.31

Definition 3.1.26 (Pseudo-Evaluation). Let 〈〈·, ·〉〉 : R[X] × Σ∗F → R be the following
bilinear form. For any p ∈ R[X] and x ∈ Σ∗F:

〈〈p, x〉〉 def
=
∑
S∈F

[
p
]
S
xS.

We refer to 〈〈p, x〉〉 as pseudo-evaluation of f over x.

Remark 3.1.27. Suppose x ∈ RF corresponds to the moments of some x ∈ {0, 1}V . Then
for any f ∈ R[X] with

[
f
]
∈MLF[X], 〈〈f, x〉〉 = f(x).

It is trivial to verify that 〈〈·, ·〉〉 is a bilinear form. Then we can ask what adjoints
of some operators are:

Definition 3.1.28 (Adjoint of Moment Function). Given down family F over V , let
·̂ : RF,F → R[X] be the following linear map. For any Q ∈ RF,F:

Q̂
def
=

∑
A∈F,B∈F

QA,BX
AXB.

32

Claim 3.1.29. MLF]F[X] =
[
R̂F,F

]
.

We also define the adjoint of polynomial multiplication operator as follows.

Definition 3.1.30 (Adjoint of Polynomial Multiplication). Given pair of down fam-
ilies F,G over V let ∗ : MLG[X] × RF

⊎
G → RF be the following linear map. For any

f ∈MLG[X] and x ∈ RF
⊎

G:

f ∗ x def
=

[∑
T∈G

fTxS∪T

]
S∈F

.

Having defined ·̂ and ∗, we will state simple identities in Theorem 3.1.31.

Theorem 3.1.31. 1. For any Q ∈ RF,F we have
[
Q̂
]
∈ MLF

⊎
F[X] and for any x ∈

RF
⊎

F,
Tr [Q ·MF(x)] = 〈〈Q̂, x〉〉. (3.1)

2. For any f, g ∈ ML[X], ·̂ maps outer product of coefficient vectors [fA] and [gB] to
their product:

̂[fA][gB]T = f · g. (3.2)

3. For any f, g ∈MLF[X] and x ∈ RF
⊎

F:

〈〈f · g, x〉〉 = [fA]T MF(x)[gB] = 〈〈f, g ∗ x〉〉. (3.3)

4.
〈〈p2, x〉〉 = 0 ⇐⇒ p ∗ x = 0 ⇐⇒

∑
S

~xS
[
p
]
S

= 0. (3.4)

Proof. 1. Note that
[
Q̂
]

=
∑

A∈F,B∈FQA,BX
A∪B ∈MLF

⊎
F[X]. Second claim fol-

lows from Tr [Q ·MF(x)] =
∑

A∈F,B∈F

xA∪BQA,B =
∑

S∈F
⊎

F

xS

(∑
A∈F,B∈F
A∪B=S

QA,B

)
=

〈〈Q̂, x〉〉.

2. For any S,
(

̂[fA] · [gB]T
)
S

=
∑

A∈F,B∈F:A∪B=S fAgB = (f · g)S .

3. 〈〈f · g, x〉〉 = 〈〈 ̂[fA] · [gB]T , x〉〉 = Tr
[
[fA] · [gB]T MF(x)

]
= [fA]T MF(x)[gB]. Here

we used item 2 followed by item 1. This is equal to

=
∑
A,B∈F

fAgBxA∪B =
∑
A∈F

fA (g ∗ x)A = 〈〈f, g ∗ x〉〉.

33

Proof of eq. (3.4). First we prove 〈〈p2, x〉〉 = 0 =⇒ ∑
S ~xS

[
p
]
S

= 0:

〈〈p2, x〉〉 =
∥∥∥∑

S

[
p
]
S
~xS

∥∥∥2

= 0 =⇒
∑
S

[
p
]
S
~xS = 0.

Next we prove that
∑

S ~xS
[
p
]
S

= 0 =⇒ p ∗ x = 0. For any S ∈ F:

(p ∗ x)S =
∑
T

[
p
]
T
xS∪T =

∑
T

[
p
]
T
〈〈~xS, ~xT 〉〉 = 〈〈~xS,

∑
T

[
p
]
T
~xT︸ ︷︷ ︸

=0

〉〉 = 0.

Finally p ∗ x = 0 =⇒ 〈〈p2, x〉〉 follows easily from 〈〈p, p ∗ x〉〉 = 〈〈p2, x〉〉 = 0 where
we used eq. (3.3).

3.1.3 Sum of Squares Ordering

From a dual perspective, our problems can be expressed as finding non-negative
matrices maximizing various functions. Our relaxation for primal corresponds to
finding sum of squares type polynomials on support F instead.

Definition 3.1.32 (Sum of Squares). Given family F over V , we use ΣF ⊆ MLF]F[X]
to denote the set of multilinear polynomials on F equivalent to sum of squares of polyno-
mials from MLF[X] under quotient algebra R[X]/BV (F):

ΣF
def
=

{
f ∈MLF[X]

∣∣ f ≡∑
i

g2
i (mod BV (F)) for some g1, . . . , gm ∈MLF[X]

}
.

We call f ∈ ΣF an SoS. Since ΣF is a convex cone, we can define a partial ordering:

f ≥ΣF
g ⇐⇒ f − g ∈ ΣF.

≤ΣF
, =ΣF

, >ΣF
and <ΣF

are defined similarly.

Lemma 3.1.33. The linear operator ·̂ as given in Definition 3.1.28 is a surjective map
between PSD-matrices and SoS-polynomials:

f ∈ ΣF iff f ≡ Ĝ (mod BV (F)) for some G ∈ SF
+.

Proof. (⇒) Given such f let gi’s be such that
∑

i g
2
i ≡ f. Define Gi as the following

outer product:

Gi
def
= [(gi)A][(gi)A]T ∈ SF

+ =⇒ Ĝi = g2
i by eq. (3.2).

For G ← ∑
iGi we have G ∈ SF

+. By linearity, Ĝ =
∑

i Ĝi =
∑

i gi
2 which means

f ≡ Ĝ.

34

(⇐) GivenG ∈ SF
+ consider its by eigen-decomposition (see Theorem 2.2.17), which

says that exists vectors ~g1, . . . , ~gm ∈ RF such that

G =
∑
i

~gi~g
T
i .

For each such ~gi, let gi ∈MLF[X] be the following:

gi
def
=
∑
S∈F

(~gi)SX
(S) =⇒ ~̂gi~gi

T = g2
i .

In particular Ĝ =
∑

i g
2
i by eq. (3.2) which implies f ≡ Ĝ ≡∑i g

2
i .

Using Lemma 3.1.33, we can characterize pseudo-moment sequences purely
in terms of SoS.

Theorem 3.1.34. x ∈ Σ∗F iff for all f ∈ ΣF we have 〈〈f, x〉〉 ≥ 0. In particular, Σ∗F is the
dual cone of ΣF with respect to 〈〈·, ·〉〉.

Proof. x ∈ Σ∗F is equivalent to MF(x) � 0, which in turn is equivalent to

∀Q ∈ SF
+ : Tr [Q ·MF(x)] ≥ 0

by Proposition 2.2.14. Using Lemma 3.1.33 we have Q ∈ SF
+ ⇐⇒ Q̂ ∈ ΣF. By

eq. (3.1):
Tr [Q ·MF(x)] = 〈〈Q̂, x〉〉.

Hence Tr [Q ·MF(x)] ≥ 0 iff 〈〈Q̂, x〉〉 ≥ 0.

The following appears in Chapter 11.

Corollary 3.1.35 (Restatement of Corollary 11.1.12). f ∈ ΣF iff 〈〈f, x〉〉 ≥ 0 for all
x ∈ Σ∗F.

3.2 Moment Based SDP Relaxations

We can finally prove the following, which implies enforcing PSD-ness on principal
minors is a relaxation.

35

Theorem 3.2.1. For any x ∈ R2V ,

MV (x) � 0 ⇐⇒ ∀S ⊆ V : Ex∼D

[
X(S)(x)

]
= xS for some distribution D on {0, 1}V .

Furthermore, if MV (x) � 0 then for any p ∈ R2V :

MV (p ∗ x) � 0 ⇐⇒ Probx∼D

[
p(x) < 0

]
= 0.

In this section, we will only prove the existence of such x given distribution D
as it is sufficient for Corollary 3.2.2. We postpone the proof of harder direction till
next section.

Proof of⇐ (easy direction). Given such D, consider the following ~X = [~xS] where
each ~xS ∈ R{0,1}V is defined as:

~xS
def
=

[√
Probỹ∼D

[
x = ỹ

]
X(S)(x)

]
x∈{0,1}V

.

It is trivial to check that this is indeed a collection of moment vectors. For the
second property, given such p, consider Y = [~yS] where each ~yS ∈ R{0,1}V is given
by:

~yS
def
=

[√
Probỹ∼D

[
x = ỹ

]
p(x)X(S)(x)

]
x∈{0,1}V

.

Again we can check easily that these are moment vectors. We will now prove that
p ∗ [‖~xA‖2]A = [‖~yA‖2]A: For any A ⊆ V :

(p ∗ [‖~xS‖2]S)A = 〈~xA,
∑
B

pB~xB〉 = Ex∼D

[
X(A)(x)p(x)

]
= ‖~yA‖2.

Proof of⇒ (hard direction). Given in Lemma 3.3.7.

Now we can formally state moment relaxations for eq. (1.1). Lasserre relax-
ation follows as a special case.

36

Corollary 3.2.2. Given variable set V , a ∈ MLV≤d [X], B ⊂ MLV≤d [X] and C ⊂
MLV≤d [X] consider the following 0/1 problem (same with eq. (1.1)):

Minimize a(x)
subject to b(x) ≥ 0 for all b ∈ B,

c(x) = 0 for all c ∈ C,
x ∈ {0, 1}n.

(3.5)

For any family of subsets F ⊆ 2V , the following is a relaxation for eq. (3.5):

Minimize 〈〈a, x〉〉
subject to MF(b ∗ x) � 0 for all b ∈ B,

〈〈c2, x〉〉 = 0 for all c ∈ C,
MF]V≤d(x) � 0,

x∅ = 1 and x ∈ RF
⊎

F
⊎

(V
≤2d).

(3.6)

If F =
(
V
≤r

)
, this corresponds to r rounds of Lasserre Hierachy relaxation as given

by Lasserre [2002].

Proof of Corollary 3.2.2. Note that we can express each constraint c(x) = 0 as

c(x) ≥ 0, −c(x) ≥ 0.

Then by⇐ of Theorem 3.2.1, it is clear that the following is a relaxation:

Minimize 〈〈a, x〉〉
subject to MF(b ∗ x) � 0 for all b ∈ B,

MF(c ∗ x) � 0
and MF((−c) ∗ x) � 0 for all c ∈ C,
MF]V≤d(x) � 0,

x∅ = 1 and x ∈ RF
⊎

F
⊎

(V≤d).

(3.7)

But M (c ∗ x) � 0, M (−c ∗ x) � 0 iff c ∗ x = 0 which is equivalent to 〈〈c2, x〉〉 = 0
by eq. (3.4).

3.3 Labeling Vectors

In the previous section, we said pseudo-moment vectors can be thought as ran-
dom variables corresponding to indicator function of each monomial, X(S)(x). In

37

this section, we will show how to construct vectors corresponding to indicator
functions of a class of polynomials. The most powerful property of Lasserre Hier-
achy reveals itself here: Any such vector will behave consistently with respect to
the quotient algebra induced by given pseudo-moment sequence.

Definition 3.3.1. Given V , F ⊆ 2V and x ∈ Σ∗F with moment vectors ~X = [~xS], we
define the vector for polynomial p ∈ R[X] as:

~x(p)
def
= ~X · ~

[
p
]

=
∑
S∈F

[
p
]
S
~xS.

Using identities from Theorem 3.1.31, we can show that these vectors are con-
sistent in the following way:

Corollary 3.3.2. Given down family F over V and pseudo-moment sequence x ∈ Σ∗F
with vectors ~X = [~xS]S∈F, for any pair of polynomials p, q ∈ R[X],

〈~x(p), ~x(q)〉 = 〈〈p× q, x〉〉.

Proof. Follows from definitions of ~x(p), ~x(q) and Theorem 3.1.31.

3.3.1 Binary Labeling Vectors

Notation 3.3.3 (Indicator Functions of Labelings). Given non-empty subset S ⊆ V
and labeling of S, f : S → {0, 1}, the indicator function for labeling f is defined as the
predicate XS

?
= f which we denote by:

JXS = fK def
=

{
1 if Xu = f(u) for all u ∈ S,
0 else.

Lemma 3.3.4. Over {0, 1}V , JXS = fK is equal to the following polynomial:

JXS = fK =
∏
u∈S

(Xu + f(u)− 1)2 .

They have the following properties:

1. JXS = fK ∈ Σ2S .

38

2. For any f : S → {0, 1}, g : T → {0, 1} if f and g are inconsistent, i.e. there is
some u ∈ S ∩ T with f(u) 6= g(u), then:

JXS = fK× JXT = gK ≡ 0 (mod BV).

Otherwise

JXS = fK× JXT = gK ≡ JXS∪T = f ◦ gK (mod BV).

3. For any S, T : S ⊆ T and f : S → {0, 1}:∑
g:T→{0,1},g|S=f

JXT = gK ≡ JXS = fK (mod BV).

4. For any S, JXS = 11K = X(S).

Proof. 1. By construction.

2. Observe that (xu + f(u)− 1)2 ∈ {0, 1} for any xu ∈ {0, 1}. Hence

(Xu + f(u)− 1)4 ≡ (Xu + f(u)− 1)2.

Consequently:

JXS = fK× JXT = gK =
∏

u∈S\T

(Xu + f(u)− 1)2
∏
v∈T\S

(Xv + g(v)− 1)2

∏
w∈S∩T

(Xw + f(w)− 1)2(Xw + g(w)− 1)2.

If f(w) = g(w) for any w ∈ S ∩ T ,

(Xw+f(w)−1)2(Xw+g(w)−1)2 ≡ (Xw+(f◦g)(w)−1)4 ≡ (Xw+(f◦g)(w)−1)2.

Otherwise: (Xw + f(w) − 1)(Xw + g(w) − 1) ≡ (Xw − 1)Xw ≡ 0. Hence the
claim follows.

3. First note that
(1−Xu)

2 + X2
u ≡ 1. (3.8)

Given some f : S → {0, 1}, let g, h : S ∪ {u} → {0, 1} be defined as g
∣∣
S

=

h
∣∣
S

= f , g(u) = 0 and h(u) = 1 respectively. Then, using the previous item:

JXS∪{u} = gK + JXS∪{u} = hK ≡JXS = fK [JXu = 0K + JXu = 1K]
≡JXS = fK

[
(Xu − 1)2 + (Xu)

2
]

≡JXS = fK (by eq. (3.8)).

Now claim follows by induction.

39

4. By construction.

All our rounding algorithms use ~x(JXS = fK). So it will be more convenient to
define a short hand notation:

Definition 3.3.5 (0/1-Labeling Vectors). Given subset S ⊆ V and any labeling f ∈
{0, 1}S :

~xS(f)
def
= ~x(JXS = fK).

The following appears as decomposition theorem in Karlin et al. [2010].

Theorem 3.3.6. Given variable set V , family of downward closed subsets F ⊆ 2V and
moment sequence x ∈ RF

⊎
F with corresponding moment vectors ~X = [~xS]S∈F:

1. For any S, T with S ∪ T ∈ F:

〈~xS(f), ~xT (g)〉 =

{
‖~xS∪T (f◦g)‖2 if f |S∩T = g|S∩T ,
0 else.

2. For any S ∈ F: ∑
f∈{0,1}S

~xS(f) = ~x∅.

Proof. 1. We will first prove that 〈〈JxA = hK, x〉〉 = ‖~xA(h)‖2. Since JxA = hK(x) ∈
{0, 1}, we have (JxA = hK)2 = JxA = hK. Therefore:

〈〈JxA = hK, x〉〉 = 〈〈(JxA = hK)2, x〉〉 = ‖~x(JxA = hK)‖2 = ‖~xA(h)‖2.

Now claim follows easily by the following:

〈~xS(f), ~xT (g)〉 =〈~xJXS = fK, ~xJXT = gK〉
=〈〈JXS = fKJXT = gK, x〉〉 (by Corollary 3.3.2)
=〈〈JXS∪T = f ◦ gK, x〉〉 (by Lemma 3.3.4).

2. Observe that ~x(X∅) = ~x∅. By previous item, we see that

〈~xS(f), ~xS(g)〉 =

{
‖~xS(f)‖2 if f = g,
0 else;

and 〈~xS(f), ~x∅〉 = ‖~xS(f)‖2.

40

Hence:∥∥∥∥~x∅ −∑
f

~xS(f)

∥∥∥∥2

=〈~x∅, ~x∅ −
∑
f

~xS(g)〉

=〈~x∅, ~x
(
X∅ −

∑
f

JXS = fK
)
〉

=〈〈X∅ −
∑
f

JXS = fK, x〉〉 (by Lemma 3.3.4)

=〈〈0, x〉〉 = 0 (by Corollary 3.3.2).

Using Theorem 3.3.6, we are ready to prove the hard direction of Theorem 3.2.1.

Lemma 3.3.7. For any x ∈ Σ∗2V with x∅ = 1, there exists a distribution D on {0, 1}V
such that:

∀S ⊆ V : Ex∼D

[
XS(x)

]
= xS.

Furthermore, whenever MV (p ∗ x) � 0 for p ∈ R2V :

Probx∼D

[
p(x) < 0

]
= 0.

Proof. Using Theorem 3.3.6, we have vectors ~xV (f) for each partitioning f : V →
{0, 1}. Observe that for any S:

〈~xS, ~xV (f)〉 = ‖~xV (f)‖2 X(S)(f)︸ ︷︷ ︸∏
u∈S f(u)

.

Consider the distribution D where f : V → {0, 1} is chosen with probability
‖~xV (f)‖2: ∑

f :X(S)(f)=1

‖~xV (f)‖2 =
∑
f

〈~x(JXS = 11K), ~xV (f)〉

=〈〈
∑
f

JXV = fKJXS = 11K, x〉〉

=〈〈X∅X(S), x〉〉 = xS,

which proves the first claim.

41

For the second claim observe that by JXV = fK ∈ Σ2V and Theorem 3.1.34:

0 ≤〈〈JXV = fK, p ∗ ~x〉〉 = 〈~xV (f), ~x(p)〉
=
∑
S

[
p
]
S
〈~xV (f), ~xS〉︸ ︷︷ ︸

=‖~xV (f)‖2X(S)(f)

= ‖~xV (f)‖2
∑
S

[
p
]
S
X(S)(f) = ‖~xV (f)‖2p(f).

Hence whenever ‖~xV (f)‖2 6= 0 we have p(f) ≥ 0.

3.3.2 k-Labeling Vectors

We can easily generalize eq. (5.12) to handle k-labeling problems in the following
way. Suppose the set of variables is V0.

1. Let the problem domain be V ← V0× [k] with variables X = [Xu(i)]u∈V0,i∈[k] ∈
{0, 1}V0×[k]. Here Xu(i) denotes the indicator variable for labeling u with i.

2. For each u ∈ V0 add the following constraint:∑
i∈[k]

Xu(i) = 1.

We saw how to enforce item 2 in eq. (3.4) so that:

~x∅ =
∑
i

~xu(i).

Notation 3.3.8 (Indicator Polynomials for k-Labelings). Given subset S ⊆ V and
k-labeling f : S → [k], we define JXS = fK as the following polynomial:

JXS = fK(x) =
∏
u∈S

X2
u(f(u)).

Definition 3.3.9 (k-Labeling Vectors). Given subset S ⊆ V and any labeling f : S →
[k], let:

~xS(f)
def
= ~x(JxS = fK).

Theorem 3.3.10. Given variable set V0, positive integers k, with V def
= V0 × [k]; down

family F over V and moment sequence x ∈ Σ∗F; provided that

F ⊇ (V)≤2

42

and
~x

(∑
i

Xu(i) − 1

)
= 0 for all u ∈ V0,

the vectors as given in Definition 3.3.9 satisfy the following:

1. For any S, T with [k]S∪T ∈ F:

〈〈~xS(f), ~xT (g)〉〉 =

{
‖~xS∪T (f◦g)‖2 if f |S∩T = g|S∩T ,
0 else.

2. For any S : [k]S ∈ F: ∑
f :S→[k]

~xS(f) = ~x∅.

Proof. We will prove that

JXu = fKJXu = gK ≡
{

JXu = fK if f = g,
0 else.

By construction, JXu = fK ∈ {0, 1} from which we see that

JXu = fKJXu = fK = JXu = fK2 = JXu = fK.

Suppose f(u) = i and g(u) = j with i 6= j. Then

JXu = fKJXu = gK ≡ Xu(i)Xu(j).

Let J be the following ideal:

J ←
(
Xu(1) −X2

u(1), . . . ,Xu(k) −X2
u(k), 1−

∑
i

Xu(i)

)
.

One can easily check that

(xu(1), . . . ,xu(k)) ∈ Variety(J) =⇒ xu(i)xu(j) = 0 for any i 6= j,

and that I(Variety(J)) = J . Consequently

Xu(i)Xu(j) ≡ 0 whenever i 6= j.

Given this, our theorem can be proven exactly in the same way with Lemma 3.3.4
and Theorem 3.3.6.

43

44

Chapter 4

Case Study: Minimum Bisection

In this chapter, we will illustrate the main ideas involved in our work in a sim-
plified setting, by working out progressively better approximation ratios for the
following basic, well-studied problem: Given as input a graph G = (V,E) with
n = |V |, and an integer size parameter µ, find a subset U ⊂ V with |U | = µ
that minimizes the number of edges between U and V \ U . The special case of
µ = |n|/2 when we want to partition the vertex set into two equal parts is the
minimum bisection problem. We will loosely refer to the general µ case also as
minimum bisection.1

This chapter is intended to be somewhat informal introduction to our basic
rounding algorithms and main ideas behind their analysis. We will present a more
formal treatment of this problem including a bibliography in Chapter 7.

For simplicity we will assume G is unweighted and d-regular, however all our
results given in Chapters 7 to 9 are for any non-negative weighted undirected
graph G. We can formulate minimum bisection as a binary integer programming
problem as follows:

min
x

∑
e={u,v}∈E

(xu − xv)
2, (4.1)

st
∑
u

xu = µ and x ∈ {0, 1}V .

If we let L be the Laplacian matrix for G, we can rewrite the objective as xTLx.
Note that the above is a quadratic integer programming (QIP) problem with

linear constraints. The somewhat peculiar formulation is in anticipation of the
1We will be interested in finding a set of size µ ± o(µ), so we avoid the terminology Balanced

Separator which typically refers to the variant where Ω(n) slack is allowed in the set size.

45

Lasserre semi-definite programming relaxation for this problem, which we de-
scribe below.

4.1 Lasserre Hierarchy Relaxation

Recall from Chapter 3, in particular Corollary 3.2.2, that r′-rounds of Lasserre Hi-
erarchy relaxation corresponding to eq. (4.1) can be written as the following SDP
for any given positive integer r′:

min
∑

e={u,v}∈E(G) ‖~xu − ~xv‖2

st ‖∑u ~xu − µ~x∅‖
2 = 0,

‖~x∅‖2 = 1,

〈~xS, ~xT 〉 = xS∪T for all S, T ∈
(
V
≤r′
)
,

x = [xS] ∈ R(V
≤2r′).

(4.2)

It is easy to see that this is indeed a relaxation of our original QIP formulation
given in eq. (4.1).

4.2 Main Theorem on Rounding

Let x be an (optimal) solution to the above r′-round Lasserre SDP with labeling
vectors [~xS(f)]S∈(V

≤r′),f∈{0,1}S
as in Definition 3.3.5. We will always use OPT in this

section to refer to the objective value of x, i.e., OPT =
∑

e={u,v}∈E(G) ‖~xu − ~xv‖
2.

Our ultimate goal in this section is to give an algorithm to round the SDP
solution x to a good cut U of size very close to µ, and prove the below theorem.

Theorem 4.2.1. For all r ≥ 1 and ε > 0, there exists r′ = O
(
r
ε2

)
, such that given a

feasible solution x to eq. (4.2) with objective value equal to OPT, one can find in random-
ized 2O(r/ε2)nO(1) time, a partitioning x ∈ {0, 1}V satisfying the following two properties
w.h.p:

1. xTLx ≤ 1+ε
min(1,λr+1(G)/d)

OPT.

2. µ(1 − o(1)) = µ − O
(√

µ log(1/ε)
)
≤ ‖x‖1 ≤ µ + O

(√
µ log(1/ε)

)
= µ(1 +

o(1)).

Since one can solve the Lasserre relaxation in nO(r′) time, we get the result
claimed in the introduction: an nO(r/ε2) time factor (1 + ε)/min{λr(G), 1} approxi-
mation algorithm. Note that if t = argminr{r | λr(G)/d ≥ 1− ε/2}, then this gives

46

an nOε(t) time algorithm for approximating minimum bisection to within a (1 + ε)
factor, provided we allowO(

√
n) imbalance. The formal theorem for general (non-

regular, weighted) graphs appears as Corollary 7.4.1 in Chapter 7, where we will
also demonstrate how to combine this with the faster solver from Chapter 5 and
decrease running time to 2Oε(t)nOε(1).

4.3 The Rounding Algorithm

Recall that labeling vectors [~xS(f)] corresponding to moment sequence x contains
a vector ~xT (f) for each T ∈

(
V
≤r′
)

and every possible labeling of T , f ∈ {0, 1}T of T .
Our approach to round x to a solution x to the integer program eq. (4.1) is similar
to the label propagation approach used by Arora et al. [2008a].

Consider fixing a set of r′ nodes, S ∈
(
V
≤r′
)
, and assigning a label f(s) to every

s ∈ S by choosing f ∈ {0, 1}S with probability ‖~xS(f)‖2. (The best choice of S
can be found by brute-forcing over all of

(
V
≤r′
)
, since solving the Lasserre SDP

takes nO(r′) time anyway. But there is also a faster method to find a good S, as
mentioned in Theorem 10.1.1.) Conditional on choosing a specific labeling f to
S, we propagate the labeling to other nodes as follows: Independently for each
u ∈ V , assign xu ← i where i ∈ {0, 1}with probability

Prob
[
xu = i

∣∣f] =
〈~xS(f), ~xu(i)〉
‖~xS(f)‖2

=
〈~xS(f), ~xu(i)〉
‖~xS(f)‖

=
1

‖~xS(f)‖
~xS(f)

T
~xu(i).

Observe that if u ∈ S, label of uwill always be f(u). Finally, we output x ∈ {0, 1}V
as the final partitioning.

Before analyzing the partition size and number of edges cut, we will define a
specific matrix based on S in Definition 4.3.1 below.

Definition 4.3.1. Given labeling vectors [~xS(f)]S,f representing a moment sequence x we
define ΠS ∈ RΥ×Υ as the projection matrix onto the span of {~xS(f)}f∈{0,1}S for given S:

ΠS
def
=

∑
f∈{0,1}S

~xS(f) · ~xS(f)
T
.

Define Π⊥S = I − ΠS to be the projection matrix onto the orthogonal complement of the
span of {~xS(f)}f∈{0,1}S .

Rather than diving into the properties of Definition 4.3.1 right away, we will
defer them based on need.

47

Lemma 4.3.2. For the above rounding procedure, the cost of the partitioning produced
xTLx satisfies

E
[
xTLx

]
= OPT +

∑
(u,v)∈E

〈Π⊥S~xu,Π⊥S~xv〉 . (4.3)

Proof. Note that for u 6= v, and i, j ∈ {0, 1},

Prob

[
xu = i ∧ xv = j

]
=
∑
f

‖~xS(f)‖2 〈~xS(f), ~xu(i)〉
‖~xS(f)‖

〈~xS(f), ~xv(j)〉
‖~xS(f)‖

=
∑
f

〈~xS(f), ~xu(i)〉〈~xS(f), ~xv(j)〉.

Since {~xS(f)}f is an orthonormal basis, the above expression can be written as the
inner product of projections of ~xu(i) and ~xv(j) onto the span of {~xS(f)}f∈{0,1}S , which
we denote by ΠS . Let us now calculate the expected number xTLx of edges cut
by this rounding. It is slightly more convenient to treat edges e = {u, v} as two
directed edges (u, v) and (v, u), and count directed edges (u, v) with u ∈ U and
v ∈ V \ U in the cut. Therefore,

E
[

number of edges cut
]

=
∑

(u,v)∈E

〈ΠS~xu,ΠS~xv(2)〉 =
∑

(u,v)∈E

〈ΠS~xu,ΠS(~x∅ − ~xv)〉

=
∑

(u,v)∈E

〈ΠS~xu,ΠS~x∅〉 − 〈ΠS~xu,ΠS~xv)〉 (4.4)

By using the fact that 〈ΠS~xu,ΠS~x∅〉=〈~xu ,ΠS~x∅〉 = 〈~xu, ~x∅〉 = ‖~xu‖2, we can rewrite
eq. (4.4) in the following way:

=
∑

(u,v)∈E

‖~xu‖2 − 〈ΠS~xu,ΠS~xv〉

=
∑

(u,v)∈E

‖~xu‖2 − 〈~xu, ~xv〉+ 〈Π⊥S~xu,Π⊥S~xv〉

= OPT +
∑

(u,v)∈E

〈Π⊥S~xu,Π⊥S~xv〉.

Note that the matrix ΠS depends on vectors ~xS(f) which are hard to control
because we do not have any constraint relating ~xS(f) to a known matrix. The main
driving force behind all our results is the following fact, which follows since given
any u ∈ S and i ∈ {0, 1}, ~xu(i) =

∑
f :f(u)=i ~xS(f) by Lasserre constraints.

48

Observation 4.3.3. For all S ∈
(
V
≤r′
)
,

span
(
{~xS(f)}f∈{0,1}S

)
⊇ span

(
{~xu(i)}u∈S,i∈{0,1}

)
.

Equivalently for PS being the projection matrix onto span of {~xu(i)}u∈S,i∈0,1, PS � ΠS .

Thus we will try to upper bound the term in eq. (4.3) by replacing Π⊥S with P⊥S ,
but we cannot directly perform this switch: 〈P⊥S ~xu(i), P

⊥
S ~xv(j)〉 might be negative

while Π⊥S~xu(i) = 0.

4.4 Factor 1 + 1
λr

Approximation of Cut Value

Our first bound is by directly upper bounding eq. (4.3) in terms of ‖Π⊥S~xu(i)‖2 ≤
‖P⊥S ~xu(i)‖2. Using Cauchy-Schwarz and Arithmetic-Geometric Mean inequalities,
eq. (4.3) implies that the expected number of edges cut is upper bounded by

OPT+
1

2

∑
e=(u,v)∈E

‖Π⊥S~xu‖2+‖Π⊥S~xv‖2 = OPT+d
∑
u

‖Π⊥S~xu‖2 ≤ OPT+d
∑
u

‖P⊥S ~xu‖2 .

(4.5)
Now define ~X

def
= [~xu]u∈V ∈ RΥ×V as the matrix whose columns correspond to

vectors ~xu. By eq. (4.2), we have the objective value OPT = Tr(~XT ~XL). Let ~XΠ
S

be the projection matrix onto the span of { ~Xu}u∈S . Since this set is a subset of
{~xu(i)}u∈S,i∈{0,1}, we have ~XΠ

S � PS . Therefore, we can bound eq. (4.5) further as

E
[

number of edges cut
]
≤ OPT+d

∑
u

‖ ~X⊥S ~Xu‖2 = OPT+d ·Tr(~XT ~X⊥S
~X) . (4.6)

To get the best upper bound, we want to pick S ∈
(
V
≤r′
)

to minimize
∑

u∈V ‖ ~X⊥S ~Xu‖2.
It is a well known fact that among all projection matrices M of rank r′ (not neces-
sarily restricted to projection onto columns of ~X), the minimum value of

∑
u ‖M⊥ ~Xu‖2 =

Tr(~XTM⊥ ~X) is achieved by matrix M projecting onto the space of the largest
r′ singular vectors of ~X . Further, this minimum value equals

∑
i≥r′+1 σi where

σi = σi(~X) denotes the squared ith largest singular value of ~X (equivalently σi(~X)

is the ith largest eigenvalue of ~XT ~X). Hence Tr(~XT ~X⊥S
~X) ≥ ∑i≥r′+1 σi for every

choice of S. The following theorem, which is a restatement of Theorem 10.6.1,
shows the existence of S which comes close to this lower bound:

49

Theorem 4.4.1 (Restatement of Theorem 10.6.1). For every real matrix ~X with column
set V , and positive integers r ≤ r′, one can find a subset S ∈

(
V
r′

)
deterministically in

time poly(n) such that

δr′(~X)
def
= min

C∈(V
≤r′)

Tr(~XT ~X⊥C ~X) ≤ Tr(~XT ~X⊥S ~X) ≤ r′ + 1

r′ − r + 1

(∑
i≥r+1

σi

)
.

In particular, for all ε ∈ (0, 1), one can find r′ ≤ r+ r/ε− 1 columns in polynomial time
whose squared reconstruction error is within 1 + ε times best rank-r error.

Remark 4.4.2. Boutsidis et al. [2011] showed that δr(2+ε)/ε ≤ (1 + ε)
(∑

i≥r+1 σi

)
. The

improvement in the bound on r′ from 2r/ε to r/ε to achieve (1 + ε) approximation is not
of major significance to our application, but since the tight bound is now available, we
decided to state and use it. �

Remark 4.4.3 (Running time of our algorithms). For a naı̈ve implementation of our
rounding algorithm, existence bound of Theorem 4.4.1 is sufficient since we can find such
S by simply enumerating all r′ = O(r/ε)-subsets in time nOε(r): Even storing the full
Lasserre Hierarchy relaxation will take time nOε(r) anyway, so running time will not be
affected.

However it is possible to bypass computing or storing the full SDP solution by care-
fully exploiting the structure of our rounding algorithm, in turn opening up possibilities
for improving the running time. We give one such solver in Chapter 5 which only par-
tially constructs SDP solution achieving a running time of 2Oε(r)nOε(1). For this case,
finding good set of columns, S (deterministically) in poly(n) time becomes crucial. �

Picking the subset S∗ ∈
(
V
≤r′
)

that achieves the bound guaranteed in eq. (4.6),
say by using Algorithm 12, we end up with

Tr(~XT ~X⊥S∗
~X) = δ r

ε
(~X) ≤ (1− ε)−1

∑
i>r

σi .

In order to relate this quantity to the SDP objective value OPT = Tr(~XT ~XL),
we use the fact that Tr(~XT ~XL) is minimized when eigenvectors of ~XT ~X and L

are matched in reverse order: ith largest eigenvector of ~XT ~X corresponds to ith

smallest eigenvector of L. Letting 0 = λ1(G) ≤ λ2(G) ≤ . . . ≤ λn(G) ≤ 2d be the
eigenvalues of graph Laplacian matrix, L, we have

OPT = Tr(~XT ~XL) ≥
∑
i

σi(~X)λi(G) ≥
∑
i≥r+1

σi(~X)λr+1(G) ≥ (1− ε)λr+1(G)δ r
ε
(~X).

Plugging this into eq. (4.6), we can conclude our first bound:

50

Theorem 4.4.4. For all positive integers r and ε ∈ (0, 1), given a feasible solution x ∈
R(V
≤dr/εe) to the SDP problem eq. (4.2), the rounding algorithm given in Section 4.3 cuts

at most (
1 +

d

(1− ε)λr+1(G)

) ∑
e=(u,v)∈E

‖~xu − ~xv‖2

edges in expectation.
In particular, the algorithm cuts at most a factor

(
1 + d

(1−ε)λr+1(G)

)
more edges than

the optimal cut with µ nodes on one side.2

Note that λn(G) ≤ 2, hence even if we use n-rounds of Lasserre relaxation, for
which x is an integral solution, we can only show an upper bound ≥ 3

2
. Although

this is too weak by itself for our purposes, this bound will be crucial to obtain our
final bound.

4.5 Improved Analysis and Factor 1
λr

Approximation
on Cut Value

First notice that eq. (4.3) can be written as

E
[

number of edges cut
]

= Tr(~XT ~XL) + Tr(~XTΠ⊥S ~X(I − L))

= Tr(~XTΠ⊥S ~X) + Tr(~XTΠS
~XL). (4.7)

If value of this expression is larger than OPT
(1−ε)λr+1

+OPTε, then value of Tr(~XTΠS
~XL)

has to be larger than εOPT due to the bound we proved on Tr(~XTΠ⊥S
~X). Consider

choosing another subset T that achieves the bound δr(Π⊥S ~X). The crucial observa-
tion is that distances between neighboring nodes on vectors Π⊥S

~X has decreased
by an additive factor of OPTε,

Tr(~XTΠ⊥S ~XL) = Tr(~XT ~XL)− Tr(~XTΠS
~XL) < OPT(1− ε)

so that Tr(~XTΠ⊥S∪T
~X) < (1 − ε) OPT

(1−ε)λr+1
. Now, if we run the rounding algorithm

with S ∪ T as the seed set, and eq. (4.7) with S ∪ T in place of S is larger than
OPT

(1−ε)λr+1
+ OPTε, then Tr(~XTΠS∪T ~XL) > 2εOPT. Hence

Tr(~XTΠ⊥S∪T ~XL) ≤ Tr(~XT ~XL)− Tr(~XTΠS∪T ~XL) < OPT(1− 2ε) .

2We will later argue that the cut will also meet the balance requirement up to o(µ) vertices.

51

Picking another set T ′, we will have Tr(~XTΠ⊥S∪T∪T ′
~X) < (1− 2ε) OPT

(1−ε)λr+1
. Contin-

uing this process, if the quantity eq. (4.7) is not upper bounded by OPT
(1−ε)λr+1

+OPTε

after d1
ε
emany such iterations, then the total projection distance becomes

Tr(~XTΠ⊥S∪T∪... ~X) < (1− d1/εeε) OPT

(1− ε)λr+1

≤ 0

which is a contradiction. For formal statement and proof in a more general setting,
see Theorem 7.2.2 in Chapter 7.

Theorem 4.5.1. For all positive integer r and ε ∈ (0, 1), letting r′ = O
(
r
ε2

)
, given a

feasible solution x ∈ R(V
≤2r′) to the SDP problem eq. (4.2), the expected number of edges

cut by the above rounding algorithm is at most (1 + ε)/min{1, λr+1(G)} times the size
of the optimal cut with µ nodes on one side. (Here λr+1(G) is the (r + 1)’th smallest
eigenvalue of the Laplacian matrix L for graph G.)

4.6 Bounding Set Size

We now analyze the balance of the cut, and show that we can ensure that |U | =
µ±o(µ) in addition to the cut cost, xTLx, being close to the expected bound of The-
orem 4.5.1 (and similarly for Theorem 4.4.4).

Let S∗ fixed to be argminS∈(V
≤r′)

Tr(~XT ~X⊥S
~X). We will show that conditioned on

finding cuts with small cut cost, xTLx, the probability that one of them has |U | ≈ µ
is bounded away from zero. We can use a simple Markov bound to show that
there is a non-zero probability that both cut size and set size are within 3-factor
of corresponding bounds. But by exploiting the independence in our rounding
algorithm and Lasserre relaxations of linear constraints, we can do much better.
Note that in the r′-round Lasserre relaxation, for each f ∈ {0, 1}S∗ , due to the set
size constraint in original IP formulation, ~x satisfies:∑

u

xu = µ =⇒
∑
u

〈~xS∗(f), ~xu〉 = µ‖~xS∗(f)‖2 .

This implies that conditioned on the choice of f , the expectation of
∑

u xu is µ and
events xu = 1 over all u ∈ V are independent. Applying the Chernoff bound, we
get

Probx

[∣∣∣∑
u

xu − µ
∣∣∣ ≥ 2

√
µ log

1

ζ

]
≤ o(ζ) ≤ ζ

3
.

52

Consider choosing f ∈ {0, 1}S∗ so that

E
[
number of edges cut f

]
≤ E

[
number of edges cut

] def
= b.

By Markov inequality, if we pick such an f , Pr
[
number of edges cut ≥ (1 + ζ)b

]
≤

1 − ζ
2
, where the probability is over the random propagation once S∗ and f are

fixed.
Hence with probability at least ζ

6
, the solution x will yield a partitioning x

with xTLx ≤ (1 + ζ)b and size ‖x‖1 in the range µ ± 2
√
µ log 1

ζ
. Taking ζ = ε and

repeating this procedure O (ε−1 log n) times, we get a high probability statement
and finish our main Theorem 4.2.1 on minimum bisection.

53

54

Chapter 5

Local Rounding Framework and
Faster Solvers

In this chapter, we present a rounding framework that captures all our round-
ing algorithms. For this framework, we present a faster solver of the underlying
convex relaxation.

5.1 Introduction

A (near)-optimal solution to the r’th level Lasserre relaxation can be found in nO(r)

time. So understanding the power of these relaxations for small values of r, such
as r = Θ(log n), is of particular interest. The main contribution of this work is
to improve the running time of various Lasserre-based approximation algorithms
to 2O(r)nO(1) (from the default nO(r)). In particular, the guarantees achieved by
O(log n) rounds of Lasserre SDPs can be realized in polynomial time. Another use
of the Lasserre hierarchy to find graph bisections was given by Raghavendra and
Tan [2012], which we can also similarly speed up. A table of several algorithms
whose algorithms we are able to improve is given in Chapter 6.

Theorem 5.1.1 (Informal). Given an undirected graphG, we can find a bisection cutting
at most O(

√
OPT) edges in time 2poly(1/OPT)nO(1) where OPT is the fraction of edges cut

by the minimum bisection. A similar result holds for Maximum Bisection, where we find
a cut of size at least 1 − O(

√
η) when the optimum bisection cuts a fraction 1 − η of the

edges, in time 2poly(1/η)nO(1).

In our thesis, from this chapter on, all our rounding algorithms in Chapters 7

55

to 9 will be presented in terms of this framework and their running times will be
bounded assuming Algorithm 2 is used.

Our techniques might also be useful in the context of fixed-parameter tractabil-
ity, which we leave as a potentially interesting avenue for future research.

Local rounding algorithms. Note that even writing down the full r-round Lasserre
solution takes nΩ(r) time. The hope to speed-up the algorithms to a runtime depen-
dence of 2O(r) is based on the observation that many of the rounding algorithms
have a ”local” character that uses only a small portion of the SDP solution. In the
simplest setting, the rounding algorithm proceeds in two steps: (i) find a “seed
set” S∗ of ≈ r nodes based only the solution to the base (1-round) SDP, and (ii)
use the value of r-round Lasserre solution on the set S∗ to sample a partial assign-
ment to S∗ and then propagate it to the other nodes. Thus the rounding algorithm
only uses the portion of the Lasserre SDP corresponding to the subsets S∗ ∪ {u}
for various u. Further, the analysis of the rounding algorithm also relies only on
Lasserre consistency constraints for subsets of S∗. More generally, the algorithms
might pick a sequence of seed subsets S1, S2, . . . , S` iteratively and the SDP solu-
tion restricted to subsets of S1 ∪ S2 ∪ · · ·S` is used for rounding.

Note that the needed portion of the solution (corresponding to S∗, or more
generally S1 ∪ S2 ∪ · · ·S`) itself depends on certain other parts of the solution.
So one cannot simply project the space down to the relevant dimensions to find
the required part of the Lasserre solution. Our main technical contribution is an
ellipsoid algorithm that can find the needed partial solution (which satisfies all the
local constraints induced on those variables) in time polynomial in the number
of variables in the partial solution. We stress that the partial solution we find
may not extend to a full Lasserre solution. This, however, does not matter for
the approximation guarantee as it will “fool” the rounding algorithm which can’t
distinguish the solution we find from a global Lasserre solution.

There are two examples of hierarchy based approximation algorithms which
have been sped up to 2O(r) dependence on the number of rounds, both of which
rely on weaker hierarchies than Lasserre: (i) the algorithm of Chlamtac et al. [2010]
for sparsest cut on bounded tree-width graphs using the Sherali-Adams hierarchy
and (ii) the Unique Games algorithm of Barak et al. [2011] based on the “mixed”
hierarchy. The faster algorithm is for the former case is immediate as the required
portion of the solution only depends on the input graph, so one can simply find
that part using any LP solver. For the Unique Games algorithm, the seed set S∗

depends on the vector solution to the basic SDP relation. The goal is to extend the
solution to local distributions of labels on subsets S∗ ∪ {u} for various nodes u,
whose 2-way marginals agree with the vector inner products. As briefly sketched

56

by Barak et al. [2011], these constraints form a linear program, and if infeasible, by
Farkas’ lemma, one can get a new constraint for the vector inner products, which
can be fed into an ellipsoid algorithm for solving the basic SDP. Our situation is
more complicated as we handle several iterations of seed set selection, and the
“extension” problems we solve are no longer simple linear programs. Also, the
runtime of the Unique Games algorithm of Barak et al. [2011] had an exponential
dependence on the number of labels, as opposed to our polynomial dependence.

Main technique: Separation oracle with restricted support. We describe the high
level ideas behind our method for finding adequate partial solutions to Lasserre
SDPs in Section 5.2. Our approach applies in a fairly general set-up, and therefore
we describe our methods in an abstract framework for clarity, both in Section 5.2
and later in Section 5.4 where the formal details appear.

In addition to the runtime improvements, our results contribute a useful, and
to our knowledge new, basic tool in convex optimization, which is an efficient
ellipsoid algorithm based separation oracle that can output a certificate of in-
feasibility with restricted support (or more generally belonging to a restricted
subspace). For instance, suppose we are given a convex body K ⊆ Rn via a sep-
aration oracle for it. Given a point y ∈ RU (a potential partial solution) for some
U ⊂ {1, 2, . . . , n}, we give an algorithm to either find x ∈ K such that projU(x) = y
(if one exists1), or find a separating constraint that is supported on U .

5.2 Our Rounding Framework and Method Overview

Consider a rounding algorithm with following property: Given an optimal solu-
tion x ∈ RN as input, it only reads a much smaller part of this solution, say T ⊆ N
with |T | = o(|N |). We call these “local” rounding algorithms: Even though this
setting might sound too restrictive and/or unrealistic, observe that all our round-
ing algorithms as well as other algorithms which use “hierarchies” fit into this
framework such as [Chlamtac and Singh, 2008, Karlin et al., 2010, Arora and Ge,
2011, Raghavendra and Tan, 2012]. See Chapter 6 for details.

Local Rounding. We first start by outlining a generic iterative rounding algorithm.
This framework depends on two application specific deterministic2 procedures,
SEED and FEASIBLE. Without going into the formal details, at a high level,

1Actually, we need the volume of K ∩ proj−1U (y) to be at least some small ε
2We can allow randomization also, but we stick to the deterministic case for simplicity, since all

the seed selection procedures used by the known algorithms can be derandomized.

57

SEEDS procedure chooses next “seed set” designating which fragment of the solu-
tion we will read based on current seeds S and FEASIBLES(y) is a strong separation
oracle for a convex body KS representing the induced solutions on seeds S.

At the end, final seeds and induced solution are fed into another application
specific rounding procedure.
Formal Framework. Given two problem specific procedures, SEED and FEASIBLE,
we formalize the generic algorithm described above as follows.

1. Let x ∈ RN be a vector representing an optimal solution for some convex
optimization problem, x ∈ KN .

2. Let S(0) be the initial solution fragment and y(0) ← xS(0) be the induced
solution.

3. For i← 0 to `:

(a) Fail if FEASIBLES(i)(y(i)) asserts infeasible (i.e. y(i) /∈ KS(i)).

(b) If i < `, read next part of solution: S(i + 1) ← SEEDS(i)(y(i)) and
y(i+ 1)← xS(i+1).

4. Perform rounding using S(`) and y(`).

Our Goal. Suppose |S(`)| � |N | – the algorithm reads only a negligible portion
of the full solution. Then can we find an equivalent rounding algorithm which
runs in time poly(|S(`)|) as opposed to poly(N)? Claim 5.2.1 shows this can be
expected:

Claim 5.2.1. Above rounding algorithm can not distinguish between the following two
cases, i.e. any properties satisfied by the output assuming 1 still holds under a weaker
condition, 2:

1. There exists a feasible solution x ∈ RN , i.e. FEASIBLEN(x) asserts feasible.

2. For all i ∈ {0, . . . , `}:

• y(i) ∈ KS(i): FEASIBLES(i)(y(i)) asserts feasible,
• S(i+ 1) = SEEDS(i)(y(i)) if i < `,
• y(i+ 1)S(i) = y(i) if i < `.

Using this insight, we first consider a simple case and give an algorithm whose
running time depends on |S(`)| instead of |N |.

58

5.2.1 An Algorithm for a Simple Case

Suppose that SEED procedure does not depend on y. Then the above conditions
can easily be expressed as a convex problem of size |S(`)|, which is much smaller
than the original problem. Then we can solve this convex problem using standard
ellipsoid procedure and execute the above procedure on this solution instead.

5.2.2 Our Algorithm

Unfortunately for all algorithms we consider in this thesis, the procedure SEED
heavily depends on y. In particular, at the ith level, 0 ≤ i < `, we are trying to
solve the following induced problem on S(i+ 1). Given y(i) ∈ KS(i):

Find y(i+ 1)
st y(i+ 1)S(i) = y(i), y(i+ 1) ∈ KS(i+1);
∃y(i+ 2) ∈ KS(i+1) : y(i+ 2)S(i+1) = y(i+ 1)

where S(i+ 2) = SEEDS(i+1)(y(i+ 1));
...

∃y(`) ∈ KS(`) : y(`)S(`−1) = y(`− 1)
where S(`) = SEEDS(`−1)(y(`− 1)).

(5.1)

Observe that if we can construct a weak separation oracle for eq. (5.1) at (i + 1)th

level, then we can combine it with ellipsoid algorithm to solve the problem at ith

level also. Thus if we can convert this ellipsoid algorithm to a weak separation
oracle, then we can call these separation oracles recursively starting from 0th level
all the way down to `th level:

Recursive Separation Oracle. (Template for ith level)

1. Given S(i) and y(i), if FEASIBLES(i)(y(i)) asserts infeasible and returns c,
then assert infeasible and return c (to the (i− 1)th level).

2. If i = `, then return the solution y(`).
3. Let S(i+ 1)← SEEDS(i)(y(i)).
4. Use ellipsoid method to find y(i+1) such that y(i+1)j = y(i)j for all j ∈ S(i)

with separation oracle being a recursive call for the (i+1)th level (which takes
inputs S(i+ 1) and y(i+ 1)).

5. If ellipsoid method fails to find such solution y(i + 1), return a separating
hyperplane.

59

The key question now is how one might implement (the currently vague) step 5.
Let us inspect a simple option, and see what goes wrong with it.
Return an arbitrary hyperplane seen so far. Any inequality returned by the recur-
sive separation oracle call is a valid separating hyperplane, so consider returning
an arbitrary one. What goes wrong in this case? The problem is that the run-
ning time now might be as large as polynomial in |N |. To see this, suppose that
FEASIBLES(`)(y(`)) returned an inequality on support S(`). Then the parent ellip-
soid procedure needs to keep track of the additional variables from this particular
S(`), call it S̃. At some later stage, the algorithm may backtrack and change an
earlier seed set, say S(` − 5), which will need to a new S(`). But the algorithm
would still need to keep the values of variables from the S̃, the old value of S(`).
Continuing in this fashion, the set of variables the algorithm has to track might
end up being N , which is equivalent to constructing the whole solution on RN !

This attempt has not been futile though, as it shows what kind of hyperplanes
we need:

Any hyperplane returned by step 5 at (i+ 1)st level should have support S(i). (5.2)

We outline our proposed solution in the next section.

5.2.3 Our Contribution: A Separation Oracle with Restricted Sup-
port

Our solution to 5.2 is based on a new ellipsoid algorithm for finding separating
constraints with restricted support. Specifically, the main technical contribution of
this paper is Algorithm 1 with the following guarantee: Given a feasibility prob-
lem of the form

Find y ∈ Rn subject to Πy = y0, y ∈ int(K),

where Π is a projection matrix, y0 ∈ span(Π) ⊆ Rn; along with separation oracle
for convex body K; it either finds feasible y or asserts that the problem is infea-
sible and outputs a separating hyperplane c ∈ span(Π). This algorithm coupled
with the recursive separation oracle meets both our correctness and running time
requirements. In particular, the running time instead of being the trivial bound
of |N |O(1) will be roughly |S(`)|O(`). Assuming the exponential-time hypothesis,
the exponential dependence on the number of seed selection stages ` cannot be
avoided (a sub-exponential dependence would lead to a f(k)no(k) time algorithm
to decide if an n-vertex graph has a k-clique).

60

Remark 5.2.2. Our algorithm can be thought as a weak separation oracle for eq. (5.1) at
level i given a weak separation oracle for level i+1. When each convex bodyKS(2), . . . , KS(`)

is guaranteed to be a polytope, such as Sherali-Adams Hierarchy, it is known that one can
obtain a strong separation oracle at level i by using only using a strong separation ora-
cle at level i + 1 ([see Grötschel et al., 1993, Corollary 6.5.13]). However in the case of
semi-definite programming, it is an open question [see Porkolab and Khachiyan, 1997, for
example] whether if one can obtain a strong separation oracle from another strong separa-
tion oracle in polynomial time.

5.3 Preliminaries

In this section, we give relevant background on convex geometry and ellipsoid
method which is used heavily in this chapter.

The main crux of our algorithm relies on an ellipsoid solver method which can
also return a certificate of infeasibility.

5.3.1 Convex Geometry

Notation 5.3.1 (Projection). We will use Π ∈ S[n]
+ to denote a projection matrix repre-

senting some linear subspace span(Π) ⊆ R[n] and Π⊥ to denote the projection matrix onto
null space of Π, i.e. Π⊥ = identity − Π.

Given vector y0 ∈ R[n], we will use y0 ∈ Π if y0 is in the span of Π, i.e. Πy0 = y0 and
we will use Π−1(y0) to denote the following set of vectors:

Π−1(y0)
def
=

{
y ∈ R[n]

∣∣∣∣Π⊥(y − y0) = 0

}
.

Notation 5.3.2 (Polytopes). Given matrix A ∈ Rm×n and vector b ∈ Rm, let

poly(A, b)
def
=
{
x ∈ R[n]|Ax ≤ b

}
.

Lemma 5.3.3. Given a polytope P = poly(A, b), for any positive real ε > 0,

B(P,−ε) = poly(A, b− ε
√

diag(ATA)).

Here
√

diag(ATA) denotes the vector whose ith coordinate is equal to Euclidean norm of
ith row of A.

Proof. [See Grötschel et al., 1993, Lemma 3.2.35]

61

5.3.2 Ellipsoid Method

Definition 5.3.4 (Separation Oracle). Given a convex body K ⊆ R[n], SEPδ(y) is a
separation oracle for K if the following holds. On inputs a rational vector y ∈ Q[n] and
rational number δ > 0, SEPδ(y) asserts feasible if y ∈ K. Otherwise, if y /∈ K, it returns
c such that ‖c‖∞ = 1 and

∀x ∈ K : 〈c, x〉 ≤ 〈c, y〉+ δ.

We will use T (SEPδ) to denote the worst case running time of SEPδ.

Theorem 5.3.5 ([Grötschel et al., 1993, Central-Cut Ellipsoid Method]). There exists
an algorithm, called the central-cut ellipsoid method,

CCUT-E(SEPδ,Π, y0, ε0)

that solves the following problem. Given a projection matrix Π ∈ S[n]
+ of rank m, vector

y0 ∈ Π, a convex body K ⊆ [−∆,∆][n] for some positive ∆ with SEPδ (see Defini-
tion 5.3.4) and rational number ε0 > 0, it runs in time

| log ∆|N [poly(n) + T (SEP2−N)] where N ≤ 6(n−m)(| log ε0|+ (n−m));

after which it outputs:
1. Either a vector a ∈ Q[n] such that a ∈ K ∩ Π−1(y0);
2. Or a polytope of the form P = poly(C, d), where C ∈ Q[N]×[n], d ∈ Q[N] with
K ⊆ P and voln−m (P ∩ Π−1(y0)) < ε0.

Proof. Such algorithm can be obtained by trivial modifications to the central-cut
ellipsoid algorithm of Grötschel et al. [1993], which we outline here. Handling the
constraint Πa = y0 can be done by projecting the covariance matrix of ellipsoid
onto Π−1(y0). At kth iteration, for all k, we add hyperplanes returned by SEPδ to
P .

Algorithm terminates with a feasible a ∈ Q[n] with Πa = y0 only if SEPδ(a)
asserts feasible for some δ ≤ ε0, in which case a ∈ K. Otherwise, when the
maximum number of iterations is reached we simply return.

5.4 Finding Separating Hyperplanes on a Subspace

We now describe our main technical contribution: An ellipsoid algorithm which
can output a certificate of infeasibility on a restricted subspace using only the sep-
aration oracle SEPδ as in Definition 5.3.4. The procedure uses the central-cut ellip-
soid method Grötschel et al. [1993] as a sub-routine. The main technical ingredient

62

of our algorithm is Theorem 5.4.4, which is stated and proven in Section 5.4.1: It
allows us to express this as another convex programming problem in terms of the
“history” of constraints returned by separation oracle. Finally in Section 5.4.2 we
present our ellipsoid algorithm, bound its running time and prove its correctness.

5.4.1 An Equivalent Convex Problem

We first state some useful propositions. Recall our goal: Given convex body
K, a subspace Π and y0 ∈ Π, we have a polytope P separating various points
{y} ⊂ Π−1(y0) from K. We want to compute a separating hyperplane on Π. Our
approach is formulated in Lemma 5.4.3, see also Figure 5.1.

Proposition 5.4.1. Given K ⊆ R[n], a projection matrix Π ∈ S[n]
+ with rank(Π) = m,

and y ∈ R[n] the following holds: For any δ > vol−1
n−m(Π−1(y) ∩K),

Π−1(y) ∩ B(K,−δ) = ∅.

Proof. If ∃x ∈ Π−1(y) ∩ B(K,−δ), then Observation 2.3.5 implies B(x, δ) ⊆ K. In
particular,

B(x, δ) ∩ Π−1(y) ⊆ Π−1(y) ∩K =⇒ volm(Π−1(y) ∩K) ≥ volm(Π−1(y) ∩ B(x, δ)).

Finally since x ∈ Π−1(y), B(x, δ) ∩ Π−1(y) is an m-dimensional ball of radius δ,
whose volume is volm(δ) > volm(Π−1(y) ∩K). Hence

volm(Π−1(y) ∩K) ≥ volm
(
B(x, δ) ∩ Π−1(y)

)
> volm(Π−1(y) ∩K),

which is a contradiction.

The following is a quantitative version of above, showing that points further
interior in K have far off projections from Πy0.

Lemma 5.4.2. Given convex bodyK ⊆ R[n], a projection matrix Π ∈ S[n]
+ with rank(Π) =

m, vector y0 ∈ R[n] and positive real δ > vol−1
n−m (Π−1(y0) ∩K),

for all y ∈ B(K,−2δ), ‖Π(y − y0)‖ ≥ δ.

Proof. For the sake of contradiction, assume there exists y ∈ B(K,−2δ) such that
‖Π(y − y0)‖ < δ. Consequently ΠB(y, δ), which is a sphere of radius δ on span of
Π, contains Πy0. In other words,

∅ 6= Π−1(y0) ∩ B(y, δ). (5.3)

63

Since y ∈ B(K,−2δ), by convexity ofK, we can repeatedly apply Observation 2.3.5
to show that

y ∈B(K,−2δ) = B(B(K,−δ),−δ),
B(y, δ) ⊆B(B(B(K,−δ),−δ), δ) ⊆ B(K,−δ).

Substituting this into eq. (5.3), we have ∅ 6= Π−1(y0)∩B(y, δ) ⊆ Π−1(y0)∩B(K,−δ)
which contradicts Proposition 5.4.1 for our choice of δ.

Π⊥

Π

Π−1(y0)

K

P
S(P,−ε)

y∗

Figure 5.1: We want to find a hyperplane parallel to Π⊥ separating Π−1(y0) andK,
using only the inequalities returned by separation oracle, polytope P . The optimal
solution of Lemma 5.4.3 is given by y∗ with corresponding hyperplane Π−1(y∗).

Having shown that there is a δ-neighborhood of Πy0 disjoint from interior ofK
whenever their intersection has small volume, we can immediately use Minkowski’s
Separating Hyperplane Theorem to infer the existence of such hyperplane. In fact,
any hyperplane perpendicular to the line from y0 to the closest point in K has this
property. We formalize this below.

Lemma 5.4.3. Given convex bodyK ⊆ R[n], a projection matrix Π ∈ S[n]
+ with rank(Π) =

m, vector y0 ∈ R[n] and positive real δ > vol−1
n−m (Π−1(y0) ∩K), the hyperplane perpen-

dicular to the projection of direction from y to closest point in the interior of ΠK separates
y0 and interior of ΠK:

64

Formally any optimal solution y∗ to the following eq. (5.4):

Minimize ‖Π(y − y0)‖2

subject to y ∈ B(K,−2δ),
(5.4)

satisfies eq. (5.5):

min
x∈B(K,−2δ)

〈Π(y∗ − y0), x− y0〉 ≥ ‖Π(y∗ − y0)‖2. (5.5)

Proof. By contradiction. Assume for optimal solution y∗, there exists x ∈ B(K,−2δ)
such that

〈Π(y∗−y0), x−y0〉 < ‖Π(y∗−y0)‖2 = 〈Π(y∗−y0),Π(y∗−y0)〉 = 〈Π(y∗−y0), y∗−y0〉 .

Therefore
〈Π(y∗ − y0), x− y∗〉 < 0 (5.6)

For some θ ∈ (0, 1] to be chosen later, consider y(θ)← (1− θ) · y∗ + θ · x, which is
always feasible for eq. (5.4) as x ∈ B(K,−2δ) and B(K,−2δ) is convex. Then:

1

2

∂‖Π(y(θ)− y0)‖2

∂θ

∣∣∣∣
θ→0+

=

〈
Π(y(θ)− y0),Π

∂(y(θ)− y0)

∂θ

〉∣∣∣∣
θ→0+

=

〈
Π(y(θ)− y0),

∂(y(θ)− y0)

∂θ

〉∣∣∣∣
θ→0+

= 〈Π(y(θ)− y0), x− y∗〉|θ→0+ = 〈Π(y(0)− y0), x− y∗〉
= 〈Π(y∗ − y0), x− y∗〉 < 0

where we used eq. (5.6) at the last step. We arrive at a contradiction by noting that
above inequality implies existence of θ∗ ∈ (0, 1] such that

‖Π(y(θ∗)− y0)‖2 < ‖Π(y∗ − y0)‖2, y(θ∗) ∈ B(K,−2δ).

Given Lemma 5.4.3, we can choose our separating hyperplane c as c = − Π(y∗−y0)
‖Π(y∗−y0)‖∞ .

But this does not quite work for two reasons:
1. Hyperplane c only separates “strict interior” of K as it is, whereas we need

to separate K itself.

2. Depending on K, it might not be possible to represent optimal c using poly-
nomially many bits, thus we need to account for near optimal solutions.

We now show how to overcome these problems.

65

Theorem 5.4.4. Given convex body K ⊆ [−∆,∆]n for some ∆ > 0, a projection matrix
Π ∈ S[n]

+ with rank(Π) = m, a vector y0 ∈ [−∆,∆]n, for any positive real δ > 0 with
δ > vol−1

n−m (Π−1(y0) ∩K), the following holds: If y′ is an δ2

2∆
√
m

- approximate solution
to eq. (5.7)

Minimize ‖Π(y − y0)‖2

subject to y ∈ B
(
K,−

(
2 + δ

2
√
m∆

)
· δ
)

(5.7)

then Π(y′ − y0) 6= 0 and for c being

c
def
= − Π(y′ − y0)

‖Π(y′ − y0)‖∞
=⇒ ∀x ∈ K : 〈c, x〉 ≤ 〈c, y0〉+ 2δ

√
m. (5.8)

Proof. Before we begin, we set ε def
= δ

2
√
m∆

. Let y∗ be an optimal solution of eq. (5.7)
with ‖y∗−y′‖ ≤ εδ. Since y∗ ∈ B(K,−(2+ε)δ), we have B(K,−2δ) ⊇ B(y∗, εδ) 3 y′.
By Lemma 5.4.2, this implies ‖Π(y′ − y0)‖ ≥ δ, proving Π(y′ − y0) 6= 0. For any
x ∈ K, we can decompose x as x = x′ + z for some x′ ∈ B(K,−2δ) and ‖z‖2 ≤ 2δ.
Then:

〈Π(y′ − y0), x− y0〉 =〈Π(y′ − y0), x′ − y0〉+ 〈Π(y′ − y0), z〉
≥〈Π(y′ − y∗), x′ − y0〉+ 〈Π(y∗ − y0), x′ − y0〉 − ‖z‖ · ‖Π(y′ − y0)‖
≥ − ‖Π(y′ − y∗)‖︸ ︷︷ ︸

≤εδ

‖Π(x′ − y0)‖︸ ︷︷ ︸
≤2∆

√
m

+ δ2︸︷︷︸
by Lemma 5.4.3

−2δ‖Π(y′ − y0)‖

≥ − 2δ‖Π(y′ − y0)‖ (by the choice of ε =
δ

2∆
√
m

)

≥− 2δ
√
m‖Π(y′ − y0)‖∞.

Since c = − Π(y′−y0)
‖Π(y′−y0)‖∞ , we have 〈c, x〉 ≤ 〈c, y0〉+ 2δ

√
m for any x ∈ K.

5.4.2 Ellipsoid Algorithm with Certificate of Infeasibility

Our solver is given in Algorithm 1. The proof of the following theorem follows
by combining various ingredients we have so far, especially Theorem 5.3.5 and
Theorem 5.4.4.

Theorem 5.4.5 (Main technical tool). Algorithm 1 runs in time N · T (SEP2−N) +

poly(n) log2 1
ε0

whereN = O
(

(# of free variables)2 log # of fixed variables
ε0

)
= O

(
(n−m)2 log m

ε0

)
,

and provides the following guarantee: If vol−1
n−m(K ∩ Π−1(y0)) > ε0

2
√
m

then it outputs
y ∈ K ∩ Π−1(y0).

66

Algorithm 1 CERTIFY-E(SEPδ,Π, y0, ε0): Ellipsoid method with certificate of in-
feasibility.

Input: • Convex body K ⊆ [0, 1]n and separation oracle SEPδ as in Defini-
tion 5.3.4,
• Projection matrix Π ∈ S[n]

+ with rank(Π) = m, y0 ∈ R[n] and positive real 0 < ε0 <
1.

Output: • Either a vector y ∈ Qn st y ∈ K ∩ Π−1(y0).
• Or c ∈ Π with ‖c‖∞ = 1 and ∀x ∈ K : 〈c, x〉 ≤ ε0 + 〈c, y0〉.

Procedure: 1. Run CCUT-E(SEPδ,Π, y0, ε) where ε← voln−m

(
ε0

2
√
m

)
.

2. If it returns y ∈ K ∩ Π−1(y0), then return y.
3. Else let P = poly(C, d) be the polytope it returns. Set δ ← ε0

2
√
m

. ε′ ← δ
2∆
√
m

and
4. Solve eq. (5.9) using regular ellipsoid method to find an ε′δ-approximate solu-
tion, y∗ ∈ Qn:

Minimize ‖Π(y − y0)‖2 subject to Cy ≤ d− (2 + ε′)δ
√

diag(CTC). (5.9)

5. Return c← − Π(y∗−y0)
‖Π(y∗−y0)‖∞ .

Proof of Running Time. By Theorem 5.3.5, step 1 finishes in timeN(poly(n)+T (SEP2−N))
with N = O((n−m)2 + (n−m) log 1/ε), where log 1/ε = log 1/ voln−m(ε0/2

√
m) ≤

O
(

(n−m) log m
ε0

)
so N = O

(
(n−m)2 log m

ε0

)
.

For step 4, we can implement a simple separation oracle which runs in time
O(Nn). The regular ellipsoid method requires O(n2 + n log(1/ε′δ)) iterations to
reach an accuracy of ε′δ. Each iteration takes time poly(n) in addition to separation
oracle, therefore the total running time of fourth step is bounded byN poly(n) log(1/ε0) =
poly(n) log2 1

ε0
. Hence the claim follows.

Proof of Correctness. There are two cases. If algorithm outputs y at step 2, by The-
orem 5.3.5 y ∈ Qn ∩ Π−1(y0) ∩K.

Now consider the other case. Then step 1 will output a polytope P = poly(C, d)
such that K ⊆ P , whose volume is bounded by

voln−m(P ∩ Π−1(y0)) < voln−m

(
ε0

2
√
m

)
.

67

The set of feasible solutions for eq. (5.9) is B(P,−(2 + ε′)δ) by Lemma 5.3.3. Since
vol−1

n−m(P ∩ Π−1(y0)) < δ := ε0
2
√
m

, we can apply Theorem 5.4.4 and conclude that c
as constructed in step 5 will have the following properties:

• c ∈ Π,

• ‖c‖∞ = 1,

• For all x ∈ P , 〈c, x〉 ≤ 〈c, y0〉 + 2
√
mδ. To see this, note K ⊆ P , for all x ∈ K

means:

〈c, x〉 ≤ max
x∈K
〈c, x〉 ≤ max

x′∈P
〈c, x′〉 ≤ 〈c, y0〉+ 2

√
mδ = 〈c, y0〉+ ε0.

This finishes the proof of correctness.

5.5 Faster Solver for Local Rounding Algorithms

We return back to our motivating example. Assume we have n variables, and we
want to find a discrete labeling x ∈ L[n] of those from a set of labels L, under
various constraints and objective. Suppose we “lifted” this problem into a higher
dimension RN where |N | � n, and obtained a family of increasingly tight convex
relaxations defined over various subspaces of RN .

Formally, we have a set of subspaces {ΠS}S⊆[N], represented by their projection
matrices and associated with subsets of [N], and with each subspace ΠS , we have
an associated convex body, KS ⊆ ΠS[0, 1]N with such that

ΠS ⊆ ΠT =⇒ ΠSKT ⊆ KS.

We are given functions FEASIBLE, ROUND and SEED, along with positive
integers n, s such that:

• FEASIBLES : ΠSQN → {feasible,ΠSQN}. On input S ⊆ N ,y ∈ ΠSQ
N , it

asserts feasible if y ∈ KS or returns c ∈ ΠSQN : ‖c‖∞ = 1 such that3 ∀x ∈
KS : 〈c, x〉 < 〈c, y〉 in time poly(rank(ΠS)).

• SEEDS : KS → 2N . Given S ⊆ [N] and y ∈ ΠSQN , it returns subset S ′ ⊇ S

such that rank(ΠS′)
rank(ΠS)

≤ s when S 6= ∅, and rank(ΠS′) ≤ n when S = ∅. Its worst
case running time is bounded by poly(rank(ΠS)) (or poly(n) in the case of
S = ∅).

3We can handle FEASIBLES that only returns a weak separation oracle, but since in our appli-
cation to SDPs we have access to a strong separation oracle, we assume this for simplicity.

68

• ROUNDS : KS → L[n]. On inputs S ⊆ N and y ∈ KS , returns an approxi-
mation to the original problem in time poly(rank(ΠS)).

We now describe our main solver. Note that once the algorithm outputs y∗ ∈ KS(`),
the final output labeling will simply be ROUNDS(`)(y

∗).

Algorithm 2 Fast Solver (to fool local rounding algorithm)

Input: • Maximum number of iterations ` and positive real ε0 > 0,
• n, r, (KS)S⊆[N] with separation oracle FEASIBLE, SEED, Π∅ and y(0) ∈ K∅QN

all as described in Section 5.5.

Output: • Either asserts volK ≤ ε0,
• Or outputs y∗ ∈ KS(`) and S(0), . . . , S(`) st for all i: 1. ΠS(i)y

∗ ∈ KS(i); 2. S(i+1) =
SEEDS(i)(y

∗).

Procedure: 1. Initialize global variables S(1), . . . , S(`) representing seed sets and
global sparse vector y∗ ∈ Q[N] representing the final solution (it will be in span of
ΠS(`)).

2. Set S(0)← {∅}.
3. Run CCUT-E(SEPS(0),δ, 0, 0, ε0) (see Theorem 5.3.5) where SEP is given in Al-
gorithm 3.

4. If it asserts feasible, output S(0), . . . , S(`) and y∗.
5. Else assert volK ≤ ε0.

Theorem 5.5.1. Algorithm 2 runs in time
[
s`n log(1/ε0)

]O(`) (compare this with the
straightforward algorithm which runs in time NO(1) log(1/ε0)). Furthermore there is no
algorithm which runs in time no(`) assuming Exponential Time Hypothesis.
Provided that volK > ε0, it outputs y∗ ∈ KS(`) and S(0), . . . , S(`) st for all i:

ΠS(i)y
∗ ∈KS(i), (5.10)

S(i+ 1) =SEEDS(i)(y
∗). (5.11)

Otherwise it asserts volK ≤ ε0.

Proof of Correctness. First we assume correctness of Algorithm 3 and prove correct-
ness of Algorithm 2. There are only two cases:

69

Algorithm 3 SEPS(i),ε0(y):Separation Oracle.

Input: • Positive real ε0 > 0, current iteration i, current seeds S(i), vector y ∈
QS(i).

Output: • Either asserts feasible, and sets values of global variables S(i +
1), . . . , S(`) along with y∗ so that:

1. ΠS(j)y
∗ ∈ KS(j) for all j : i ≤ j ≤ `,

2. S(j + 1) = SEEDS(j)(y
∗) for all j : i ≤ j ≤ `− 1.

• Or returns c ∈ ΠS(i) with ‖c‖∞ = 1 such that ∀x ∈ KS(i) : 〈c, x− y〉 < ε0.

Procedure: 1. If FEASIBLES(i)(y) returns c ∈ ΠS(i), return c.

2. Else if i ≥ `, set y∗ ← y. Assert feasible and return.

3. S(i+ 1)← SEED∅(y).

4. Run CERTIFY-E(SEPΠS(i+1),δ
,ΠS(i), y, ε0) (see Algorithm 1).

5. If it returns c, return c.

6. Else assert feasible.

1. Algorithm 2 returns y∗ ∈ KS(`) only if CCUT-ES(1) returns a feasible solution.
For such y∗, by Theorem 5.3.5, SEPS(1),ε0(y

∗) asserts feasible. By correctness
of SEPS(1),ε0(y

∗), y∗ satisfies all claims.

2. Else algorithm asserts vol[N] K ≤ ε0 which means CCUT-E asserted ε0 ≥
volS(0) B(KS(1), ε0) ≥ volS(0) KS(0). We know that ΠS(0)K ⊆ KS(0) and K ⊆
[0, 1][N] therefore vol[N](K) ≤ vol ΠS(0)K ≤ volS(0)KS(0) ≤ ε0.

Now we will prove correctness of Algorithm 3 inductively starting from i = `.
For each i, in order to prove inductive step, we need to consider in which one of
the following steps SEPS(i),ε0 returned:

1. Step 1: Follows from definition of FEASIBLE.

2. Steps 2 and 6: By construction of S(j)’s and inductive hypothesis, S(j+1) =
SEEDS(j)(y

∗) holds for all j ≥ i.

We will prove that FEASIBLES(j)(y
∗) asserts feasible for all j ≥ i. For j > i,

this immediately follows from inductive hypothesis. For j = i, at Step 1
FEASIBLES(i)(y

∗) asserted feasible. Thus ΠS(j)y
∗ ∈ KS(j) for all j.

70

3. Step 5: It returns c, only if CERTIFY-E at step 4 outputs c, correctness of
which follows from Theorem 5.4.5.

Proof of Running Time. If we let ni ← nsi−1 for i ≥ 1, we can see that rank(ΠSi) ≤ ni
at ith iteration. Hence

T (FEASIBLES(i)) + T (SEEDS(i)) = (sni)
O(1) = n

O(1)
i+1 .

If we use Ti to denote the maximum of T (SEPS(i),ε0(y)) over all possible S(i) and
y’s, with T0 = T (main); then T` = n

O(1)
` = (r`n)O(1) and for any i < `:

Ti ≤O(n2
i+1 log ni/ε0)Ti+1 + n

O(1)
i+1 = (ni+1)O(1) log(1/ε0)Ti+1 = sO(i)nO(1) log 1/ε0 · Ti+1

T0 =sO(`2)nO(`) log`(1/ε0).

Proof of ETH Hardness. Consider k-clique problem, which can not be computed in
time f(k)no(k) under ETH hypothesis [Lokshtanov et al., 2011]. Moreover it is easy
to see that k rounds of Lasserre Hierarchy relaxation captures this problem [Lau-
rent, 2003], which can be found using a seed selection procedure with ` = k lev-
els.

5.6 Separation Oracle for Lasserre Hierarchy

In this section, we present a separation oracle for Lasserre Hierarchy relaxation
as introduced in Chapter 3 for solving the integer programming problem given
in eq. (1.1), which is re-produced below in terms of k-labeling for convenience.
Recall that x(u,i) is the indicator variable for labeling variable u ∈ [n] with label
i ∈ [k]:

Minimize q(x)
subject to p(x) ≥ 0 for all p ∈ P ,∑

i x(u,i) = 1 for all u ∈ [n],
x ∈ {0, 1}V×[k].

(5.12)

Given such k-labeling problem, let’s cast its r′th round Lasserre relaxation in our
framework:

• The set of labels is L = {0, 1}[k], corresponding to the indicator vector over
all k labels per each variable,

• Lifted space N is
(
V×[k]
≤r′
)
, the subsets of V × [k] of size at most r′ + d,

71

• For any subset S ⊆ V , we define ΠS as the projection matrix onto Rexk(S,d)]exk(S,d)

where
exk(S, d)

def
= 2S×[k]] (V × [k])≤d

so that

[ΠSx]T =

{
1 if T ∈ exk(S, d),
0 else.

The associated convex body, KS , is defined as

KS =

x ∈ Rexk(S,d) :
x∅ = 1, Mexk(S,d)(x) � 0,∑

i xu(i) = x∅,
Mexk(S,0)(P ∗ x) � 0

 .

Before stating the FEASIBLE procedure, we need the following well known result:

Proposition 5.6.1. Given a symmetric matrix A ∈ SB, there exists an algorithm which
asserts if A � 0 or returns x ∈ QB such that yTAy < 0 in time at most polynomial in
size of A.

Then our FEASIBLES(x) procedure is trivial given a problem of the form eq. (5.12):
It asserts feasible if Mex(S,d)(x) � 0 and Mex(S,0)(p ∗ x) � 0 for all p ∈ P . Else it
returns y ∈ Qex(S,2) for which yT Mex(S,d)(x)y < 0 (or yT Mex(S,0)(p ∗ x)y < 0).

72

Chapter 6

Our Results

In this chapter, we list all our approximation algorithms given in this thesis in-
cluding their approximation factor and running time along with pointers to the
appropriate sections. For each problem, we will give the formal definition as well
as a review of related work in detail at the respective chapter.

All the algorithms here are obtained by applying our main algorithm as given
in Algorithm 2 to various rounding algorithms for Lasserre Hierarchy relaxations.
For all these problems, our separation oracle is the same procedure as described
in Section 5.6. The running times we obtained as well as approximation factors
and other guarantees are summarized in Figure 6.1. The last two columns list the
value of s (the factor by which rank(ΠS) increases in each step of seed selection)
and ` (the number of iterations of seed selection) used by the rounding algorithm
in each case. The parameter r refers to the index of the eigenvalue governing the
approximation guarantee, and ε is a positive parameter.

The claimed running times follow from the ≈ sO(`2)nO(`) runtime guaranteed
by Theorem 5.5.1 for our solver (Algorithm 2). The rounding algorithm in each
case runs within the same time. For problems marked with ∗, check the caption
for required conditions.

The works Barak et al. [2011] and Arora and Ge [2011] use greedy seed selec-
tion, but these can be replaced by the above column selection procedure as well.
We provide an analysis of these algorithms, after this modification in Section 7.7.
In Algorithms 6, 7 and 9, we present seed selection procedures for QIP algorithms
(see Chapter 7), sparsest cut algorithm (see Chapter 9), and semi-coloring algo-
rithm (see [Arora and Ge, 2011]), respectively. We conclude this section by men-
tioning some notable Lasserre based approximation algorithms for which we are
not able to get a runtime improvement:

73

Problem Name Running Time OPT Rounding s `

Maximum Cut 2O(r/ε3)nO(1/ε) 1− η 1− 1+ε
λn−r

η 2O(r/ε) O(1/ε)

k-Unique Games kO(r/ε)nO(1) 1− η 1− 2+ε
λr
η kO(r/ε) 1

Minimum Bisection 2O(r/ε3)nO(1/ε) η 1+ε
λr
η − o(1) 2O(r/ε) O(1/ε)

Maximum Bisection 2O(r/ε3)nO(1/ε) 1− η 1− 1+ε
λn−r

η − o(1) 2O(r/ε) O(1/ε)

Sparsest Cut∗ 2O(r/ε)nO(1) η η
ε

2O(r/ε) 1

Independent Set∗ 2O(r)nO(1) η Ω(η) 2O(r) O(1)
2O(r)nO(1) η η

12
2O(r) 1

Maximum 2-CSPs∗ 2poly(k/ε)·rnpoly(k/ε) η η − ε kO(rk2/ε2) O (k2/ε2)

Figure 6.1: Running times and approximation guarantees for various Lasserre Hi-
erarchy relaxation rounding algorithms using our faster solver. For sparsest cut,
the spectral assumption is λr ≥ η/(1− ε). For the first independent set result, the
spectral assumption is λn−r ≤ 1 + O(1/∆) where ∆ is the maximum degree. For
the second independent set result due to Arora and Ge [2011], the assumptions are
that G is 3-colorable and λn−r ≤ 10/9. Finally for maximum 2-CSPs due to Barak
et al. [2011], the assumption is that λr ≥ 1−

(
ε

2k

)2.

• The algorithm for independent sets in 3-uniform hypergraphs Chlamtac and
Singh [2008] and the algorithm for directed Steiner tree Rothvoß [2011], which
are adaptive with a large number of stages ` in the rounding procedure.

• The algorithm for minimum/maximum bisection in Raghavendra and Tan
[2012], which requires choosing the seed set at random independently from
the final solution; whereas our solver, by nature, outputs a solution which
depends on the seed set.

74

Chapter 7

Graph Partitioning with Linear
Constraints

In this chapter, we will generalize the rounding algorithm from Chapter 4 to
quadratic integer programming problems with non-negative cost functions under
simple global constraints. Basic rounding algorithms are given in Algorithms 4
and 5. We show how to implement this under our framework as described in Chap-
ter 5, and present the running time using the faster solver.

Next we demonstrate how we can use this approximation algorithm to approx-
imate minimum bisection, small set expansion and their k-way generalizations
immediately. Our final application is to the problem of finding large independent
sets in a graph. We end the chapter by presenting a different perspective for our
rounding, in terms of variance reduction.

Our analysis yields bounds in terms of the underlying cost graph’s spectrum:
Faster the spectrum grows, the better our solutions become. Unfortunately for a
problem of main interest, Unique Games, this means our performance is related
to the actual cost graph’s spectrum (also known as the lifted graph), which might
be much smaller than original constraint graph’s spectrum. We will show how to
get around this issue later in Chapter 8.

7.1 Seed Based Rounding

We first describe how to perform the rounding after a good choice of the seed set
S∗ has been made, followed by an analysis of its properties. The algorithm is
given in Algorithm 4. This part is quite simple; the crux of our rounding is how

75

Algorithm 4 Seed based labeling algorithm with running time O
(
kr
′
+ n
)
.

Input: • Positive integers n, k, r′ representing number of variables, labels and
rounds respectively; seed set S∗ ∈

(
V
≤r′
)

and k-label moment sequence x.

Output: • Indicator vector for a valid k labeling of V , x ∈ {0, 1}V×[k].

Procedure: 1. Let [~xS(f)]S,f be labeling vectors for moment sequence x as de-
scribed in Definition 3.3.9.

2. Choose f ∈ [k]S
∗ with probability ‖~xS∗(f)‖2.

3. Label every node u ∈ V by choosing a label j ∈ [k] with probability 〈~xS(f),~xu(j)〉‖~xS(f)‖2
:

x(u,i) ←
{

1 if i = j,
0 else.

to choose the best S∗ and bound the performance when it is used as the seed set.
This will be described in Section 7.2.

Definition 7.1.1 (Rounding distribution). Given seed set S∗ ∈
(
V
≤r′
)

and moment
sequence x, let [~xS(f)]S,f be labeling vectors for x.

We will use f ∼ ‖~xS∗(f)‖2 to denote the distribution on [k]S
∗ where each f ∈ [k]S

∗ is
chosen with probability ‖~xS∗(f)‖2. In other words:

Probf ′∼‖~xS∗(f)‖2

[
f ′ = f

]
= ‖~xS∗(f)‖2.

For any f ∈ [k]S
∗ , we use ‖~x◦|S∗(f)‖2 as the distribution on binary vectors corresponding

to indicator vectors of labelings of V , {0, 1}V×[k], in which each node u ∈ V receives,
independently at random, a label j ∈ [k] with probability:

Probx∼‖~x◦|S∗(f)‖2

[
x(u,j) = 1

]
= ‖~xu(j)|S∗(f)‖2 =

〈~xS∗(f), ~xu(j)〉
‖~xS∗(f)‖2

.

We will abuse the notation and use x ∼ ‖~x◦|S∗(◦)‖2 for sampling a binary labeling vector
by first choosing f ∼ ‖~xS∗(f)‖2 and then choosing x ∼ ‖~x◦|S∗(f)‖2.

We now prove some simple properties of this rounding. All claims below hold
for every fixed choice of S∗.

76

Claim 7.1.2. For any u ∈ V and j ∈ [k], we have

Probx∼‖~xS∗(f)‖2

[
x(u,j) = 1

]
= ‖~xu(j)‖2.

Proof. Indeed, by definition of the rounding scheme, Probx∼‖~xS∗(f)‖2

[
x(u,j) = 1

]
equals∑

f

‖~xS∗(f)‖2 〈~xS∗(f), ~xu(j)〉
‖~xS∗(f)‖2

=
∑
f

〈~xS∗(f), ~xu(j)〉 = 〈~x∅, ~xu(j)〉 = ‖~xu(j)‖2 .

Before stating the next claim, let us again recall the definition of the projection
operator used in the analysis of the rounding.

Definition 7.1.3. Given k-labeling vectors [~xS(f)]S,f for a moment sequence x we define
ΠS ∈ RΥ×Υ as the projection matrix onto the span of {~xS(f)}f∈[k]S for given S:

ΠS
def
=
∑
f∈[k]S

~xS(f) · ~xS(f)
T
.

Define Π⊥S = I − ΠS to be the projection matrix onto the orthogonal complement of the
span of {~xS(f)}f∈[k]S , where I denotes the identity matrix of appropriate dimension.

Claim 7.1.4. For any u 6= v ∈ V and i, j ∈ [k]:

Probx∼‖~x◦|S∗(◦)‖2

[
x(u,i) = 1 ∧ x(v,j) = 1

]
= 〈ΠS∗~xu(i),ΠS∗~xv(j)〉.

Proof.

Probx∼‖~xS∗(f)‖2

[
xu(i) = 1 ∧ xv(j) = 1

]
=
∑
f

‖~xS∗(f)‖2 〈~xS∗(f), ~xu(i)〉〈~xS∗(f), ~xv(j)〉
‖~xS∗(f)‖4

=
∑
f

〈~xS∗(f), ~xu(i)〉〈~xS∗(f), ~xv(j)〉

=
∑
f

~xTu(i)~xS∗(f) · ~xS∗(f)
T
~xv(j)

= ~xTu(i)ΠS∗~xv(j) = 〈ΠS∗~xu(i),ΠS∗~xv(j)〉.

77

Claim 7.1.5. Given any S∗ with x sampled from ‖~xS∗(f)‖2 as described, the following
identity holds: For any matrix L ∈ SV×[k], if we let ~X = [~xu(i)]u∈V,i∈[k] ∈ RΥ×(V×[k]) be
the matrix whose columns correspond to vectors ~xu(i):

Ex∼‖~x◦|S∗(◦)‖2

[
xTLx

]
= Tr(~XTΠ⊥S∗ ~X diag(L)) + Tr(~XTΠS∗ ~XL)

Proof. Consider L = diag(A) + Lo:

Ex∼‖~xS∗(f)‖2

[
xTLx

]
=Ex∼‖~xS∗(f)‖2

[
xT diag(L)x + xTLox

]
Using Claims 7.1.2 and 7.1.4:

= Tr(~XT ~X diag(L)) + Tr(~XTΠS∗ ~XL
o)

= Tr(~XT ~X diag(L)) + Tr(~XTΠS∗ ~X(L− diag(L)))

= Tr(~XTΠ⊥S∗ ~X diag(L)) + Tr(~XTΠS∗ ~XL).

7.2 Choosing Good Seeds

In this section we show how to pick a good S∗ and prove our main result, Theo-
rem 7.2.2, which lets us relate the performance of our rounding algorithm to the
objective value of relaxation. The final seed selection algorithm is given in Algo-
rithm 5.

We begin with a lemma relating the best bound achieved by column-selection
for a matrix ~X (as in Theorem 10.1.1) to the objective function Tr(~XT ~XL) with
respect to an arbitrary matrix L ∈ SV×[k]

+ .

Lemma 7.2.1. Given X ∈ RR×C and a PSD matrix L ∈ SC+, for any positive integer r
and positive constant ε > 0, there exists r/ε columns, S ∈

(
C
≤r

)
of X such that

Tr(XTX⊥SX diag(L)) ≤ Tr(XTXL)

(1− ε)λr+1(L)

where λr+1(L) is (r + 1)th smallest normalized eigenvalue of L as defined in Defini-
tion 2.6.1. Furthermore such S can be found in deterministic O(rn4) time.

78

Algorithm 5 Deterministic seed selection algorithm with running time O(n5).

Input: • Positive integers n, k, r, r′ = r
ε2

representing number of variables, labels,
rounds per iteration and total rounds respectively; k-label moment sequence x.

• Positive semi-definite cost matrix L ∈ SV×[k]
+ .

Output: • Seed set S∗ ∈
(
V
≤r′
)

satisfying eq. (7.1).

Procedure: 1. Let S∗ ← ∅.

2. Let [~xS(f)]S,f be labeling vectors for x as described in Definition 3.3.9.

3. Repeat for 1/ε times:

(a) Let ΠS∗ ←
∑

f∈[k]S∗ ~xS(f) · ~xS(f)
T

be the projection matrix of span{~xS∗(f)}f .

(b) Find new r
ε
-many seeds T̃ ∈

(
V×[k]
≤r/ε

)
by choosing columns from matrix

Π⊥S∗ [~xu(i)]u∈V,i∈[k] diag(L)1/2 using Algorithm 12 so as to minimize reconstruc-
tion error in Frobenius norm.

(c) T ←
{
u

∣∣∣∣∃j ∈ [k] : (u, j) ∈ T̃
}

.

(d) S∗ ← S∗⋃T .

Proof. Let X̃ ← X diag(L)1/2 and L ← diag(L)−1/2L diag(L)−1/2 with convention
0/0 = ∞ and 0 · ∞ = 0. ith smallest eigenvalue of L, λi(L), corresponds to the ith

smallest generalized eigenvalue λi(L; diag(L)) by Theorem 2.6.5. If we let σi be ith

largest eigenvalue of X̃T X̃ , then using Theorem 10.1.1 on vectors X̃ , we can find
S ∈

(
C
≤r′
)

in time O(r|C|4) such that

Tr(X̃T X̃⊥S X̃) ≤ 1

1− ε
∑
i≥r+1

σi.

By von Neumann-Birkhoff theorem, Tr(X̃T X̃L) is minimized when the ith largest
eigenvector of X̃T X̃ corresponds to the ith smallest eigenvector of L:

Tr(X̃T X̃L) ≥
∑
i

σiλi ≥
∑
i≥r+1

σiλi ≥ λr+1

∑
i≥r+1

σi ≥ (1− ε)λr+1 Tr(X̃T X̃⊥S X̃).

79

The span of {X̃u}u∈S is the same with {Xu}u∈S since X̃u differs from Xu only by a
scaling factor which leaves the span unchanged. In particular, X̃⊥S = X⊥S :

Tr(X̃T X̃⊥S X̃) = Tr(X̃TX⊥S X̃) = Tr(XTX⊥SX diag(L)).

The proof is complete by noting that Tr(X̃T X̃L) = Tr(XTXL).

Theorem 7.2.2 (Main technical theorem). Given positive integer r and ε ∈ (0, 1), let
x be a moment sequence satisfying r′ = O

(
r
ε2

)
rounds of Lasserre hierarchy constraints,

k-label moment sequence x,
Given L ∈ SV×[k]

+ , we can find a seed set S∗ of size at most r′ in deterministic
time O(n5) with the following properties. For x randomly sampled from the distribution
‖~x◦|S∗(◦)‖2, x ∼ ‖~x◦|S∗(◦)‖2, as described in Definition 7.1.1:

1. x is a binary vector, x ∈ {0, 1}V×[k].

2. x is an indicator function of a proper labeling of V . In particular for any u ∈ V ,∑
i∈[k]

x(u,i) = 1.

3. E
[
x(u,i)

]
= xu(i).

4. The expected correlation of x with L is bounded by the correlation of x with L as
follows.

If we let [~xS(f)]S,f be labeling vectors for this moment sequence and ~X
def
= [~xu(i)]u∈V,i∈[k]

be the matrix with columns being vectors ~xu(i) for all u ∈ V, i ∈ [k]:

Ex∼‖~x◦|S∗(◦)‖2

[
xTLx

]
≤ 1 + ε

1− ε
Tr(~XT ~XL)

min{λr+1(L, diag(L)), 1} .

Furthermore this set S∗ satisfies the following bound

Tr(~XTΠ⊥S∗ ~X diag(L)) + Tr(~XTΠS∗ ~XL) ≤ 1 + ε

1− ε
Tr(~XT ~XL)

min{λr+1(L, diag(L)), 1} (7.1)

where ΠS∗ is defined in Definition 7.1.3.

80

Proof. Note that the first three properties follow by construction of ‖~xS∗(f)‖2. Us-
ing Claim 7.1.5, it can be seen that the bound in eq. (7.1) is equivalent to item 4.
Therefore it suffices to prove item 4.

Define λr+1
def
= λr+1(L, diag(L)) and let r0 ← r/ε. Consider picking our “seed”

nodes in the following iterative way as described in Algorithm 5. Starting with
∆S0 ← ∅ and ~X(0)← ~x⊥∅

~X , for each i ∈ {1, 2, . . .}, set ∆S̃i as

∆S̃i ← argmin
S∈(V×[k]

≤r0)
Tr(~X(i− 1)T ~X(i− 1)

⊥
S
~X(i− 1) diag(L)),

and ∆Si as the set of nodes whose at least one label appears in ∆S̃i so that

∆Si ←
{
u | ∃g ∈ [k] such that (u, g) ∈ ∆S̃i

}
; Si ←

⋃
j≤i

∆Sj;

followed by ~X(i) ← Π⊥Si
~X . At each step we set S∗ ← Si and repeat this until

Ex∼‖~x◦|S∗(◦)‖2

[
xTLx

]
is at most 1+ε

1−ε
η

min(1,λr+1)
, where η def

= Tr(~XT ~XL).

Note that, by Lasserre constraints, all vectors in {~xu(i)}u∈S,i∈[k] are linear com-
binations of vectors in {~x∆Sf}f∈[k]S . Hence for any subset of nodes T ⊆ V of size
at most r′, ~X⊥T×[k] � Π⊥T .

For any i, using ‖~x◦|Si(◦)‖2 to denote the distribution at iteration i with seed set
chosen as S∗ ← Si, by Claim 7.1.5:

Ex∼‖~x◦|Si(◦)‖
2

[
xTLx

]
= Tr(~XTΠ⊥Si

~X diag(L)) + Tr(~XTΠSi
~XL) (7.2)

Let ξi be defined as ξi
def
= Ex∼‖~x◦|Si(◦)‖

2

[
xTLx

]
so that:

ξi = Tr(~XTΠ⊥Si
~X diag(L))︸ ︷︷ ︸
δi

+ Tr(~XTΠSi
~XL)︸ ︷︷ ︸

ηi

Finally for convenience we define λ′r+1 as the following:

λ′r+1
def
= (1− ε) min {λr+1(L, diag(L)), 1} . (7.3)

We will show that this procedure will stop for some i with i ≤ d1
ε
e in Claim 7.2.7.

Note that each iteration takes time at most O(r0n
4). If this procedure takes K

iterations, we have r0K ≤ n, hence running time is O(Kr0n
4) = O(n5).

81

Observation 7.2.3.

δi+1 = Tr(~XTΠ⊥Si+1
~X diag(L)) ≤ Tr(~X(i)

T
Π⊥∆Si+1

~X(i) diag(L))

Proof. Note that Π⊥SiΠ
⊥
∆Si+1

Π⊥Si � Π⊥Si+1
since all vectors of the form ~xSi(f) and

~x∆Si(f ′) are linear combinations of vectors ~xSi+1(g). Using the definition of ~X(i),
~X(i) = Π⊥Si

~X , the proof is complete.

Observation 7.2.4. For any i ≥ 0, we have ηi ≤ η.

Proof. Note ΠSi
� I . Since L � 0, ηi = Tr(~XTΠSi

~XL) ≤ Tr(~XT ~XL) = η.

Claim 7.2.5. For any i ≥ 0,

δi+1 ≤
η − ηi
λ′r+1

.

where λ′r+1 is defined in eq. (7.3).

Proof. Using Observation 7.2.3,

δi+1 ≤ Tr(~X(i)TΠ⊥∆Si+1
~X(i) diag(L))

≤ Tr(~X(i)TX⊥∆Si+1×[k]
~X(i) diag(L))

≤ Tr(~X(i)TX⊥
S̃(i+1)

~X(i) diag(L))

≤ 1

(1− ε)λr+1

Tr(~X(i)T ~X(i)L) ,

where the first inequality follows from Π⊥∆Si+1
� ~X⊥∆Si+1×[k], and the second in-

equality from ∆S̃i+1 ⊆ ∆Si+1 × [k]. For the last inequality, we can immediately
apply the bound from Lemma 7.2.1. Using (1 − ε)λr+1(L, diag(L)) ≥ λ′r+1, where
λ′r+1 is as defined in eq. (7.3), and the identity

Tr(~X(i)T ~X(i)L) = Tr(~XTΠ⊥Si
~XL) = Tr(~XT ~XL)− Tr(~XTΠSi

~XL) = η − ηi

we conclude the proof.

Claim 7.2.6. If ξi+1 > η 1+ε
λ′r+1

, then

ε+ ηi
λ′r+1

< ηi+1.

82

Proof. Using Claim 7.2.5,

η
1 + ε

λ′r+1

< ξi+1 = δi+1 + ηi+1 ≤
η − ηi
λ′r+1

+ ηi+1.

Hence
ε+ ηi
λ′r+1

< ηi+1 .

Claim 7.2.7. There exists i ≤ d1
ε
e for which ξi ≤ η 1+ε

λ′r+1
.

Proof. By contradiction. Let K = d1
ε
e and assume for all i ≤ K, ξi > η 1+ε

λ′r+1
. By

Claim 7.2.6,

η1 >η
ε

λ′r+1

≥ ηε

η2 >η
ε

λ′r+1

+
η1

λ′r+1

> η
ε

λ′r+1

(1 + 1) ≥ η · 2ε

...

ηK >η
ε

λ′r+1

+
ηK−1

λ′r+1

> ηK
ε

λ′r+1

≥ η ·Kε =⇒ ηK > η.

which contradicts Observation 7.2.4.

This completes the proof of Theorem 7.2.2.

7.3 Combining with Our Faster Solver

In this section, we will show how to cast Algorithm 5 in our local rounding frame-
work from Chapter 5 with the ultimate goal being reducing the running time. Ob-
serve that our labeling procedure, Algorithm 4, needs no modifications and will
work fine. Only seed selection Algorithm 5 needs some trivial tweaks, all related
only to changing it from being iterative to recursive. New seed selection algo-
rithm is given in Algorithm 6. We put everything together in Theorem 7.3.1 and
obtain an approximation algorithm for generic quadratic integer programming
(QIP) problems with positive semi-definite objectives functions:

83

Algorithm 6 T = FAST-SEED-QIPAS (x): Seed selection procedure for approxima-
tion algorithms given in Chapter 7 under local rounding framework.

Input: • Cost matrix A ∈ SV×[k]
+ ,

• Subset S ⊆ V representing seeds chosen so far,

• Moment sequence x with x∅ = 1,

• Number of seeds to choose as a positive integer r′.

Output: • Enlarged seed set, T ⊇ S, with |T | ≤ kr
′ · |S|.

Procedure: 1. Let [~xA(g)]A∈ex(S,2),g∈[k]A be labeling vectors for moment sequence x
as described in Definition 3.3.9.

2. Let Π⊥S ←
∑

f∈[k]S
1

‖~xS(f)‖2
~xS(f)~x

T
S(f) and Π⊥S ← I − ΠS .

3. Let ~X ← [~X(u,j)]u∈V,j∈[k] ∈ RΥ,V×[k] be the matrix whose columns ~X(u,j) ∈ RΥ are
given by

~X(u,j) ← Π⊥S~xu(j)

√
Au(j),u(j).

4. Use deterministic column selection procedure, Algorithm 12, on ~X to choose r′

columns, S ′ ∈
(
V×[k]
r′

)
.

5. Return S ∪
{
u ∈ V

∣∣∃j ∈ [k] : (u, j) ∈ S ′
}

.

Theorem 7.3.1. Consider a quadratic integer programming problem

min xTAx
st Bx ≥ c∑

i∈[k] x(u,i) = 1 for all u ∈ V ,
x ∈ {0, 1}V×[k]

where A ∈ SV×[k]
+ represents a quadratic objective function and B ∈ RN,V×[k], c ∈ RN

represent linear constraints.
Given such A and a separation oracle for linear constraints Bx ≥ c, for any 0 <

ε < 1 and positive integer r, there exists an algorithm that runs in time 2O(r/ε2)nO(1/ε) ·
T (SEP) which outputs a seed set S∗ ∈

(
V
≤r/ε

)
and k-label moment sequence x satisfying

84

all guarantees from Theorem 7.2.2.

Proof. Run Algorithm 2 with following input:

• ε0 ← ε−n.

• `← 1/ε.

• FEASIBLE is the separation oracle for Lasserre Hierarchy as outlined in Sec-
tion 5.6.

• SEED is Algorithm 6.

• (Not necessary, only for completeness) ROUND is Algorithm 4.

7.4 Applications

In this section, we show how we can use the algorithm from Theorem 7.3.1 for
various combinatorial optimization problems.

7.4.1 Minimum Bisection

We will express Minimum Bisection problem in a slightly different way than Chap-
ter 4. This presentation will be useful later for generalization to k-way partition-
ing.

min
x

∑
u<v

wu,v(xu − xv)
2

st
∑
u∈V

xu = µ, x ∈ {0, 1}V .

Given this formulation, we can immediately use Theorem 7.3.1 and obtain the
following:

Corollary 7.4.1 (Minimum Bisection). Given 0 < ε < 1, positive integer r, graph G, a
target size µ ≤ n

2
, there exists an algorithm which runs in time 2O(r/ε3)nO(1/ε) and outputs

a set whose indicator vector x ∈ {0, 1}V satisfies the following with high probability:

µ−O
(√

µ log(1/ε)
)
≤ ‖x‖1 ≤ µ+O

(√
µ log(1/ε)

)
,

xTLx ≤ 1 + ε

min{λr+1(L), 1}η .

85

Proof. Note that the objective matrix takes the form L′ =

[
L 0
0 0

]
. The correspond-

ing (r + 1)th smallest generalized eigenvalue λr+1(L′; diag(L′)) is equal to that of
the normalized graph Laplacian matrix, λr+1(L). Thus we can use Theorem 7.3.1
with ε/10 and get

E
[
xTLx

]
≤ (1 + ε/10)

η

λr+1

, E
[
‖x‖1

]
= µ.

Using Markov inequality (Theorem 2.8.1) on the first expectation and Chernoff
bound (Theorem 2.8.3) on the second one together with each x being independent:

Prob

[
xTLx ≥ (1+ε/2)

η

λr+1

]
≤ 1−ε/3, Prob

[∣∣‖x‖1−µ
∣∣ ≥ O(

√
µ log(1/ε))

]
≤ ε/3.

Taking a union bound:

Prob

[
xTLx ≤ (1 + ε/2)

η

λr+1

∧
∣∣‖x‖1 − µ

∣∣ ≤ O(
√
µ log(1/ε))

]
≥ ε/3.

Repeating this O(1/ε) times finishes the proof.

7.4.2 Small Set Expansion

Our next result is on the small set expansion problem. A naı̈ve application of The-
orem 7.3.1 will yield good bounds only when the graph does not have high degree
nodes (compared to the average degree). However our guarantee is irrespective
of the degree distribution on graph G such that we are always able to find a set
of volume µ(1 ± ε). In order to achieve this while still making sure that the run-
ning time depends on 2O(r), it becomes crucial that our rounding permits arbitrary
unary constraints.

We use the following standard integer programming formulation of SSE:

min
x

∑
e={u,v}∈E

(xu − xv)
2,

st
∑
u∈V

duxu = µ,

x ∈ {0, 1}V .

86

Theorem 7.4.2 (Small Set Expansion). Given 0 < ε < 1, positive integer r, a target
volume µ, there exists an algorithm which runs in time nO(log(1/ε)

ε2
)2O(r/ε2) and outputs a

set whose indicator vector x ∈ {0, 1}V satisfies the following:

xTLx ≤ 1 + ε

min{λr+1(L), 1}η

and

1. If maximum degree satisfies dmax ≤ O
(

µ

log 1
ε

)
, then

µ

(
1−O

(√
dmax

µ
log

1

ε

))
≤ xT diag(L)x ≤ µ

(
1 +O

(√
dmax

µ
log

1

ε

))

2. Else
µ (1− ε) ≤ xT diag(L)x ≤ µ (1 + ε) .

Proof of item 1. Proof is the same with that of Corollary 7.4.1 with the only dif-
ference being the usage of Hoeffding bound Theorem 2.8.2 instead of Chernoff
bound.

Proof of item 2. At a high level, our algorithm proceeds in the following way: We
enumerate all subsets U0 of volume at most µ from the set of high degree nodes
H, which is defined by H def

=
{
u | du ≥ ε2

log(1/ε)
µ
}

. For each such subset U0, we
solve the corresponding Lasserre SDP relaxation of Small Set Expansion problem
on this graph with constraints xu = 1 for any u ∈ U0 and x(v,2) = 1 for any
v ∈ H \ U0. Objective matrix for this problem is LV \H,V \H whose normalized
eigenvalues interlace that of original graph Laplacian matrix L. Moreover our
volume constraint takes the form∑

v/∈H

dvxv ≤ µ′
def
= µ−

∑
u∈U0

du.

Observe that the maximum degree, say d′max, in the induced graph is at most
ε2

log(1/ε)
µ. Now there are two possible cases:

1. If d′max <
1

log(1/ε)
µ′ then this reduces to item 1, which finds an indicator vector

x that satisfies∣∣xT diag(L)x− µ
∣∣ ≤ O(

√
µ′d′max log(1/ε)) ≤

√
µ′ε2µ ≤

√
µε2µ = µε.

87

2. Else, we have d′max ≥ 1
log(1/ε)

µ′ =⇒ 1
log(1/ε)

µ′ ≤ ε2

log(1/ε)
µ =⇒ µ′ ≤ ε2µ. Then,

instead of Chernoff bound, we can use simple Markov bound and conclude
that

Prob

[
xT diag(L)x ≥ µ′

ε/2

]
≤ ε/2.

Combining this Prob

[
xTLx ≥ (1 + ε)E

[
xTLx

]]
≤ 1 − ε, with probability

Ω(ε), we will find x with

∣∣xT diag(L)x− µ
∣∣ ≤ µ′/(ε/2) ≤ 2εµ and xTLx ≤ (1 + ε)E

[
xTLx

]
.

After enumerating all such sets, we return the one with smallest cut. Correct-
ness of this algorithm is obvious.

For running time, note that number of nodes we can choose fromH is at most
log(1/ε)
ε2

. Hence we invoke the algorithm from theorem 7.3.1 at most(|H|
≤ log(1/ε)

ε2

)
≤ nO(log(1/ε)

ε2
)

times, from which the running time bound follows.

7.4.3 k-Way Partitioning Problems

Note that all these results can be generalized to their respective k-way partitioning
versions (wherever it makes sense). The only difference is that, in each case, the
objective matrix will be a block diagonal matrix consisting of k copies of graph
Laplacian matrix. It is easy to see that such a matrix has exactly k copies of the
original eigenvalues, so instead of r rounds of Lasserre hierarchy, we will use k · r
rounds instead.

Corollary 7.4.3 (Minimum k-way Section). Given 0 < ε < 1, positive integer r and
a target set sizes (µi)i∈[k] with

∑
i µi = n, there exists an algorithm which runs in time

2O(kr
ε2

)nO(1/ε) to find a k-way partitioning whose indicator vector, x ∈ {0, 1}V×[k] satisfies
the following:

∀i : µi −O
(√

µi log(k/ε)
)
≤
∑
u∈V

x(u,i) ≤ µi +O
(√

µi log(k/ε)
)
,

88

∑
i

xTV×{i}LxV×{i} ≤
1 + ε

min{λr+1(L), 1}η

provided that such sets exist.

Proof. Proof follows by applying Theorem 7.3.1 to:

min
x

∑
i

∑
e={u,V }∈E

we(x(u,i) − x(v,i))
2,

st
∑
u∈V

x(u,i) = µi for all i ∈ [k],∑
i∈[k]

x(u,i) = 1 ∀u ∈ V,

x ∈ {0, 1}V×[k] .

Let L̃ be the matrix in the objective. As remarked at the beginning of this
section, the corresponding normalized matrix has k copies of each eigenvalue of
the normalized graph Laplacian, so x will satisfy

xT L̂x ≤ 1 +O(ε)

min{λr/k(L), 1}η,

with probability≥ 1−ε. Our proof is complete by combining this with a Chernoff
bound on the size of each partition and taking a union bound so as to prove that
with probability Ω(ε/k), x will satisfy all conditions given.

In this section we state and prove the main results concerning our rounding al-
gorithm for Lasserre SDP solutions, and in particular prove Theorem 7.2.2 which
we used to analyze our algorithm for quadratic integer programming and its ap-
plications to graph partitioning. Some of this discussion already appeared in the
simpler setting of Minimum Bisection in Chapter 4. All our rounding algorithms
are based on choosing labels of a carefully chosen “seed” set S∗ of appropriate size
r′, which is then propagated to other nodes conditioned on the particular labeling
of S∗.

For easy reference, we describe the rounding procedure in Algorithm 4 and
the seed selection procedure in Algorithm 5.

89

7.5 Independent Set

Our final algorithmic result is on finding independent sets in a graph. For sim-
plicity, we focus on unweighted graphs though the extension for graphs with
non-negative vertex weights is straightforward. We denote by α(G) the size of
the largest independent set in G. Finally we assume G = (V,E) is not a disjoint
union of cycle graphs, i.e. there exists a node u ∈ V with du ≥ 3 (otherwise the
problem is trivial).

Theorem 7.5.1. Given 0 < ε < 1, positive integer r, for any graph G = (V,E) with
maximum degree d, there exists an algorithm to find an independent set I ⊆ V such that:

|I| ≥ α(G) ·min

{
1

2d

(
1

(1− ε) min{2− λn−r−1(L), 1} − 1

)−1

, 1

}
(7.4)

in time nO(1
ε)2O(r/ε3).

Remark 7.5.2. The above bound eq. (7.4) implies that if λn−r−1, which is the (r + 1)st

largest eigenvalue of the normalized graph Laplacian matrix is very close to 1, then we
can find large independent sets in 2O(r/ε2)nO(1/ε) time. In particular, if it is at most 1 +
1
4d

where d is the maximum degree, then taking ε = O(1/d), we can find an optimal
independent set. The best approximation ratio for independent set in terms of d is about
O
(
d·log log d

log d

)
by Halldórsson [1998] and Halperin [2002]. The bound eq. (7.4) gives a

better approximation ratio as soon as λn−r−1 ≤ 1 +O
(

1
log d

)
. �

Proof. (of Theorem 7.5.1) Note that it is not possible to use Theorem 7.3.1 as a black
box, while making sure that we find a proper independent set. Instead we will
directly use Theorem 7.3.1. Consider the following integer program for finding
largest independent set in G:

max
∑
u

xu

st xuxv = 0 for any edge e = (u, v) ∈ E ,

x ∈ {0, 1}V .

Note that we can easily enforce the constraints xuxv = 0 by substituting x{u,v} ← 0
in the Lasserre hierarchy relaxation.

Let [~xS(f)] be labeling vectors for moment sequence x (see Definition 3.3.9) and
~X = [~x{u}]u∈V ∈ RΥ,V be the matrix whose columns are vectors ~x{u} over all u ∈ V .

90

Observe that for A and D being adjacency and degree matrix for G respectively,
the objective value of above relaxation is:

Tr(~XT ~XD−1/2(D + A)D−1/2) = Tr(~XT ~X).

We will use A def
= D−1/2AD−1/2 to denote the normalized adjacency matrix so that

Tr(~XT ~XA) = 0
At this point, we sample x ∼ ‖~x◦|S∗(◦)‖2 as in Definition 7.1.1. Then we convert

x into an independent set as follows.

1. For each u, if xu = 1 then let I ← I ∪ {u} with probability pu which we will
specify later.

2. After the first step, for each edge e = {u, v}, if {u, v} ⊆ I , we choose one end
point randomly, say u, and set I ← I \ {u}.

Finally we output I . It is easy to see that I is an independent set by construction.
For any u, the probability that it will be included in the final independent set I is
at least:

Prob

[
u ∈ I

]
≥ E

[
puxu

]
− 1

2
E
[∑
v∈N(u)

pupvxuxv

]
= pu‖~xu‖2 − 1

2

∑
v∈N(u)

pupv〈ΠS~xu,ΠS~xv〉. (7.5)

By section 7.5, the expected size of the independent set found by the algorithm
satisfies

E
[
|I|
]
≥
∑
u

pu‖~xu‖2 −
∑
{u,v}∈E

pupv〈ΠS~xu,ΠS~xv〉. (7.6)

Note that for every edge {u, v} ∈ E,

〈ΠS~xu,ΠS~xv〉 =
∑

f∈{0,1}S

〈~xS(f), ~xu〉〈~xS(f), ~xv〉
‖~xS(f)‖2

≥ 0 . (7.7)

We now consider two cases.

Case 1: 〈ΠS~xu,ΠS~xv〉 = 0 for all edges {u, v} ∈ E. In this case, we take pu = 1
for all u ∈ V , and by eq. (7.6), we find an independent set of expected size at least
µ ≥ α(G).

91

Case 2: In this case, we have∑
{u,v}∈E

〈ΠS~xu,ΠS~xv〉 =
1

2
Tr(~XTΠS

~XA) > 0. (7.8)

We define

ξ
def
=

Tr(~XTΠS
~XA)

Tr(~XT ~X)
. (7.9)

By eqs. (7.7) and (7.8), we have ξ > 0.
We now pick pu = α√

du
for all u ∈ V , where we will optimize the choice of α

shortly. For this choice, we have

E
[
|I|
]
≥ α

∑
u

1√
du
‖~xu‖2 − 1

2
α2 Tr(~XTΠS

~XA)

≥ α√
d

∑
u

‖~xu‖2 − 1

2
α2 Tr(~XTΠS

~XA)

= µ

(
α√
d
− 1

2
α2 Tr(~XTΠS

~XA)

Tr(~XT ~X)︸ ︷︷ ︸
ξ

)

This expression is maximized when α = 1
ξ·
√
d
, for which it becomes:

E
[
|I|
]
≥ µ

2d

1

ξ
. (7.10)

We know that for the seed set S∗ chosen by Theorem 7.3.1 satisfies:

Tr(~XTΠ⊥S ~X) + Tr(~XTΠS
~X(I +A)) ≤ Tr(~XT ~X(I +A))

λ′

=
1

λ′
Tr(~XT ~X) = µ

where λ′ = (1− ε) min{λr+1(I +A), 1} = (1− ε) min{2− λn−r−1(L), 1}.
On the other hand,

Tr(~XTΠ⊥S
~X) + Tr(~XTΠS

~X(I +A))

Tr(~XT ~X)
=

Tr(~XTΠ⊥S
~X) + Tr(~XTΠS

~X) + Tr(~XTΠS
~XA)

Tr(~XT ~X)

=
Tr(~XT ~X) + Tr(~XTΠS

~XA)

Tr(~XT ~X)
= 1 + ξ.

92

Thus, for such S∗ we have ξ ≤ 1
λ′
− 1. Substituting this back into eq. (7.10):

E
[
|I|
]
≥ µ

2d

1

1/λ′ − 1
.

7.6 Variance Reduction Perspective

For any S ⊆ [n], let [k]S be the set of all possible labelings of S. Let [k]∅ = {>}
where > denotes the (only) labeling of empty set with ~x∅(>) = ~x∅ being some
constant unit vector.

Definition 7.6.1. Given S ⊆ [n] and f ∈ [k]S with ~xS(f) 6= 0, we define the vectors
conditioned on f as the following. For any A ⊆ [n] and g ∈ [k]A, the vector ~xA|f (g) is
given by:

~xA|f (g)
def
=
~xS∪A(f ◦ g)

‖~xS(f)‖ .

Formally the conditional vectors ~xA|f (g) correspond to relaxations of respec-
tive indicator variables. Thus such vectors behave exactly in the same way with
non-conditional vectors. Some of these properties are given in the following easy
claim, whose proof we skip. For g ∈ [k]A and h ∈ [k]B that are consistent on A∩B,
we denote by g ◦ h ∈ [k]A∪B the labeling that restricts to g (resp. h) on A (resp. B).

Claim 7.6.2. For any f ∈ [k]S with ~xS(f) 6= 0, the following are true:

(a) ~x∅|f (>) = ~xS|f (f) and ‖~xS|f (f)‖2 = 1.

(b) For any g ∈ [k]A and h ∈ [k]B, we have 〈~xA|f (g), ~xB|f (h)〉 =
∥∥~xA∪B|f (g ◦ h)

∥∥2 if
g, h are consistent on A ∩B and 0 otherwise.

(c) For any g ∈ [k]A, we have ~xA(g) =
∑

f ‖~xS(f)‖~xA|f (g) so that
‖~xA(g)‖2 =

∑
f ‖~xS(f)‖2‖~xA|f (g)‖2 .

(d) For any g ∈ [k]A, ‖~xA|f (g)‖2 = 〈~xS(f),~xA(g)〉
‖~xS(f)‖2 .

(e) For any g ∈ [k]A and h ∈ [k]B,

~xB|f,g(h) =
~xA∪B|f (g ◦ h)

‖~xA|f (g)‖ .

93

Proof. Items a to d are easy. For item e, by definition:

~xB|f,g(h) =
~xS∪A∪B(f ◦ g ◦ h)

‖~xS∪A(f ◦ g)‖ =
~xA∪B|f (g ◦ h) · ‖~xS(f)‖
‖~xA|f (g)‖ · ‖~xS(f)‖ .

Assume that some labeling f0 ∈ [k]S0 to S0 has been fixed, and we further sam-
ple a labeling f to S with probability ‖~xS|f0(f)‖2 (i.e., from the conditional proba-
bility distribution of labelings to S given labeling f0 to S0). The following defines
a projection matrix which captures the effect of further conditioning according to
the labeling to S. For a nonzero vector v, we denote by v the unit vector in the
direction of v.

Notation 7.6.3. Given f0 ∈ [k]S0 and S ⊆ [n], let

ΠS|f0
def
=

∑
f :~xS|f0 (f)6=0

~xS|f0(f) · ~xS|f0(f)
T
.

Similarly let Π⊥S
def
= I − ΠS where I is the identity matrix of the appropriate dimension.

We will now relate properties of the conditional probability distribution aris-
ing from partial labelings to the above projection matrix. First we will define the
random variables corresponding to each indicator function with matching mo-
ments:

Definition 7.6.4. Given f ∈ [k]S , for all g ∈ [k]A, h ∈ [k]B, let XA|f (g) and XB|f (h) be
two random variables over {0, 1} such that:

Prob[XA|f (g) = 1 ∧ XB|f (h)] = 〈~xA|f (g), ~xB|f (h)〉.

The above definition suggests a very simple rounding scheme: Choose a label
for each variable based on this probability. In fact, all rounding algorithms we can
handle in our framework carry this trait. One way to measure how far we can go
with only these probabilities is to look at their variance:

Claim 7.6.5. Var(XA|f (g)) = ‖~xA|f (g)‖2 − ‖~xA|f (g)‖4 = ‖~x⊥∅|f~xA|f (g)‖2.

Proof. Since XA|f (g) is a random variable over {0, 1},

Var(XA|f (g)) = E[XA|f (g)](1−E[XA|f (g)]) = ‖~xA|f (g)‖2−〈~x∅|f , ~xA|f (g)〉2 = ‖~x⊥∅|f~xA|f (g)‖2.

Claim 7.6.6. Cov(XA|f (g),XB|f (h)) = 〈~x⊥∅|f~xA|f (g), ~x⊥∅|f~xB|f (h)〉.

94

Proof. Since E[XA|f (g)XB|f (h)] = 〈~xA|f (g), ~xB|f (h)〉, we can express Cov(XA|f (g),XB|f (h))
as:

= 〈~xA|f (g), ~xB|f (h)〉 − 〈~x∅|f , ~xA|f (g)〉〈~x∅|f , ~xB|f (h)〉 = 〈~x⊥∅|f~xA|f (g), ~x⊥∅|f~xB|f (h)〉.
The following, as we observed in Claim 7.1.4, enables controlling probabilistic

quantities in terms of a geometric quantity, the projection distance to certain sub-
spaces. In particular, it says that if we can somehow choose S and f0 in such a
way that span of ΠS|f0 is very close to the vectors ~xu|f0 , then the variance will be
small.

Lemma 7.6.7. Given f0 ∈ [k]S0 , subsets S,A ⊆ [n], and g ∈ [k]A, we have

Ef∼‖~xS|f0 (f)‖2
[
Var(XA|f,f0(g))

]
= ‖Π⊥S|f0~xA|f0(g)‖2.

Proof. Using Claim 7.6.5, we see that:

Ef∼‖~xS|f0 (f)‖2
[
Var(XA|f,f0(g))

]
=
∑
f

‖~xS|f0(f)‖2
(
‖~xA|f,f0(g)‖2 − ‖~xA|f,f0(g)‖4

)
= ‖~xA|f0(g)‖2 −

∑
f

‖~xS|f0(f)‖2‖~xA|f,f0(g)‖4 (using Claim 7.6.2 (c))

= ‖~xA|f0(g)‖2 −
∑
f

‖~xS|f0(f)‖2〈~x∅|f,f0 , ~xA|f,f0(g)〉2 (using Claim 7.6.2 (b))

= ‖~xA|f0(g)‖2 −
∑
f

〈~xS|f0(f), ~xA|f,f0(g)〉2 (using Definition 7.6.1)

= ‖~xA|f0(g)‖2 −
∑

f :~xS|f0 (f) 6=0

〈
~xS|f0(f),

~xS∪A|f0(f ◦ g)

‖~xS|f0(f)‖

〉2

(using Claim 7.6.2 (e))

= ‖~xA|f0(g)‖2 −
∑

f :~xS|f0 (f) 6=0

1

‖~xS|f0(f)‖2
〈~xS|f0(f), ~xA|f0(g)〉2 (using Claim 7.6.2 (b))

= ‖~xA|f0(g)‖2 −
∑
f

〈~xS|f0(f), ~xA|f0(g)〉2

= ‖Π⊥S|f0~xA|f0(g)‖2 (using Notation 7.6.3).

7.7 Analysis of Other Rounding Algorithms

In this section, we will show how the partial coloring algorithm from Arora and
Ge [2011] and 2-CSP algorithm from Barak et al. [2011] fit into our framework. The

95

main difficulty is that both these algorithms are adaptive. In particular, a naive
adaptation will have ` = Ω(r) which is quite undesirable for our faster solver.
We can easily get around this difficulty by replacing the adaptive seed selection
procedure with a suitable version of Algorithm 6.

7.7.1 Partial Coloring of 3-Colorable Graphs

The seed selection algorithm is given in Algorithm 7.

Algorithm 7 SEED-COLORS(y): Seed selection procedure for semi-coloring al-
gorithm as given in Arora and Ge [2011] on graph G.
Input: Graph G on nodes [n], positive integer r′.
Output: S ∈ [n]≤r′ .

Procedure: 1. Let ~Xu ←
∑3

i=1 ei ⊗ ~x⊥∅ ~xu(i) (same as in [Arora and Ge, 2011]).

2. Use Algorithm 12 to choose S, an r′-subset of vectors from
(
~Xu

)
u∈[n]

.

3. Return S.

Theorem 7.7.1. Given a 3-colorable d-regular graph G on n nodes, positive real 1 > ε >
0 and positive integer r, suppose its rth largest eigenvalue of normalized Laplacian matrix,
λn−r, satisfies

λn−r ≤
4− δ

3

for some positive real δ > 0. Then, for the choice of r′ = O(r/δε), Algorithm 7 followed by
the rounding algorithm as described in Arora and Ge [2011] will output a partial coloring
which colors at least (1− ε) δ

2+δ
n nodes. Furthermore this algorithm can be implemented

in time poly(n)2O(r/δε) using the faster solver framework.

The main advantage of our seed selection procedure (which enables the speed-
up using our faster solver) is that we pick r′ nodes all at once, instead of picking
them one-by-one in r′ steps as in Arora and Ge [2011]. We have the following as
an immediate corollary of Theorem 7.7.1:

Corollary 7.7.2. Given a 3-colorable d-regular graph G, for any positive integer r with
λn−r ≤ 10

9
− Ω(1), we can find a partial coloring on n

4
nodes and an independent set of

size at least n
12

in time poly(n)2O(r) .

96

Before we begin the proof of Theorem 7.7.1, we will state some simple claims.
As the method applies for k-colorable graphs with different parameters, below for
clarity we first use k for the number of colors, and then later set k = 3.

Claim 7.7.3. For any edge (u, v) of G,

1

2

∥∥∥ ~Xu + ~Xv

∥∥∥2

≤ 1− 2

k
.

In particular, if we use A to denote the normalized adjacency matrix of G, then:

Tr
[
~XT ~X(I + A)

]
≤ n

(
1− 2

k

)
.

Proof.

1

2

∥∥∥ ~Xu + ~Xv

∥∥∥2

=
1

2

∑
i∈[k]

(
‖~x⊥∅ ~xu(i)‖2 + ‖~x⊥∅ ~xv(i)‖2 + 2〈~x⊥∅ ~xu(i), ~x⊥∅ ~xv(i)〉

)
=

1

2

∑
i∈[k]

(
‖~xu(i)‖2 − ‖~xu(i)‖4 + ‖~xv(i)‖2 − ‖~xv(i)‖4

+ 2〈~xu(i), ~xv(i)〉 − 2〈~x∅, ~xu(i)〉〈~x∅, ~xv(i)〉‖~x∅‖2

)
Using 〈xu(i), xv(i)〉 = 0, we can rewrite this as:

= 1− 1

2

∑
i∈[k]

(
‖~xu(i)‖4 + ‖~xv(i)‖4 + 2‖~xu(i)‖2‖~xv(i)‖2

)
= 1− 1

2

∑
i∈[k]

(
‖~xu(i)‖2 + ‖~xv(i)‖2

)2
.

At this point, observe that
∑

i∈[k] (‖~xu(i)2 + ‖~xv(i)‖2)
2 is a convex function on ‖~xu(i)‖2

and ‖~xv(j)‖2’s. Since
∑

i ‖~xu(i)‖2 =
∑

j ‖~xv(j)‖2 = 1, it is minimized when ‖~xu(i)‖2 =

‖~xv(j)‖2 = 1
k
. Substituting this into the above expression, we see that:

1

2

∥∥∥ ~Xu + ~Xv

∥∥∥2

≤ 1− k

2

(
2

k

)2

= 1− 2

k
.

For the final part, observe that:

Tr
[
~XT ~X(I + A)

]
=

1

d

∑
{u,v}∈E(G)

‖ ~Xu + ~Xv‖2 ≤ 2|E(G)|
d

(
1− 2

k

)
= n

(
1− 2

k

)
.

97

Claim 7.7.4. Given a graph G and positive integer r, for λr being the rth smallest eigen-
value of corresponding normalized graph Laplacian matrix, the following holds:∑

j≥r

σj(~X
T ~X) ≤ n

1− 2/k

2− λr
.

Proof. Follows from using the upper bound from Claim 7.7.3 on inequality:∑
j≥r

σj(~X
T ~X) ≤ 1

λr
Tr
[
~XT ~X(I + A)

]
.

Claim 7.7.5. Assume u is uncolored. Then:∑
i

‖~x⊥∅|f~xu|f(i)‖2 ≥ 1

2
.

Proof. Note that ‖~x⊥∅|f~xu|f (i)‖2 = ‖~xu|f (i)‖2(1 − ‖~xu|f (i)‖2). If u is uncolored, then
1− ‖~xu|f (i)‖2 ≥ 1

2
for all i ∈ [k]1, in which case we have:∑

i

‖~x⊥∅|f~xu|f(i)‖2 ≥ 1

2

∑
i

‖~xu|f (i)‖2 =
1

2
.

For a subset S of vertices of G, we denote by X⊥S the projection operator onto
the orthogonal complement of span{Xu | u ∈ S}.
Lemma 7.7.6. For coloring f to a subset S sampled with probability ‖~xS(f)‖2:

Ef

[∑
i

‖~x⊥∅|f~xu|f(i)‖2

]
≤ ‖ ~X⊥S ~Xu‖2.

Proof. From Lemma 7.6.7, we know that Ef
[∑

i ‖~x⊥∅|f~xu|f (i)‖2
]

=
∑

i

∥∥Π⊥S~xu(i)
∥∥2 ≤

‖ ~X⊥S ~Xu‖2. The final inequality follows from the same arguments as in Chapter 7.

Proof of Theorem 7.7.1. Let δ′ = 1
2
δ and ε′ = εδ′. By Theorem 10.1.1, we know that

volume sampling of r′ = O(r/ε′) columns yields∑
u

‖ ~X⊥S ~Xu‖2 ≤ (1 + ε)
∑
j≥r

σj(~X
T ~X) ≤ n(1 + ε′)

1− 2/k

2− λr
.

1This follows from the threshold rounding algorithm used in Arora and Ge [2011] for coloring,
which colors u with color i if ‖~xu|f (i)‖2 > 1/2.

98

Using Markov inequality, the fraction of uncolored nodes is bounded by:

≤ 2n(1 + ε)
1− 2/k

2− λr
=

2(1 + ε′)

3(2− λr)
n (for k = 3).

For λr ≤ 4
3
− 2

3
δ′, this expression becomes 1+ε′

1+δ′
n, which implies

E [fraction of colored nodes] ≥ 1− 1 + ε′

1 + δ′
=
δ′ − ε′
1 + δ′

=
δ′

1 + δ′
(1−ε) =

δ/2

1 + δ/2
(1−ε).

To prove that the coloring output is legal, notice that for any pair of adjacent
nodes (u, v) ∈ E(G), both ‖~xu|f (i)‖2 and ‖~xv|f (i)‖2 cannot be larger than 1/2 both
at the same time.

7.7.2 Approximating 2-CSPs

Given a 2-CSP problem on variables [n] and labels [k], letG be its constraint graph.
For convenience, we assume G is regular; however all our bounds still hold when
G is non-regular. We use A to denote G’s normalized adjacency matrix and λi to
denote the ith smallest eigenvalue of G’s normalized Laplacian matrix. Finally we
will use uv ∼ G to denote sampling a constraint with probability proportional to
the weight of constraint between u and v.
Embedding. Consider the embedding used in Lemma 5.3 of Barak et al. [2011]
which is used to convert k vectors ~xu(i) into a single vector. Given a partial as-
signment f ∈ [k]S and u ∈ [n] with (~xu|f (i))i∈[k] ⊂ R[m], we define ~Xu(f) as the
following vector.

~Xu(f)
def
=

1√
k

∑
j

(~x⊥∅|f~xu|f (j))
⊗2

‖~x⊥∅|f~xu|f (j)‖
(7.11)

Seed Selection and Rounding. We will give only an overview of the seed selec-
tion procedure. In Barak et al. [2011], assuming some lower bound on λr (in terms
of ε, k, where ε is the additive approximation error), a seed set of r · poly(k/ε) ver-
tices will be picked in as many iterations, one vertex at a time. We modify the seed
selection to involve fewer adaptive stages, with ` = O(k2/ε2) stages each picking
O(r/ε) vertices each. Plugging into our general solver then gives a runtime im-
provement as before.

At ith level, we choose a seed set of size O(r/ε), Si, from the matrix ~X(fi) =

[~Xu(fi)]u∈[n] where ~Xu’s are defined in eq. (7.11). After choosing seed set Si, we
sample an assignment gi ∈ [k]Si (conditioned on fi−1) that satisfies

δfi−1,gi ≤ Eg∼‖~xS|fi−1
(g)‖2

[
δfi−1,g

]
99

where δf is defined in eq. (7.13) and set fi ← fi−1 ◦ gi. We repeat the seed selection
procedure as long as εfi > ε where εf is as defined in eq. (7.12).

The rounding procedure remains the same — independent labeling for each
CSP variable from the respective conditional distributions. Formally, for each
variable u ∈ [n], we choose a label i ∈ [k] with probability ‖~xu|fi(i)‖2 indepen-

dently at random. In Theorem 7.7.11, we will show that ` = O
(
k2

ε2

)
, i.e. seed

selection will terminate after choosing at most ` sets.

Analysis. Let us begin by defining the quantity

εf
def
=Euv∼G

∑
(i,j)∈[k]2

∣∣E [Xuv|f (ij)]− E
[
Xu|f (i)

]
E
[
Xv|f (j)

]∣∣
=Euv∼G

∑
i,j

∣∣Cov
[
Xu|f (i),Xv|f (j)

]∣∣ = Euv∼G
∑
i,j

∣∣〈~x⊥∅|f~xu|f (i), ~x⊥∅|f~xu|f (j)〉∣∣ .
(7.12)

As shown in Barak et al. [2011], the above gives an upper bound on the expected
extra fraction of unsatisfied constraints in the rounded solution compared to the
Lasserre SDP optimum (when performing rounding after conditioning on assign-
ment f). Therefore, when εf ≤ ε, we get an additive ε-error approximation. Our
goal is prove (which we will do in Theorem 7.7.11) that for ` ≤ Õ(k/ε), we must
have εf` ≤ ε.
If we define the quantity δf measuring the expected total variances of each Xu|f (i)
as

δf
def
= Eu

∑
i∈[k]

Var
[
Xu|f (i)

]
= Eu

∑
i∈[k]

‖~x⊥∅|f~xu|f (i)‖2 , (7.13)

then it is easy to see that εf ≤ kδf by Cauchy-Schwarz.
We will first relate eq. (7.12) to the inner products of the embedded vectors ~Xu(f).

Claim 7.7.7. Euv∼G
[
〈 ~Xu(f), ~Xv(f)〉

]
≥
(εf
k

)2.

Proof. We have

k〈 ~Xu(f), ~Xv(f)〉 =
∑
ij

〈~x⊥∅|f~xu|f (i), ~x⊥∅|f~xv|f (j)〉2
‖~x⊥∅|f~xu|f (i)‖‖~x⊥∅|f~xv|f (j)‖

≥

(∑
ij

∣∣∣〈~x⊥∅|f~xu|f (i), ~x⊥∅|f~xv|f (j)〉∣∣∣)2

∑
ij ‖~x⊥∅|f~xu|f (i)‖‖~x⊥∅|f~xv|f (j)‖

(7.14)

100

where the second step uses Cauchy Schwarz. Since

∑
i

‖~x⊥∅|f~xu|f (i)‖ ≤
√
k

(∑
i

‖~x⊥∅|f~xu|f (i)‖2

)1/2

≤
√
k

(∑
i

‖~xu|f (i)‖2

)1/2

=
√
k

the expected value of the above lower bound (7.14) for uv ∼ G is at least ε2
f/k.

We now upper bound the lengths of the embedded vectors.

Claim 7.7.8. ‖ ~Xu(f)‖2 ≤∑i∈[k]

∥∥∥~x⊥∅|f~xu|f (i)∥∥∥2

. In particular, Eu‖ ~Xu(f)‖2 ≤ δf .

Proof. 1
k
‖ ~Xu(f)‖2 = Eij

〈~x⊥∅|f~xu|f (i),~x⊥∅|f~xu|f (j)〉2

‖~x⊥∅|f~xu|f (i)‖‖~x⊥∅|f~xu|f (j)‖ ≤
(
Ei
∥∥∥~x⊥∅|f~xu|f (i)∥∥∥)2

≤ Ei
∥∥∥~x⊥∅|f~xu|f (i)∥∥∥2

.

Now for fixed f we will upper bound the expected value of δf,g over g ∼ ‖~xS|f (g)‖2

in terms of the projection distance of the embedded vectors from the subspace
spanned by Xv(f) for v ∈ S. (Below, XS(f)⊥ denotes the projection onto the
orthogonal complement of span{Xv(f) | v ∈ S}.)

Claim 7.7.9. Eg∼‖~xS|f (g)‖2 [δf,g] ≤ Eu∼G
[∥∥∥ ~X⊥S (f) ~Xu(f)

∥∥∥2
]

.

Proof. By Lemma 7.6.7, we know that Eg
[∥∥∥~x⊥∅|g,f~xu|g,f (i)∥∥∥2

]
=
∥∥∥Π⊥S|f~xu|f (i)

∥∥∥2

. Since

~x∅|f is in the span of ΠS|f by Claim 7.6.2(c), Π⊥S|f~xu|f (i) = Π⊥S|f~x
⊥
∅|f~xu|f (i). Similarly

for any v ∈ S and j ∈ [k], the vector ~x⊥∅|f~xv|f (j) is in the span of ΠS|f . By using
the same arguments from Claim 8.4.5, namely the embedding used here preserves

linearity, we obtain
∑

i

∥∥∥Π⊥S|f~x
⊥
∅|f~xu|f (i)

∥∥∥2

≤
∥∥∥ ~X⊥S (f) ~Xu(f)

∥∥∥2

. Taking expectation
over u completes the proof.

Using the above, we can prove the main claim about the seed selection procedure,
namely that, assuming λr is close enough to 1, the expected variance δf can be re-
duced by a geometric factor by conditioning on the assignment to a furtherO(r/ε)
nodes.

Lemma 7.7.10. Given f ∈ [k]S0 , positive real ε > 0 and positive integer r with λr+1 ≥
1 − ε2

2k2
, if εf ≥ ε then there exists a set of O(rk2/ε2)-columns of ~X(f), S and g ∈ [k]S

such that ~xS|f (g) 6= 0 and:

δf,g ≤ δf − Ω

(
ε2

k2

)
. (7.15)

101

Furthermore such S and g can be found in poly(n)kO(r/ε) time by the following: 1. Use Al-
gorithm 12 to find S. 2. Enumerate all g’s.

Proof. Let ρ def
= ε/k, and µ

def
= Eu‖ ~Xu‖2 where for notational convenience we sup-

press the dependence on f and denote Xu(f) by Xu. Observe that

1

n
Tr
[
~XT ~XA

]
= Euv∼G〈 ~Xu, ~Xv〉 ≥ (εf/k)2 ≥ ρ2

by Claim 7.7.7. This implies 1
n

Tr
[
~XT ~XL

]
≤ Eu‖ ~Xu‖2 − ρ2 = µ − ρ2. From

Lemma 7.2.1, we know that volume sampling O(r/ρ2) columns from ~X yields
a set S for which:

Eu‖ ~X⊥S ~Xu‖2 ≤
(
1 +O(ρ2)

) (1/n) Tr
[
~XT ~XL

]
1−max(1− λr+1, 0)

≤
(
1 +O(ρ2)

) µ− ρ2

1− ρ2

2

Since ρ ≤ 1, we have (1− ρ2/2)−1 ≤
(
1 + 3

4
ρ2
)
:

≤
(
1 +O(ρ2)

)
(µ− ρ2)

(
1 +

3

4
ρ2

)
≤
(
1 +O(ρ2)

)(
µ− ρ2

4

)
≤µ− Ω

(
ρ2
)

≤δf − Ω
(
ρ2
)

(by Claim 7.7.8) .

By Claim 7.7.9, Eg [δf,g] ≤ Eu‖ ~X⊥S ~Xu‖2, which means there exists g for which δf,g ≤
δf − Ω

(
ε2

k2

)
.

We put together everything in the following theorem.

Theorem 7.7.11. For ` = O
(
k2

ε2

)
, seed selection procedure will output a partial assign-

ment f` with εf` ≤ ε.

Proof. Suppose εfi > ε for all i ≤ `. Then by Lemma 7.7.10, for each i ≤ `:

0 ≤ δfi ≤ δf0 − iΩ
(
ε2

k2

)
≤ 1− Ω

(
iε2

k2

)
=⇒ δf` < 0,

which is a contradiction.

102

Chapter 8

Maximum Cut, Unique Games and
Similar Problems

In this chapter, we obtain approximation algorithms for Unique Games type prob-
lems in terms of constraint graph spectrum. This chapter is intended to be the sec-
ond part of Chapter 7 and we will heavily rely on it, therefore we assume reader
is familiar with it.

8.1 Introduction

Let us quickly recall the definition of the Unique Games problem. An instance of
Unique Games consists of a graph G = (V0, E,W), n = |V0|, with non-negative edge
weightswe for each edge e ∈ E, a label set [k], and bijection constraints πe : [k]→ [k]
for each edge e = {u, v}. The goal is to find a labeling f : V0 → [k] that minimizes
the number of unsatisfied constraints, where e = {u, v} is unsatisfied if πe(f(u)) 6=
f(v) (we assume the label of the lexicographically smaller vertex u is projected
by πe). Maximum cut is a special case of Unique Games in which there are two
labels, k = 2, and all constraints consist of inequalities, πe(1) = 2, πe(2) = 1: In
other words, we want to find a partition which cuts as many edges as possible.

Remark 8.1.1. Unique Games can also be captured in the quadratic integer programming
framework of Chapter 7, where the matrix A defining the objective function corresponds
to the Laplacian of the “lifted graph” Ĝ with vertex set V0× [k] obtained by replacing each
edge inG by a matching corresponding to its permutation constraint. However, except for
the problem of maximum cut, we are unable to apply the results from that section directly
because there is no known way to relate the rth eigenvalue of the constraint graph to say

103

the poly(r)th eigenvalue of the lifted graph. Hence we use the “projection distance” type
bound based on column selection (similar to Section 4.4), after constructing an appropriate
embedding to relate the problem to the original graph. �

Remark 8.1.2. Although we do not explicitly mention in the theorem statements, we can
provide similar guarantees in the presence of constraints similar to graph partitioning
problems such as

• constraining labels available to each node,

• constraining fraction of labels used among different subsets of nodes.

For example, the guarantee for maximum cut algorithm immediately carries over to
maximum bisection with guarantees on partition sizes similar to minimum bisection. �

8.2 Related Work

The Lasserre SDPs seem very powerful, and as mentioned earlier, for problems
shown to be hard assuming the UGC (such as beating Goemans-Williamson for
Max Cut), integrality gaps are not known even for a small constant number of
rounds. A gap instance for Unique Games is known if the Lasserre constraints are
only approximately satisfied Khot et al. [2010]. It is interesting to contrast this with
our positive result. The error needed in the constraints for the construction in Khot
et al. [2010] is r/(log log n)c for some c < 1, where n is the number of vertices and r
the number of rounds. Our analysis requires the Lasserre consistency constraints
are met exactly. In fact, even our solver from Chapter 5 can produce valid Lasserre
SDP solutions in time (k)O(r)nO(1) logO(1)(1/ε0) with an objective value at most ε0

more than optimal.
There are mixed hierarchies, which are weaker than Lasserre and based on com-

bining an LP characterized by local distributions (from the Sherali-Adams hierar-
chy) with a simple SDP, that have been used for several approximation algorithms.
Raghavendra [2008] proved that for every constraint satisfaction problem, assum-
ing the Unique Games conjecture, the best approximation ratio is achieved by a
small number of levels from the mixed hierarchy.

In an independent work, Barak et al. [2011] consider the above-mentioned
mixed hierarchy, and extend the local propagation rounding of Arora et al. [2008a]
to these SDPs in a manner similar to our work. Their analysis methods are rather
different from ours. Instead of column-based low-rank matrix approximation,
they use the graph spectrum to infer global correlation amongst the SDP vectors

104

from local correlation, and use it to iteratively to argue that a random seed set
works well in the rounding. Their main result is an additive approximation for Max
2-CSPs. Translating to the terminology used in this paper, given a 2-CSP instance
over domain size k with optimal value (fraction of satisfied constraints) equal to
v, they give an algorithm to find an assignment with value v−O

(
k
√

1− λr
)

based
on r′ � kr rounds of the mixed hierarchy. (Here λr is the r’th smallest eigenvalue
of the normalized Laplacian of the constraint graph; note though that λr needs to
be fairly close to 1 for the bound to kick in.) For the special case of Unique Games,
they get the better performance of v−O

(
4
√

1− λr
)

which doesn’t degrade with k,
and also a factorO(1/λr) approximation for minimizing the number of unsatisfied
constraints in time exponential in k.

For 2CSPs, our results only apply to a restricted class (corresponding to PSD
quadratic forms), but we get approximation-scheme style multiplicative guarantees
for the harder minimization objective, and can handle global linear constraints. (Also,
for Unique Games, our algorithm has running time polynomial in the number of
labels k and 2O(r), whereas runtime of [Barak et al., 2011] has exponential depen-
dence on k, 2O(k).) Our approach enables us to get approximation-scheme style
guarantees for several notorious graph partitioning problems that have eluded
even APX-hardness.

Using techniques similar to [Barak et al., 2011], Raghavendra and Tan [2012]
gave rounding algorithms achieving Goemans-Williamson style approximation
factors with global cardinality constraints up to error 1± ε.

8.3 Maximum Cut

We first start with the simplest problem fitting in the framework for unique games
— finding a maximum cut in a graph. Our algorithm also works for the case of
maximum bisection with guarantee on the partition size similar to minimum bi-
section. We use the following standard integer programming formulation. Note
that this formulation is for the complementary objective of finding minimum un-
cut:

min
x

∑
e={u,v}∈E

we ·
1

2

[
(x(u,1) − x(v,2))

2 + (x(u,2) − x(v,1))
2
]
,

st x(u,1) + x(u,2) = 1 ∀u ∈ V0,

x ∈ {0, 1}V0×[2] ,

105

and the corresponding r′ rounds of Lasserre Hierarchy relaxation (where we di-
rected each edge by adding (u, v), (v, u) for each {u, v} ∈ E):

min
x

1

2

∑
e=(u,v)∈E

we
(
x{(u,1)} + x{(v,2)} − 2x{(u,1),(v,2)}

)
st x is a pseudo moment sequence.

Theorem 8.3.1 (Maximum Cut / Minimum Uncut). Given a non-negative weighted
undirected graph G = (V,E,W) with V = V0, for all ε ∈ (0, 1) and a positive integer
r, let η be the minimum total weight of uncut edges over all subsets of V . There exists
an algorithm which, in time nO(1

ε)2O(r
ε2

), finds a subset of V whose total weight of uncut
edges is at most

≤ ηmin

{
1 +

2 + ε

λr+1(L)
,

1 + ε

min {2− λn−r−1(L), 1}

}
.

Proof. Our algorithm is the following: We run the algorithms from both Theo-
rems 7.3.1 and 8.4.1, and output the better solution. Running time is obvious.
Moreover first bound on weight of uncut edges follows from the more general re-
sult for Unique Games given in Theorem 8.4.1, so we focus on the second bound
claiming an approximation ratio of (1 + ε)/min{2− λn−r−1, 1}.

The Laplacian matrix, L̂ corresponding to the lifted graph, Ĝ, for minimum
uncut can be expressed as:

L̂ =

(
D −A
−AT D

)
=

(
D −A
−A D

)
,

with normalized Laplacian matrix being:

L̂ =

(
I −A
−A I

)
.

Let ~X def
= [~xu(i)]u∈V0,i∈[2] be the matrix with columns ~xu(i) and ~X(i) be the matrix

with ~X(i) = [~xu(i)]u∈V0 for fixed i ∈ [2].
By direct substitution, it is easy to see that, for every eigenvector qi of constraint

graph’s normalized Laplacian matrix, L, there are two corresponding eigenvec-

tors for L̂,

(
1√
2
qi

1√
2
qi

)
and

(
1√
2
qi

− 1√
2
qi

)
with corresponding eigenvalues given by λi and

106

2− λi respectively. As a convention, we will refer to the first type of eigenvectors
as even eigenvectors and the latter type as odd eigenvectors.

For any node u ∈ V0, we can express ~xu(i) for i ∈ [2] as

~xu(i) = ‖~xu(i)‖2~x∅ + (−1)i‖~xu(1)‖‖~xu(2)‖yu ,

where yu is a unit vector orthogonal to ~x∅, 〈~x∅, yu〉 = 0. For any set S, Π⊥S~xu(1) =

Π⊥S (~x⊥∅ ~xu(1)) = Π⊥S yu = −Π⊥S~xu(2). Consequently for the matrix ~X = [~xu(1), ~xu(2)]u∈V ∈
RΥ,V , ~XTΠ⊥S

~X has zero correlation with even eigenvectors of L̂. Therefore we have
the following identity:

Tr(~XTΠ⊥S~x
⊥
∅ Π⊥S ~XL̂) = Tr(~X(1)TΠ⊥S~x

⊥
∅ Π⊥S ~X(1)(D + A)).

In particular, we can slightly modify Theorem 7.2.2 to take into account only the
eigenvectors of L̂ with which ~x⊥∅ ~X has non-zero correlation. Using the bound on
total weight of edges cut from Theorem 7.3.1, we see that the fraction of “uncut”
edges is bounded by (1 + ε) η

min(λr+1(I+A),1)
. The proof is now complete by noting

that λr+1(I +A) = 2− λn−r−1(L).

8.4 Unique Games

In this section, we prove our main result for approximating Unique Games. We
consider the following IP formulation:

min
x

∑
e={u,v}∈E

we ·
1

2

∑
i∈[k]

(xu(i) − xv(πe(i)))
2,

subject to
∑
i∈[k]

xu(i) = 1 ∀u ∈ V0,

x ∈ {0, 1}V0×[k].

Theorem 8.4.1 (Unique Games). Let G = (V0, E,W), n = |V0|, be an instance of
Unique Games on label set [k] with permutation constraints πe for each e ∈ E. Suppose
η is the total weight of unsatisfied constraints in the optimal labeling.

For any ε ∈ (0, 1) and positive integer r, there exists an algorithm that finds a labeling
f : V0 → [k] in time nO(1)kO(rε) whose total weight of unsatisfied constraints is at most:

≤
(

1 +
2 + ε

λr+1(L)

)
η

107

Proof. Our algorithm is very similar to Theorem 7.3.1 with only one iteration of
seed selection. The crucial difference lies in how we choose our seed set: Instead
of choosing columns from matrix with columns ~xu(i), we embed each vector “bun-
dle” {~xu(i)}i∈[k], over all u, to a single vectorXu using Theorem 8.4.2 and we choose
columns from the matrix X = [Xu]u∈V . After choosing seed set from this embed-
ding, the rounding algorithm proceeds as usual.

As usual, we will start by bounding the total weight of unsatisfied constraints
for fixed seed set S. For [~xT (g)] being labeling vectors for moment sequence with
objective value η ≤ η we have:

η =
1

4

∑
e=(u,v)∈E

we
∑
f

‖~xu(f) − ~xv(πe(f))‖2.

where for notational convenience we treat each undirected edge {u, v} as two di-
rected edges of half the weight.

The indicator vector of labeling chosen randomly from distribution ‖~x◦|S∗(◦)‖2

as described in Definition 7.1.1, x ∼ ‖~x◦|S∗(◦)‖2, we can bound the expected weight
of unsatisfied constraints, η′, using Claim 7.1.4 as:

η′ =
1

2

∑
e=(u,v)∈E

weProbx∼‖~xS∗(f)‖2

[
∃i ∈ [k] : xu(i) 6= xv(πe(i))

]
=

1

2

∑
e=(u,v)∈E

we
∑
f

〈ΠS∗~xu(f),ΠS∗(~x∅−~xv(πe(f)))〉

=
1

2

∑
e=(u,v)∈E

we
∑
f

‖~xu(f)‖2 − 〈~xu(f), ~xv(πe(f))〉+ 〈Π⊥S∗~xu(f),Π
⊥
S∗~xv(πe(f))〉

= η +
1

2

∑
e=(u,v)∈E

we
∑
f

〈Π⊥S∗~xu(f),Π
⊥
S∗~xv(πe(f))〉

≤ η +
1

2

∑
e=(u,v)∈E

we
∑
f

‖Π⊥S∗~xu(f)‖2 + ‖Π⊥S∗~xv(f)‖2

2
= η +

1

2

∑
u

du
∑
f

‖Π⊥S∗~xu(f)‖2.

Recall that for PS∗ being the projection matrix onto span{~xv(f)}v∈S∗,f∈[k], ‖Π⊥S∗~xu(f)‖2 ≤
‖P⊥S∗~xu(f)‖2. Substituting this back into above bound, we obtain:

≤ η +
1

2

∑
u

du
∑
f

‖P⊥S∗~xu(f)‖2 = η

(
1 +

1
2

∑
u du

∑
f ‖P⊥S∗~xu(f)‖2

1
4

∑
e=(u,v)∈E

∑
f we‖~xu(f) − ~xv(πe(f))‖2

)
.

108

Since we chose our seed set on matrix X = [Xu] whose columns, Xu, were ob-
tained by embedding {~xu(f)}f∈[k] 7→ Xu as given in Theorem 8.4.2:

≤ η
(

1 +
1
2

∑
u du‖X⊥S∗Xu‖2

1
8

∑
e=(u,v)∈E we‖Xu −Xv‖2

)
= η

(
1 + 4

Tr(XTX⊥S∗XD)

2 Tr(XTXL)

)

If we further scale X by D1/2 so that X ′ = D1/2X , we can rewrite final bound as:

= η

(
1 + 2

Tr(X ′TX ′⊥S∗X
′)

Tr(X ′TX ′L)

)

where L is the normalized Laplacian matrix. Since S∗ was chosen using column
selection, we apply the bound from Lemma 7.2.1 and finish the proof.

Theorem 8.4.2 (A useful embedding). Given vectors [~xu(i)]u∈V0,i∈[k] with the property
that, for any u ∈ V0, whenever f, g ∈ [k]u are two different labelings of u, f 6= g,

〈~xu(f), ~xu(g)〉 = 0;

there exists an embedding {~xu(f)}f∈[k]u 7→ Xu satisfying the following:

1. For any u ∈ V0, ‖Xu‖2 =
∑

f ‖~xu(f)‖2.

2. For any u, v ∈ V0 and any permutation π : [k]→ [k],∑
i∈[k]

‖~xu(i) − ~xv(π(i))‖2 ≥ 1

2
‖Xu −Xv‖2.

3. For any set S ⊆ V0 and any node u ∈ V0, if we let PS be the projection matrix onto
the span of {~xs(f)}s∈S,f∈[k]:

‖X⊥SXu‖2 ≥
∑
f∈[k]

‖P⊥S ~xu(f)‖2.

Our embedding is as follows. Assume that the vectors ~xu(f) belong to Rm. Let
e1, e2, . . . , em ∈ Rm be the standard basis vectors. Define Xu ∈ Rm ⊗ Rm as

Xu =
m∑
i=1

∑
f∈[k]

〈~xu(f), ei〉~xu(f) ⊗ ei .

109

Observation 8.4.3. For vectors x, y ∈ Rm,
∑m

i=1〈x, ei〉〈y, ei〉 = 〈x, y〉.
Proof of Theorem 8.4.2. The first property of the vectors Xu follows from above ob-
servation easily:

‖Xu‖2 =
∑
i

∑
f,g

〈~xu(f), ei〉〈~xu(g), ei〉〈~xu(f), ~xu(g)〉

=
∑
f,g

〈~xu(f), ~xu(g)〉
∑
i

〈~xu(f), ei〉〈~xu(g), ei〉

=
∑
f,g

〈~xu(f), ~xu(g)〉〈~xu(f), ~xu(g)〉

=
∑
f

‖~xu(f)‖2.

We prove second and third properties in Claims 8.4.4 and 8.4.5 respectively.

Claim 8.4.4. For any permutation π : [k]→ [k],

1

2
‖Xu −Xv‖2 ≤

∑
i∈[k]

‖~xu(i) − ~xv(π(i))‖2.

Proof. Without loss of generality, we assume π is the identity permutation. We
have

1

2
‖Xu −Xv‖2 =

‖Xu‖2 + ‖Xv‖2

2
− 〈Xu, Xv〉

=
‖Xu‖2 + ‖Xv‖2

2
−
∑
f,g

〈~xu(f), ~xv(g)〉
∑
i

〈~xu(f), ei〉〈~xv(g), ei〉

=
∑
f

‖~xu(f)‖2 + ‖~xv(f)‖2

2
−
∑
f,g

〈~xu(f), ~xv(g)〉2‖~xu(f)‖‖~xv(g)‖

The sum over all pairs is lower bounded by summing only the corresponding
pairs:

≤ 1

2

∑
f

(
‖~xu(f)‖2 + ‖~xv(f)‖2 − 2〈~xu(f), ~xv(f)〉〈~xu(f), ~xv(f)〉

)
=

1

2

∑
f

‖~xu(f) − ~xv(f)‖2 +
∑
f

〈~xu(f), ~xv(f)〉
(
1− 〈~xu(f), ~xv(f)〉

)︸ ︷︷ ︸
≥0

(8.1)

110

Since the coefficient of 〈~xu(f), ~xv(f)〉 is positive, we can use Cauchy-Schwarz in-
equality to replace 〈~xu(f), ~xv(f)〉with ‖~xu(f)‖ · ‖~xv(f)‖ in eq. (8.1) to obtain:

≤ 1

2

∑
f

‖~xu(f) − ~xv(f)‖2 +
∑
f

(
‖~xu(f)‖ · ‖~xv(f)‖ − 〈~xu(f), ~xv(f)〉

)
(8.2)

Using inequality ‖~xu(f)‖ · ‖~xv(f)‖ ≤ 1
2

(
‖~xu(f)‖2 + ‖~xv(f)‖2

)
on eq. (8.2):

≤ 1

2

∑
f

(
‖~xu(f) − ~xv(f)‖2 + ‖~xu(f)‖2 + ‖~xv(f)‖2 − 2〈~xu(f), ~xv(f)〉

)
=
∑
f

‖~xu(f) − ~xv(f)‖2.

Claim 8.4.5.
‖X⊥SXu‖2 ≥

∑
f

‖P⊥S ~xu(f)‖2.

Proof. For any θ ∈ RS :

‖Xu −
∑
v

θvXv‖2 =
m∑
i=1

∥∥∥∥∑
f

〈~xu(f), ei〉~xu(f) −
∑
v∈S,g

θv〈~xv(g), ei〉~xv(g)︸ ︷︷ ︸
PSΘi

∥∥∥∥2

. (8.3)

Substituting αf = P⊥S ~xu(f) and βf = PS~xu(f), eq. (8.3) is equal to:

=
m∑
i=1

∥∥∥∥∑
f

〈~xu(f), ei〉(αf + βf)− PSΘi

∥∥∥∥2

=
m∑
i=1

∥∥∥∥∑
f

〈~xu(f), ei〉αf
∥∥∥∥2

+

∥∥∥∥∑
f

〈~xu(f), ei〉βf − PSΘi

∥∥∥∥2

≥
m∑
i=1

∥∥∥∥∑
f

〈~xu(f), ei〉αf
∥∥∥∥2

=
∑
f,g

〈αf , αg〉
m∑
i=1

〈~xu(f), ei〉〈~xu(g), ei〉

=
∑
f,g

〈αf , αg〉〈~xu(f), ~xu(g)〉 =
∑
f

‖αf‖2 =
∑
f

‖P⊥S ~xu(f)‖2.

This concludes the proof of Theorem 8.4.2, therefore also the proof of Theo-
rem 8.4.1.

111

112

Chapter 9

Sparsest Cut and Other Expansion
Problems

The problem of finding sparsest cut on graphs is a fundamental optimization
problem that has been intensively studied. The problem is inherently interest-
ing, and is important as a building block for divide-and-conquer algorithms on
graphs as well as to many applications such as image segmentation Shi and Ma-
lik [2000], Sinop and Grady [2007], VLSI layout Bhatt and Leighton [1984], packet
routing in distributed networks Awerbuch and Peleg [1990], etc.

9.1 Introduction

Let us define the prototypical sparsest cut problem more concretely. We are given
a set of n-vertices, V , along with two functions C,D :

(
V
2

)
→ R+ representing edge

weights of some cost and demand graphs, respectively. Then given any subset
T ⊂ V , we define its sparsity as the following ratio:

ΦT
def
=

∑
u<v Cu,v · |1T (u)− 1T (v)|∑
u<vDu,v · |1T (u)− 1T (v)| , (9.1)

where 1T is the indicator function of T . Our goal in the Non-Uniform Sparsest
Cut problem is to find a subset T ⊂ V with minimum sparsity, which we denote
by Φ∗

def
= minT⊂V ΦT . The special case of demand graph being a clique, where the

denominator of eq. (9.1) becomes |T | · |V \T |, is called the UNIFORM SPARSEST CUT
problem.

113

The value of the sparsest cut can be understood in terms of the spectral prop-
erties of cost and demand graphs. Let 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm be the generalized
eigenvalues between the Laplacian matrices of cost and demand graphs (see ?? for
formal definitions). In a way similar to the “easy” direction of Cheeger’s inequal-
ity, we can use Courant-Fischer Theorem to show that λ1 ≤ Φ∗. At some point,
the eigenvalue λr will exceed Φ∗. Our main result is an approximation algorithm
for Non-Uniform Sparsest Cut which is efficient when this happens for small r. In
particular:

Corollary 9.1.1 (See Corollary 9.2.21). Given V and C,D :
(
V
2

)
→ R+, for any positive

integer r, one of the following holds.

• Either one can find T ⊂ V with ΦT ≤ 2Φ∗ in time 2O(r) poly(n) where n = |V |,
• Or Φ∗ ≥ 0.49λr.

Our actual approximation guarantee is stronger and is stated in Corollary 9.2.21
(the above follows as a corollary with suitable choice of parameters). We can also
get similar results for various expansion problems such as normalized cut, edge
expansion and conductance using the same algorithm.

9.1.1 Previous approximation algorithms for sparsest cut

As the (UNIFORM) SPARSEST CUT problem and closely related variants (such as
edge expansion and conductance) are all NP-hard in general, theoretically much
effort has gone into the design of good approximation algorithm for the problem.

For Uniform Sparsest Cut problem, the hard direction of Cheeger’s inequality
shows one can “round” the eigenvector corresponding to λ1 to a cut T satisfying
ΦU ≤

√
8dmaxλ1(G) where dmax is the maximum degree. This givesO(

√
dmax/Φ∗(G)) ≤

O(
√
dmax/λ1(G)) approximation which is good for moderate values of Φ∗ for the

case of Uniform Sparsest Cut. To the best of our knowledge, no analogue of this
result is known for Non-Uniform Sparsest Cut.

For smaller values of Φ∗, the best approximation for Non-Uniform Sparsest
Cut is based on solving a convex relaxation of the problem, and then rounding the
solution to a cut. Using linear programming (LP), in a seminal work, Leighton
and Rao Leighton and Rao [1988] gave a factor O(log n) approximation for Non-
Uniform Sparsest Cut (here n denotes the number of vertices). Beautiful con-
nections of approximating sparsest cut to embeddings of metric spaces into the
`1-metric were later discovered in Linial et al. [1995], Aumann and Rabani [1998].
Using a semi-definite programming (SDP) relaxation, the approximation ratio was

114

improved to O(
√

log n) for Uniform Sparsest Cut in the breakthrough work ?. For
Non-Uniform Sparsest Cut, using `1 embeddings of negative type metrics, an ap-
proximation factor of O(log3/4 n) was obtained in Chawla et al. [2008] and a factor
O(
√

log n log log n), nearly matching the Uniform Sparsest Cut case, was obtained
in Arora et al. [2008b].

Recently, higher order eigenvalues were used to approximate many graph par-
titioning problems. In Chapter 7, we gave an algorithm based on SDPs from the
Lasserre hierarchy achieving an approximation factor of the form (1+ε)/min{1, λ̃r}
for problems such as minimum bisection, small set expansion, etc, where λ̃r is the
r’th smallest eigenvalue of the normalized Laplacian. On a similar front, for the
Uniform Sparsest Cut problem, if the rth eigenvalue is large relative to expansion,
we show how to combine the eigenspace enumeration of Arora et al. [2010] with a
cut improvement procedure from Andersen and Lang [2008]1 to obtain a constant
factor approximation for Uniform Sparsest Cut in time nO(1)2O(r). The details of
this combination are briefly spelled out in Section 9.3. We will revisit this ap-
proach in Section 9.1.2 to show why it does not work for Non-Uniform Sparsest
Cut.

A common theme in this line of work is that one can obtain a constant fac-
tor approximation with running time being a function of how fast the spectrum
grows (all algorithms in this chapter and the ones in Chapter 7 in fact allow ap-
proximation schemes). Put differently, one can identify a generic condition which
highlights what kind of graphs are easy.

To the best of our knowledge, in the case of Non-Uniform Sparsest Cut with
an arbitrary demand graph, no such results of the above vein are known. In fact,
we are not aware of the analog of the harder direction of Cheeger’s inequality, let
alone spectrum based approximation schemes. In this paper, we present such an
approximation scheme based on the generalized eigenvalues.

9.1.2 Overview of Our Contributions

In this section, we briefly describe our main contributions in terms algorithmic
tools and techniques over Chapter 7.
Main Contributions. The rounding algorithm in Chapter 7 is based on choosing
a set of r-nodes, “seeds”, then labeling these using the SDP solution. Finally these
labels are “propagated” to other vertices independently at random. Such round-
ing is acceptable for constraint satisfaction type problems such as maximum cut.

1We thank anonymous reviewers for bringing this paper to our attention.

115

Unfortunately for problems such as Non-Uniform Sparsest Cut, independent
rounding is too “crude”: It tends to break the graph into many disconnected com-
ponents, which is rather disastrous for Non-Uniform Sparsest Cut.

In this chapter, we consider a more “delicate” rounding based on thresholding.
Our main contribution is to show how the performance of such rounding is related
to some strong geometrical quantities of underlying SDP solution, and we show
how to bound it using generalized spectra.
Comparison with Subspace Enumeration. One successful technique for design-
ing approximation algorithms based on higher order spectrum is subspace enu-
meration Kolla [2010], Arora et al. [2010]. Suppose we have a target set T corre-
sponding to a Uniform Sparsest Cut. These techniques rely on the fact that the
indicator vector T should have a large component on the span of small eigenvec-
tors. Thus by enumerating over the vectors on this subspace using some ε-net, we
can find a set whose symmetric difference with T is small. Combining this with a
cut improvement algorithm due to Andersen and Lang [2008], we can obtain an
approximation algorithm for Uniform Sparsest Cut problem with slightly worse
approximation factors than ours (see Section 9.3).

Unfortunately the immediate extension of this approach to Non-Uniform Spars-
est Cut by using the generalized eigenvectors does not work as the generalized
eigenvectors are not orthogonal in the Euclidean space.

9.2 Our Algorithm and Its Analysis

The complete algorithm is presented in Algorithm 10. It is based on rounding a
certain r′-rounds of Lasserre Hierarchy relaxation for the Non-Uniform Sparsest
Cut problem given positive integer r′:

min

∑
u<v Cu,v‖~xu − ~xv‖2∑
u<vDu,v‖~xu − ~xv‖2

st
∑
u<v

Du,v‖~xu−~xv‖2 > 0, ~x ∈ Lasserrer′(V), ‖~x∅‖2 = 1.

(9.2)
It is easy to see that eq. (9.2) is indeed a relaxation of Non-Uniform Sparsest Cut
problem. Even though it is not an SDP problem (it is quasi-convex), there is an
equivalent SDP formulation.

Lemma 9.2.1. The following SDP is equivalent to eq. (9.2):

min
∑
u<v

Cu,v‖~wu−~wv‖2 st
∑
u<v

Du,v‖~wu−~wv‖2 = 1, ‖~w∅‖2 > 0, ~w ∈ Lasserrer′(V).

(9.3)

116

Remark 9.2.2. The constraint ‖~w∅‖2 > 0 in eq. (9.3) is redundant, but we included it for
the sake of clarity.

Proof of Lemma 9.2.1. Given a feasible solution ~x of eq. (9.2), consider the following
collection of vectors, ~w = [~wT]T∈(V

≤r′)
. For each T ∈

(
V
≤r′
)
, we define ~wT as ~wT

def
=

1√∑
u<v Du,v‖~xu−~xv‖2

~xT . It is easy to see that
∑

u<vDu,v‖~wu − ~wv‖2 = 1 and objective

values are equal. Finally ‖~w∅‖2 = 1∑
u<v Du,v‖~xu−~xv‖2

> 0 since 0 <
∑

u<vDu,v‖~xu −
~xv‖2 < +∞.

For the other direction of equivalence, suppose ~w is a feasible solution of eq. (9.3).
For each T ∈

(
V
≤r′
)
, f ∈ {0, 1}T , let ~xT (f)← 1

‖~w∅‖
~wT (f). It is easy to see that the ob-

jective values are equal. Rest of the proof for ~x being a feasible solution of eq. (9.2)
follows in the same way with the previous direction.

Remark 9.2.3. Main components of our rounding, Algorithms 8 and 9, are scale invari-
ant; thus the formulation given in eq. (9.3) is sufficient for rounding purposes. But we
chose to first present eq. (9.2) as it is more intuitive.

9.2.1 Intuition Behind Our Rounding

For an intuition behind our rounding procedure, presented in Algorithm 8, we
start with a simple rounding procedure, which is based on the seed based propa-
gation framework. Later in this section, we will show how to fix it.

First Attempt. Consider the following procedure. On input ~x ∈ Lasserre2r′+2(V):

1. Choose a set of r′-edges from the demand graph, say S ⊆
(
V
2

)
(seed edges).

2. Let S̃ be the set of their endpoints, S̃ ← {u ∈ V | exists v such that {u, v} ∈ S} ⊆
V .

3. Observe that |S̃| ≤ 2r′, hence the values
∥∥~xS̃(f)

∥∥2 define a probability dis-
tribution over all labelings of S̃, f : S̃ → {0, 1} . So sample a labeling for S̃,
f : S̃ → {0, 1}, with probability ‖~xS(f)‖2.

4. Choose a threshold τ ∈ [0, 1] uniformly at random and output the following
set:

T (f, τ)
def
=

{
u ∈ V

∣∣∣∣〈~xS̃(f), ~xu〉
‖~xS̃(f)‖2

≥ τ

}
.

117

In order for this procedure to make sense, the range of 〈~xS̃(f),~xu〉
‖~xS̃(f)‖2 should be similar

to τ ’s range. In the following claim, we prove this.

Claim 9.2.4. Provided that ~xS̃(f) 6= 0, we have: (i) 0 ≤ 〈~xS̃(f),~xu〉
‖~xS̃(f)‖2 ≤ 1 for any u ∈ V ,

(ii) |〈~xS̃(f),~xu−~xv〉|
‖~xS̃(f)‖2 ≤ 1 for any pair u, v ∈ V , (iii) 〈~xS̃(f),~xu〉

‖~xS̃(f)‖2 = f(u) for any u ∈ S̃.

Proof of (i) and (ii). We will only prove (i), from which (ii) follows immediately.
The lower bound follows from 〈~xS̃(f), ~xu〉 = ‖~xS̃∪{u}(f ◦ 1)‖2 ≥ 0. For the upper
bound, we have:

〈~xS̃(f), ~xS̃(f)− ~xu〉 =‖~xS̃(f)‖2 − 〈~xS̃(f), ~xu〉 = 〈~xS̃(f), ~x∅〉 − 〈~xS̃(f), ~xu〉
=〈~xS̃(f), ~xu(0)〉 = ‖~xS̃∪{u}(f ◦ 0)‖2 ≥ 0.

Proof of (iii). Follows from the fact that 〈~xS̃(f), ~xu(f(u))〉 = ‖~xS̃(f)‖2.

Let’s calculate the probability of separating two vertices by this procedure.

Claim 9.2.5. Ef,τ
[∣∣1T (f,τ)(u)− 1T (f,τ)(v)

∣∣] =
∑

f

∣∣〈~xS̃(f), ~xu − ~xv〉
∣∣ .

Proof. For fixed f , by Claim 9.2.4 the probability of separating u and v is equal to
|〈~xS̃(f),~xu−~xv〉|
‖~xS̃(f)‖2 . Taking expectation over f :

Ef,τ
[∣∣1T (f,τ)(u)− 1T (f,τ)(v)

∣∣] =
∑
f

‖~xS̃(f)‖2

∣∣〈~xS̃(f), ~xu − ~xv〉
∣∣

‖~xS̃(f)‖2
=
∑
f

∣∣〈~xS̃(f), ~xu − ~xv〉
∣∣ .

Second Attempt. For any fixed f : S̃ → {0, 1}, there are at most n different
T (f, τ)’s. Hence instead of choosing f : S̃ → {0, 1} and τ ∈ [0, 1] randomly, we
can perform an exhaustive search over all possible such sets and output the one
with minimum sparsity. Since there are at most n2O(r′) many unique T (f, τ)’s, the
exhaustive search can easily be implemented in time poly(n)2O(r′). The rounding
procedure along with this modification is presented in Algorithm 8.

9.2.2 Seed Based `1-embedding

We choose our embedding so as to reflect the rounding procedure outlined in the
previous section.

118

Definition 9.2.6 (Seed Based Embedding). Given ~x ∈ Lasserre2r′+2(V) and S ⊆
(
V
2

)
with |S| ≤ r′, let S̃ be the endpoints of edges in S so that S ⊆

(S̃
2

)
. Then we define the seed

based embedding of ~x as the following collection of vectors. For each u ∈ V , ~ySu ∈ R{0,1}S̃

is given by ~ySu
def
=

[
〈~xS̃(f), ~xu〉

]
f :S̃→{0,1}

.

Observe that ‖~ySu − ~ySv ‖1 is equal to the probability that u and v are separated
as shown in Claim 9.2.5.

It is well known that once we have an `1-embedding, we can get a cut with
similar sparsity by choosing the best threshold cut along each coordinate and this
is exactly what we do in Algorithm 8.

Lemma 9.2.7 (`1 Embeddings and Threshold Cuts Linial et al. [1995]). Given a set
of vertices V , a collection of vectors

[
~yu ∈ RΥ

]
u∈V

representing an embedding of V , the

following holds. For any C,D :
(
V
2

)
→ R+ being the edge weights of graphs G and H ,

respectively:

min
f∈Υ,
τ∈R

ΦT (f,τ) ≤
∑

u<v Cu,v ‖~yu − ~yv‖1∑
u<vDu,v ‖~yu − ~yv‖1

. (9.4)

Here T (f, τ)
def
=
{
u ∈ V

∣∣ ~yu(i) ≥ τ
}

represents the threshold cut along coordinate f ∈ Υ.

Proof. Let φ def
= min

f∈Υ,
τ∈R

ΦT (f,τ). For any f ∈ Υ, let δf
def
= maxa,b |~ya(f) − ~yb(f)| =

maxb ~yb(f)−mina ~ya(f) and ∆
def
=
∑

f δf .
Consider the following randomized process. Choose f ∈ Υ with probability

proportional to δf and then sample a threshold τ ∈u [mina ~ya(f),maxb ~yb(f)]. Then:

Ef,τ
[∣∣1T (f,τ)(u)− 1T (f,τ)(v)

∣∣] =
∑
f∈Υ

δf
∆

|~yu(f)− ~yv(f)|
δf

=
1

∆
‖~yu − ~yv‖1 .

Moreover, for any f and τ , by definition of φ:∑
u<v

Cu,v
∣∣1T (f,τ)(u)− 1T (f,τ)(v)

∣∣ ≥ φ
∑
u<v

Du,v

∣∣1T (f,τ)(u)− 1T (f,τ)(v)
∣∣.

Putting it all together:

∑
u<v Cu,v ‖~yu − ~yv‖1∑
u<vDu,v ‖~yu − ~yv‖1

=

Ef,τ
[∑

u<v Cu,v
∣∣1T (f,τ)(u)− 1T (f,τ)(v)

∣∣]
Ef,τ

[∑
u<vDu,v

∣∣1T (f,τ)(u)− 1T (f,τ)(v)
∣∣] ≥ φ.

119

In the rest of this section, we will upper bound eq. (9.4) for our embedding
from Definition 9.2.6.

Claim 9.2.8. ‖~ySu − ~ySv ‖1 ≤ ‖~xu − ~xv‖2.

Proof. Since ~x ∈ Lasserre2r′+2(V), we can express ~xu and ~xv as:

~xu = ~xu,v(10)+~xu,v(11), ~xv = ~xu,v(01)+~xu,v(11) =⇒ ~xu−~xv = ~xu,v(10)−~xu,v(01).

The following identity follows easily2:

‖~xu−~xv‖2 = ‖~xu,v(10)‖2+‖~xu,v(01)‖2−2 〈~xu,v(10), ~xu,v(01)〉︸ ︷︷ ︸
=0

= ‖~xu,v(10)‖2+‖~xu,v(01)‖2.

(9.5)
Therefore:∣∣~ySu (f)− ~ySv (f)

∣∣ =
∣∣〈~xS̃(f), ~xu − ~xv〉

∣∣ =
∣∣〈~xS̃(f), ~xu,v(10)− ~xu,v(01)〉

∣∣
≤
∣∣〈~xS̃(f), ~xu,v(10)〉

∣∣+
∣∣〈~xS̃(f), ~xu,v(01)〉

∣∣
For any g : {u, v} → {0, 1}, 〈~xS̃(f), ~xu,v(g)〉 =

∥∥~xS̃∪{u,v}(f ◦ g)
∥∥2 ≥ 0. Thus:

=〈~xS̃(f), ~xu,v(10)〉+ 〈~xS̃(f), ~xu,v(01)〉.

Summing over f and using the fact that ~x∅ =
∑

f ~xS̃(f):

‖~ySu − ~ySv ‖1 ≤
〈∑

f

~xS̃(f), ~xu,v(10) + ~xu,v(01)

〉
= 〈~x∅, ~xu,v(10) + ~xu,v(01)〉

=‖~xu,v(10)‖2 + ‖~xu,v(01)‖2 = ‖~xu − ~xv‖2 by eq. (9.5).

Claim 9.2.9. ‖~ySu − ~ySv ‖1 ≥
∑

f :~xS̃(f)6=0〈~xS̃(f), ~xu − ~xv〉2 where ~xS̃(f)
def
=

~xS̃(f)

‖~xS̃(f)‖ is the
unit vector for ~xS̃(f).

Proof. For any f : ~xS̃(f) 6= 0, by Claim 9.2.4, 0 ≤ |〈~xS̃(f),~xu−~xv〉|
‖~xS̃(f)‖2 ≤ 1 thus |〈~xS̃(f),~xu−~xv〉|

‖~xS̃(f)‖2 ≥(
〈~xS̃(f),~xu−~xv〉
‖~xS̃(f)‖2

)2

. Multiplying both sides with ‖~xS̃(f)‖2 > 0, we obtain
∣∣〈~xS̃(f), ~xu − ~xv〉

∣∣ ≥
〈~xS̃(f),~xu−~xv〉2

‖~xS̃(f)‖2 .

Summing over all f : ~xS̃(f) 6= 0, we obtain the desired lower bound, ‖~ySu −
~ySv ‖1 =

∑
f

∣∣〈~xS̃(f), ~xu − ~xv〉
∣∣ ≥∑f :~xS̃(f)6=0

〈~xS̃(f),~xu−~xv〉2

‖~xS̃(f)‖2 .

2 Intuitively, it corresponds to the following. The “probability” of u and v are separated is equal
to the probability of u and v being labeled with 1 and 0 or 0 and 1.

120

In its current form, our lower bound is not very useful as it involves the higher
order vectors (~xS̃(f)’s) from our relaxation. Unfortunately these vectors are very
hard to reason about: We do not have any direct handle on them. Therefore our
goal is to relate this expression to some other expression that only involves the
vectors for edges (~xu − ~xv’s). We first introduce some notation.

Notation 9.2.10. Let ΠS̃
def
=
∑

f :~xS̃(f)6=0 ~xS̃(f) · ~xS̃(f)
T

We can rewrite the lower bound from Claim 9.2.9 in terms of ΠS̃ as follows:

∑
f

〈~xS̃(f), ~xu−~xv〉2 = (~xu−~xv)T
(∑

f

~xS̃(f) · ~xS̃(f)
T

)
(~xu−~xv) = (~xu−~xv)TΠS̃(~xu−~xv).

(9.6)
Recall that ΠS̃ has a special structure – it is a projection matrix onto the span of
vectors {~xS̃(f)}f .

Proposition 9.2.11. Π2
S̃ = ΠS̃ , i.e. ΠS̃ is a projection matrix onto the span of vectors in

{~xS̃(f)}.

Proof. Observe that 〈~xS̃(f), ~xS̃(g)〉 =

{
1 if f = g,
0 else

. Then we have:

Π2
S̃ =

∑
f,g

〈~xS̃(f), ~xS̃(g)〉~xS̃(f) · ~xS̃(g)
T

=
∑
f

~xS̃(f) · ~xS̃(f)
T

= ΠS̃ .

For each seed edge {u, v} ∈ S , ~xu − ~xv ∈ span
{
~xS̃(f)

}
. This means we can

lower bound the matrix ΠS̃ in terms of the projection matrix onto the span of
vectors corresponding to seed edges!

Notation 9.2.12. Let PS be the projection matrix onto the span of {~xu − ~xv}{u,v}∈S .
Similarly let P⊥S be projection matrix onto the orthogonal complement of {~xu−~xv}{u,v}∈S ,
i.e., P⊥S = I − PS . Here I is the identity matrix.

Lemma 9.2.13. ‖~ySu − ~ySv ‖1 ≥ ‖PS(~xu − ~xv)‖2 = ‖~xu − ~xv‖2 −
∥∥P⊥S (~xu − ~xv)

∥∥2.

Proof. From Claim 9.2.9 and eq. (9.6) we see that ‖~ySu−~ySv ‖1 ≥ (~xu−~xv)TΠS̃(~xu−~xv).
For any u ∈ S̃, ~xu =

∑
f :f(u)=1 ~xS̃(f) hence ~xu ∈ span{~xS̃(f)}. In particular, for any

pair u, v ∈ S̃: ~xu − ~xv ∈ span{~xS̃(f)}, which means:

span {~xu − ~xv}{u,v}∈S ⊆ span {~xu − ~xv}u,v∈S̃ ⊆ span
{
~xS̃(f)

}
=⇒ ΠS̃ � PS = P 2

S .

Consequently, (~xu−~xv)TΠS̃(~xu−~xv) ≥ (~xu−~xv)TP 2
S(~xu−~xv) = ‖PS(~xu − ~xv)‖2.

121

We wrap up this section with the following theorem.

Theorem 9.2.14. Given ~x ∈ Lasserrer′(V) and a set of seed edges S ⊆
(
V
2

)
with projec-

tion matrices PS , P⊥S as in Notation 9.2.12; let T ⊂ V be the set returned by Algorithm 8
and ~yS be the embedding as described in Definition 9.2.6. Then the following bounds hold:

ΦT

ΦSDP
≤ 1

ΦSDP

∑
u<v Cu,v‖~ySu − ~ySv ‖1∑
u<vDu,v‖~ySu − ~ySv ‖1

≤
(

1−
∑

u<vDu,v‖P⊥S (~xu − ~xv)‖2∑
u<vDu,v‖~xu − ~xv‖2

)−1

(9.7)

where ΦSDP def
=

∑
u<v Cu,v‖~xu−~xv‖2∑
u<v Du,v‖~xu−~xv‖2

.

Proof. ΦT ≤
∑
u<v Cu,v‖~ySu−~ySv ‖1∑
u<v Du,v‖~ySu−~ySv ‖1

follows from Lemma 9.2.7. Claim 9.2.8 and Lemma 9.2.13
together imply∑

u<v Cu,v‖~ySu − ~ySv ‖1∑
u<vDu,v‖~ySu − ~ySv ‖1

≤
∑

u<v Cu,v‖~xu − ~xv‖2∑
u<vDu,v‖~xu − ~xv‖2 −∑u<vDu,v‖P⊥S (~xu − ~xv)‖2

=ΦSDP

(
1−

∑
u<vDu,v‖P⊥S (~xu − ~xv)‖2∑

u<vDu,v‖~xu − ~xv‖2

)−1

.

9.2.3 Choosing Seed Edges

Notation 9.2.15. Given ~x = [~xT ∈ RΥ] and D :
(
V
2

)
→ R+, let ~̂X ∈ RΥ,(V2) be the fol-

lowing matrix whose columns are associated with vertex pairs: ~̂X def
=
[√

Du,v(~xu − ~xv)
]
{u,v}∈(V2)

.

Observe that
∥∥∥∥ ~̂X∥∥∥∥2

F

=
∑

u<vDu,v ‖~xu − ~xv‖2. Since S ⊆
(
V
2

)
, the matrix ~̂XS is

well defined. Moreover there is a strong connection between ~̂X
Π

S and PS , which
we formalize next:

Claim 9.2.16. PS � (~̂XS)
Π

. Furthermore if S ⊆ support(D) then PS = (~̂XS)
Π

.

Proof. Recall that S ⊆
(
V
2

)
and PS represents span{~xu − ~xv}{u,v}∈S , which contains

every column of ~̂XS =
[√

Du,v (~xu − ~xv)
]
{u,v}∈S .

After substituting the Notation 9.2.15, the upper bound in Theorem 9.2.14 be-

comes
(

1− ‖(~̂XS)⊥ ~̂X‖2F
‖ ~̂X‖2F

)−1

.. One way to think about ‖(~̂XS)⊥ ~̂X‖2
F is in terms of

122

column based matrix reconstruction. If we were to express each column of ~̂X as

a linear combination of only r-columns of ~̂X , what is the minimum reconstruc-
tion error (in terms of Frobenius norm) we can achieve? Without the restriction
of choosing only columns, this question becomes easy to answer: Sum of all but

largest r eigenvalues of Gram matrix, ~̂X
T
~̂X . We formalize this in Claim 9.2.18.

Notation 9.2.17. Let σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 be the eigenvalues of ~̂X
T
~̂X in descending

order.

Claim 9.2.18. For any seed set S ⊆
(
V
2

)
with |S| = r − 1, ‖(~̂XS)⊥ ~̂X‖2

F ≥
∑

j≥r+1 σj .

Proof. Follows from rank(~̂X
Π

S) ≤ |S| = r and Courant-Fischer Theorem.

In Chapter 10, it was shown that choosing ∼ r
ε

many columns suffice to de-
crease the error within a (1 + ε)-factor of this lower bound and this is essentially
the best possible up to low order terms.

Theorem 9.2.19 (Theorem 10.1.1 restated). For any positive integer r and positive real

ε, there exists
(
r
ε

+ r − 1
)

columns of ~̂X , S, such that
∥∥∥∥(~̂XS)⊥ ~̂X∥∥∥∥2

F

≤ (1 + ε)
∑

j≥r+1 σj.

Furthermore there exists an algorithm to find such S in time poly(n) (recall X̂ has(
n
2

)
= O(n2) columns).

Our seed selection procedure is presented in Algorithm 9. We bound
∑

j≥r+1 σj
in Theorem 9.2.20, whose proof is given in ??. Main approximation algorithm
combining Algorithms 8 and 9 is presented in Algorithm 10 with its analysis
in Corollary 9.2.21.

Theorem 9.2.20. Let 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λm be the generalized eigenvalues of

Laplacian matrices for the cost and demand graphs. Then for ~̂X being the matrix defined
in Notation 9.2.15, the following bound holds:∑

j≥r+1 σj∥∥ ~̂X∥∥2

F

≤ ΦSDP

λr+1

.

Proof. Since the claimed bound is scale independent, we may assume
∥∥ ~̂X∥∥2

F
= 1

without loss of generality.
Throughout the proof, we will use the following matrices:

123

• ~X
def
= [~xu]u∈V ∈ RΥ,V ,

• BC ∈ R(V2),V is the following edge-node incidence matrix of the cost graph
whose columns and rows are associated with vertices and edges, respec-
tively. Its entry at column c ∈ V and row {a, b} ∈

(
V
2

)
with a < b (assuming

some consistent ordering of V) is given by:

(BC){a,b},c
def
=
√
Cu,v

1 if c = a,
−1 if c = b,
0 else.

• BD ∈ R(V2),V is defined similarly for the demand graph.

• LC , LD are the Laplacian matrices for cost and demand graphs, respectively.

• (LD)† is the pseudo-inverse of LD.

The following identities are trivial:

~̂X = ~X(BD)T ; LC = BT
CBC ; LD = BT

DBD.

Moreover∑
u<v

Cu,v‖~xu − ~xv‖2 =
∥∥∥ ~XBT

C

∥∥∥2

F
= Tr

(
~XLC ~X

T
)

= ΦSDP Tr
(
~XLD ~X

T
)

= ΦSDP

by our assumption that ‖ ~̂X‖2
F = Tr

(
~XLD ~X

T
)

= 1.

Since (LD)Π is a projection matrix and LC � 0, we have LC � (LD)ΠLC(LD)Π .
Substituting the identity (LD)Π = LD(LD)† = (LD)†LD into this lower bound, we
have:

LC �LDL†DLCL†DLD = (BD)T
[
BD L

†
DLCL

†
D︸ ︷︷ ︸

def
= Z

(BD)T
]
BD,

=⇒ ΦSDP = Tr
(
~XLC ~X

T
)
≥Tr

{
~X(BD)T

[
BDZ(BD)T

]
BD

~XT
}

= Tr
{
~̂X
[
BDZ(BD)T

]
~̂X
T}

124

The null space of X̂ = X(BD)T contains the null space of (BD)T . In particular,

non-zero eigenvectors of ~̂X
T
~̂X are contained in the span of BD(BD)T . Using von

Neumann-Birkhoff Theorem, we obtain:

≥
∑
j

σjλj ≥ λr+1

∑
j≥r+1

σj.

We put everything together in the following corollary.

Corollary 9.2.21. Given C,D :
(
V
2

)
→ R+ representing cost and demand graphs, let

0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λm be their generalized eigenvalues in ascending order. For any
positive integer r and real ε > 0, on input C, D and r′ def

= r
ε
+r−1, Algorithm 10 outputs

a subset T ⊂ V whose sparsity, ΦT , is bounded by:

ΦT ≤ Φ∗
(

1− (1 + ε)
Φ∗

λr+1

)−1

provided that (1 + ε)
Φ∗

λr+1

< 1.

Furthermore using the SDP solver from Chapter 5, the running time can be decreased to
2O(r′) poly(n).

Proof. Follows from Theorems 9.2.14, 9.2.19 and 9.2.20.

9.3 Using Subspace Enumeration for Uniform Spars-
est Cut

Throughout this section, we will assume that the cost graph with weights C :(
V
2

)
→ R+ is 1-regular. Since G is regular, definitions of uniform sparsest cut /

normalized cut and edge expansion / conductance coincide. Thus we will focus
only on Uniform Sparsest Cutwhich we denote by φ∗.

The following theorem is adapted from Andersen and Lang [2008] for our set-
ting:

Theorem 9.3.1 (Cut Improvement, see Andersen and Lang [2008]). For any x∗ ∈
{0, 1}V , given x ∈ {0, 1}V satisfying

0 < ‖x‖1 ≤
n

2
and
〈x, x∗〉
‖x∗‖1

>
‖x‖1

n

125

Algorithm 8 T = ROUND(C,D, ~x,S): Seed based rounding in time 2O(r′) poly(n).
Sparsity of its output is bounded in Theorem 9.2.14.

Input: • C,D :
(
V
2

)
→ R+; ~x ∈ Lasserre2r′+2(V) and seed set S ⊆

(
V
2

)
with |S| ≤ r′.

Output: • A set T ⊂ V representing an approximation for Non-Uniform Sparsest
Cut problem.

Procedure: 1. S̃ ← {u ∈ V | exists v such that {u, v} ∈ S} ⊆ V .
2. For each f : S̃ → {0, 1},

(a) Let pf : [n] → V be an ordering of V so that 〈~xS̃(f), ~xpf (1)〉 ≤ . . . ≤
〈~xS̃(f), ~xpf (n)〉.

(b) For each i ∈ [n], let T (f, i)←
{
pf (1), pf (2), . . . , pf (i)

}
.

3. T ← argminf :S̃→{0,1},i∈[n] ΦT (f,i).

in polynomial time one can find y ∈ {0, 1}V whose edge expansion is within a factor

≤ 1− ‖x‖1/n

〈x, x∗〉/‖x∗‖1 − ‖x‖1/n

of x∗’s edge expansion.

The following lemma is adapted from Arora et al. [2010]:

Theorem 9.3.2 (Eigenspace Enumeration, see Arora et al. [2010]). In time 2O(r)nO(1),
there exists an algorithm which outputs a setX ⊆ {0, 1}V that contains some x ∈ X with
following property: There exists x∗ ∈ {0, 1}V with:

‖x− x∗‖1

‖x∗‖1

≤ 8

λr
φ∗.

Combining these two, we obtain the following:

Corollary 9.3.3. For any positive integer r, if rth smallest eigenvalue of Laplacian matrix
for cost graph satisfies λr > 8φ∗ where φ∗ is the Uniform Sparsest Cut value, then in
time nO(1)2O(r) one can find y ∈ {0, 1}V whose uniform sparsity is bounded by:

2φ∗

1− 8φ
∗

λr

.

126

Algorithm 9 S =SELECT-SEEDS(D,~x): Seed selection in time poly(n).

Input: • ~x ∈ Lasserre2r′+2(V) and D :
(
V
2

)
→ R+ as the demand graph.

Output: • S ⊆
(
V
2

)
with |S| ≤ r′ as a set of seed edges.

Procedure: 1. Let ~̂X ←
[√

Du,v

(
~xu − ~xv

)]
{u,v}∈(V2)

.

2. Use Algorithm 12 to choose r′-columns, S ⊆
(
V
2

)
, of matrix ~̂X and return S.

Algorithm 10 T =APPROXIMATE-SC(C,D, r′): Main algorithm for approximating
Non-Uniform Sparsest Cut. Sparsity of the output is bounded in Corollary 9.2.21.
A naı̈ve implementation will run in time nO(r′). However we can use the faster
solver from Chapter 5 to decrease the running time to 2O(r′) poly(n).

Input: • C,D :
(
V
2

)
→ R+ as the cost and demand graphs, respectively.

Output: • A set T ⊂ V representing an approximation for Non-Uniform Sparsest
Cut problem.

Procedure: 1. Compute a (near-)optimal solution, ~x, to the following SDP:

min
∑

u<v Cu,v‖~xu − ~xv‖2

st
∑

u<vDu,v‖~xu − ~xv‖2 = 1, ‖~x∅‖2 > 0, ~x ∈ Lasserre2r′+2(V).
(9.8)

2. Let S ← SELECT-SEEDS(D,~x) (Algorithm 9).

3. Let T ← ROUND(C,D, ~x,S) (Algorithm 8). Return T .

127

128

Chapter 10

Column Based Matrix Reconstruction

Observe that one major component, common to the analysis of all our approxima-
tion algorithms presented in this thesis, is that their running is always exponential
in r with r being the number of columns one has to choose from an m-by-n ma-
trix so as to approximate it as good as the best rank-k approximation in Frobenius
norm. Thus finding the optimal dependence between r and k is a question of
natural significance for all our approximation algorithms. Furthermore in order
to achieve a running time of the form 2O(r) poly(n), the brute force search to find
such columns is not an option and we need efficient ways of finding in time poly-
nomial in n.

In this chapter, we prove upper bounds for r linear in k and construct matrices
where the dependence between r and k is optimal up to lower order terms. Fi-
nally we complement our upper bounds with both a deterministic algorithm with
running time O(rnm3) and a randomized algorithm with running time O(rnm2) .

10.1 Introduction

Given a matrix X ∈ R[m]×[n] and a positive integer k < n, the best rank-k approxi-
mation to X is given by top k singular vectors of X :

X(k) =
k∑
i=1

√
σiuiv

T
i

where σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 are the eigenvalues of XTX , and ui (resp. vi)
are the associated left (resp. right) singular vectors for each singular value

√
σi.

129

Furthermore X(k) can be computed in time O(min(n,m)mn)-time using Singular
Value Decomposition (SVD) [Golub and Loan, 1996].

One related question that has received considerable attention in recent years
is choosing r columns of X , for some input parameter r ≥ k, whose span approxi-
mates X as nearly as well as X(k). In other words, we would like to relate

min
C∈([n]

r)
‖X −XΠ

CX‖ξ = min
C∈([n]

r)
‖X⊥CX‖ξ

to ‖X−X(k)‖ξ for some norm ξ, and efficiently find a subsetC of r columns coming
close to this bound. HereXC denotes matrix formed by columns ofX correspond-
ing to C and XΠ

C (resp. X⊥C) is the projection matrix onto XC (resp. onto null space
of XC).

Aside from our theoretical interest, This basic problem seems well-motivated
in various application settings. For example, this problem has applications in data
sets arising from document classification problems, face recognition tasks, and so
on, where it is important to pick a subset of features that are dominant (and it
is not appropriate to work with linear combinations of features output by usual
dimension reduction techniques like random projection or singular value decom-
position). We refer the reader to [Mahoney and Drineas, 2009] for comparisons of
SVD and column selection on experimental data.

Our main results in this chapter are the following two theorems. We are able
to get the best known dependence between r and k, show its optimality up to
lower order terms, and achieve this with an efficient deterministic algorithm (The-
orem 10.1.1). This answers one of the open questions mentioned by Boutsidis et al.
[2011]. We are also able to give a more efficient randomized algorithm, via a faster
implementation of exact volume sampling (Theorem 10.1.2). The deterministic
algorithm of Theorem 10.1.1 is a derandomization of the volume sampling algo-
rithm via conditional expectations method of Deshpande and Rademacher [2010].

Theorem 10.1.1. Given X ∈ R[m]×[n], and positive integers k ≤ r, one can find a set C
of r columns, deterministically using at mostO(rnmω logm) many arithmetic operations
(where ω is the exponent of matrix multiplication), such that

‖X −XΠ
CX‖2

F ≤
r + 1

r + 1− k‖X −X(k)‖2
F . (10.1)

Furthermore, for any r = o(n), this bound is tight up to lower order terms.

Theorem 10.1.2. Given a matrix X ∈ R[m]×[n], m ≤ n, and r ≥ 1, there is an algo-
rithm Vol-Sample that samples a subset of r columns of X , C ∈

(
[n]
r

)
, with probability

130

Paper r Ratio Running Time Deterministic
This work k + k

ε
− 1 1 + ε O(rnmω logm) Yes

This work k + k
ε
− 1 1 + ε O(rnm2) No

[1] 2k
ε

1 + ε O(kε−1nm+ k3ε−2/3n) No
[2] k k + 1 O(knmω logm) Yes
[3] O(η2(A)k log k/ε2) 1 + ε O(k2mn log k) Yes
[4] O(k log k + kε−1) 1 + ε O((k log k + kε−1)mn+ No

(k log k + kε−1)2)(m+ n)
[5] O(k2 log k + kε−1) 1 + ε O(k2mn log k) No

Table 10.1: Performance and running time of various column selection algorithms.
In the table, the papers are referred by [1] = Boutsidis et al. [2011], [2]=Deshpande
and Rademacher [2010], [3]=Çivril and Magdon-Ismail [2008], [4]=Sarlós [2006],
[5] = Deshpande and Vempala [2006].

|XT
CXC|∑

T∈([n]
r)|XT

TXT | using at mostO (rnm2) arithmetic operations. For every k ≤ r, the subset

C returned by Vol-Sample satisfies

EC
[
‖X −XΠ

C‖2
F

]
≤ r + 1

r + 1− k‖X −X(k)‖2
F .

Note that ‖X −XΠ
CX‖2

F = ‖X⊥CX‖2
F = Tr(XTX⊥CX). Henceforth in this paper, we

will use the Trace notation.

10.2 Related Work

The first algorithm for k-column matrix reconstruction was given in a seminal
paper of Frieze et al. [2004], where they presented a randomized algorithm to
find poly(k, 1/ε, 1/δ) columns that achieve an additive error of ε‖X‖F . Subsequent
works concentrated on removing the additive factor and getting multiplicative (or
relative error) guarantees, and improving the dependence between r and k to get
a desired relative error. Some of these works are mentioned in Table 10.1. In the
table, r is the number of columns needed so as to obtain the given approximation
ratio, defined as Tr(XTX⊥CX)/‖X −X(k)‖2

F .
To briefly place our result in context, let us mention the known existential

bounds on the relation between r, k, and the ratio achieved. Deshpande et al.

131

[2006] proved the existence of k columns achieving a ratio k + 1, and also show
that this is best possible up to lower order terms. Deshpande and Vempala [2006]
proved that for small ε > 0, there exists a matrix M for which the best error
achieved by a rank-k matrix, whose columns are restricted to belong to the span of
r ≥ k/ε columns of M , is at least 1+ε−o(1) times the best rank-k approximation.1

Until recently, even the best existential bound to achieve (1+ε) approximation
was super-linear in k. In an independent and concurrent work, Boutsidis et al.
[2011] proved a bound of r ≈ k + 2k

ε
along with a randomized algorithm to find

such a subset of columns.2 Our main result proves that k/ε + k − 1 columns
are sufficient, and further those columns can be found in deterministic polynomial
time.

The (1 + ε) approximation achieved by Boutsidis et al. [2011] holds in the re-
stricted model (in which the above-mentioned k/ε lower bound due to Deshpande
and Vempala [2006] applies) where one must find a rank-k approximation matrix
contained in the span of the chosen r columns, whereas our approximating ma-
trix uses the full span of the chosen columns. So our results and [Boutsidis et al.,
2011] are incomparable in this respect. We stress though that even allowing for
full column span, no bounds on r which were linear in k were known till recently,
for achieving say a factor 2 approximation. Further, we extend the lower bound of
Deshpande and Vempala [2006] to show that even allowing for full column span,
r = k/ε columns are needed for a factor (1 + ε− o(1)) approximation.

Note that our result gives the optimal (k + 1) factor approximation (taking
ε = k) for r = k, and for ε → 0, the near-optimal (1 + ε) factor for r ≈ k/ε, in a
uniform way. As for the algorithmic claim, recently Deshpande and Rademacher
[2010] gave an efficient implementation of volume sampling and a deterministic
algorithm to find a set k columns with approximation ratio k + 1, thus match-
ing the bound of Deshpande et al. [2006] algorithmically. We simply bound the
ratio achieved by this algorithm when it is allowed to pick r > k columns. In
other words, the algorithmic part of Theorem 10.1.1 follows from [Deshpande and
Rademacher, 2010], given our combinatorial bound.

Prior to our work, the fastest algorithm known for exact volume sampling
was given by Deshpande and Rademacher [2010] using O (rnmω logm) arithmetic
operations. We give an asymptotically faster sampling algorithm, by using bi-
nary search to pick the lowest index column in the sampled set with the correct

1Although the lower bound of Deshpande and Vempala [2006] is stated as 1 + ε
2 − o(1), the

actual lower bound they prove is stronger and equals 1 + ε− o(1).
2The theorem statement in [Boutsidis et al., 2011] mentions the weaker bound r ≤ 10k/ε, but

the sharper bound is given at the end of Section 4 of the paper.

132

marginal probability, and then recursing to sample the remaining r − 1 columns.

10.3 Our Techniques

Our proof is based on the following bound:

min
C∈([n]

r)
Tr(XTX⊥CX) ≤ (r + 1)

Sr+1(σ)

Sr(σ)
= EC∼Cr(X)

[
Tr(XTX⊥CX)

]
(10.2)

where C ∼ Cr(X) denotes sampling C with probability proportional to determi-
nant of XT

CXC ,
∣∣XT

CXC

∣∣, and Sr(σ) is the r’th symmetric function of σ1, σ2, . . . , σn.
The bound eq. (10.2) already appears in the work of Deshpande et al. [2006] where
sampling from Cr(X) is called “volume sampling.”

Our main technical contribution is to use the Schur-concavity of Sr+1(σ)
Sr(σ)

and

theory of majorization [see Marshall et al., 2009] to bound Sr+1(σ)
Sr(σ)

in terms of∑
i≥k+1 σi. At an intuitive level, the ratio Sr+1(σ)

Sr(σ)
should be larger when {σi}ni=1

is more “uniform.” Majorization and Schur-concavity allow us to turn this intu-
ition into a precise and formal statement. This leads us to the inequality

(r + 1)
Sr+1(σ)

Sr(σ)
≤ r + 1

r + 1− k
∑
i>k

σi , (10.3)

which together with ‖X − X(k)‖2
F =

∑
i>k σi and eq. (10.2) yields the claimed

bound (Equation (10.1)). For the nearly matching lower bound, we prove that for
the construction given by Deshpande and Vempala [2006], the lower bound on
approximation ratio holds even in the unrestricted model where the full column
span of the r columns is allowed; this analysis appears in Section 10.9.

As for the algorithm, Deshpande and Rademacher [2010] used the method of

conditional expectations to findC ∈
(

[n]
r

)
satisfying Tr(XTX⊥CX) ≤ EC∼Cr(X)

[
Tr(XTX⊥CX)

]
deterministically usingO(rnmω logm) operations. Together with our bound eq. (10.3),
this implies a deterministic algorithm, given in Algorithm 12, achieving a r+1

r+1−k
ratio. In light of this, we do not discuss the deterministic part any further in this
paper, and focus on proving eqs. (10.2) and (10.3), which we do in Sections 10.5
and 10.6 respectively. Our more efficient volume sampling algorithm is described
in Section 10.7. The proof of our lower bound is presented in Section 10.9.

133

10.4 Preliminaries

In addition to the mathematical background given in Chapter 2, we will also make
extensive use of theory of majorization and elementary symmetric polynomials.
Since these two are only specific to this chapter, we chose to introduce the relevant
background in this section.

Given real vector a = [ai]
n
i=1 ∈ R[n], we will use a↑i (resp. a↓i) to denote the ith

smallest (resp. largest) element of {ai}i.

Notation 10.4.1 (Determinants). For any symmetric matrix A ∈ S[n], we will use |A|
to denote A’s determinant.

Notation 10.4.2 (Majorization). We say a = [ai]
n
i=1 ∈ R[n] majorizes b = [bi]

n
i=1 ∈ R[n]

if for all j ∈ [n],
∑

j′≤j a↓j′≥
∑

j′≤j b↓j′ and
∑

j aj =
∑

j bj . We denote this relation by
a �m b.

Observation 10.4.3. For any non-negative vector a ∈ R[n]
+ , the following holds:

(1, 0, . . . , 0) �m
1∑
i ai

a �m
(

1

n
,

1

n
, . . . ,

1

n

)
Definition 10.4.4 (Schur Concavity). A function F : R[n] → R is called Schur-concave
if whenever a ∈ R[n] majorizes b ∈ R[n], i.e. a �m b, then F (a) ≤ F (b).

Definition 10.4.5 (Symmetric polynomials). For a given σ = [σi]
n
i=1 ∈ R[n], let Sr(σ)

denote the rth elementary symmetric polynomial:

Sr(σ)
def
=

∑
S∈([n]

r)

∏
i∈S

σi.

Likewise, for a given symmetric matrix A ∈ Sm, Sr(A) is defined as

Sr(A) =
∑

U∈([m]
r)

|AU,U | ,

where AU,U is the minor of A corresponding to columns and rows in U .

Lemma 10.4.6. If A ∈ S[m] has eigenvalues {σi}, then Sr(A) = Sr(σ).

Proof. The coefficient of xm−r in
∏

i(σi−x) equals (−1)m−rSr(σ). Similarly (−1)m−rSr(A)
is the coefficient of xm−r in |−xI + A|. Now, note that |−xI + A| = ∏i(σi − x).

134

Given a matrix X ∈ R[m]×[n] and i ∈ [n], we use Xi to denote ith column of
X . Similarly given a subset of columns, C ⊆ [n], we use XC to denote the matrix
formed by columns from C, XC = (Xi)i∈C . Also we will let XΠ and X⊥ be the
projection matrix onto range and null space of X respectively.

For any symmetric matrix A ∈ S[m], we will use |A| to denote the determinant
of A, Tr(A) to denote trace of A and σi(A) to denote the ith largest eigenvalue of A.

Lemma 10.4.7. For any A ∈ R[m]×[r], if all r columns of A are linearly independent, then

the distance of x ∈ R[m] to span of A is given by ‖A⊥x‖2 =

∣∣∣∣ ATA ATx
xTA xTx

∣∣∣∣
|ATA| .

Proof. Note that by elementary row operations,∣∣∣∣ ATA ATx
xTA xTx

∣∣∣∣ =

∣∣∣∣∣ ATA ...
0 xTx− xTA(ATA)−1ATx

∣∣∣∣∣ =
∣∣ATA∣∣ ∣∣xTA⊥x∣∣ =

∣∣ATA∣∣ ‖A⊥x‖2

where we used the fact that A(ATA)−1AT = AΠ and I − AΠ = A⊥.

10.5 Bound on Ratio of Symmetric Functions

The following theorem was first proved in the classic paper of Schur [1923]. [See
also Marshall et al., 2009, Section 3]. We present a different proof below.

Theorem 10.5.1. For any σ ∈ R[n]
+ , the ratio Sr+1(σ)

Sr(σ)
is Schur-concave.

Proof. By Schur’s criterion to establish Schur-concavity of symmetric functions, it
suffices to show that (

∂ Sr+1(σ)
Sr(σ)

∂σi
−
∂ Sr+1(σ)

Sr(σ)

∂σj

)
︸ ︷︷ ︸

(∗)

(σi − σj) ≤ 0

for all i, j. Using the identities

∂ Sr+1(σ)
Sr(σ)

∂σi
=
Sr(σ)Sr(σ \ σi)− Sr+1(σ)Sr−1(σ \ σi)

S2
r(σ)

Sk(σ \ σi) =σjSk−1(σ \ {σi, σj}) + Sk(σ \ {σi, σj})

135

we have that

(∗)S2
r(σ) =Sr(σ) [Sr(σ \ σi)− Sr(σ \ σj)]− Sr+1(σ) [Sr−1(σ \ σi)− Sr−1(σ \ σj)]

=Sr(σ) (σj − σi)Sr−1 (σ \ {σi, σj})− Sr+1(σ) (σj − σi)Sr−2 (σ \ {σi, σj})
= (σj − σi) (Sr(σ)Sr−1 (σ \ {σi, σj})− Sr+1(σ)Sr−2 (σ \ {σi, σj}))

Note that if we can show that the expression

Sr(σ)Sr−1 (σ \ {σi, σj})− Sr+1(σ)Sr−2 (σ \ {σi, σj})
is non-negative, we are done. For r = 2, Sr−2 = 0 hence we will consider the case
when r ≥ 3.

We will do so by exhibiting a flow f on a bipartite graph with left nodes labeled
with L =

(
[n]
r+1

)
×
(

[n]\{i,j}
r−2

)
and right nodes labeled with R =

(
[n]
r

)
×
(

[n]\{i,j}
r−1

)
with

the property that if there is a non-zero flow from (S, T) ∈ L to (S ′, T ′) ∈ R then∏
i∈S σi

∏
j∈T σj ≤

∏
i∈S′ σi

∏
j∈T ′ σj and total flow leaving any node on left is 1

whereas total flow entering any node on right is at most 1.
Given (S, T) ∈

(
[n]
r+1

)
×
(

[n]\{i,j}
r−2

)
, consider U = S \ (T ∪ {i, j}) 6= ∅. For each

k ∈ U , we set

f(S,T),(S\{k},T∪{k}) =
1

|U | .

By construction, this satisfies the following:

1.
∑

(S′,T ′)∈R f(S,T),(S′,T ′) = 1.

2. f(S,T),(S′,T ′)

(∏
i∈S σi

∏
j∈T σj −

∏
i∈S′ σi

∏
j∈T ′ σj

)
= 0.

In order to prove that
∑

(S,T)∈L f(S,T),(S′,T ′) ≤ 1, if f(S,T),(S′,T ′) 6= 0, then there exists
k for some k ∈ T ′\S ′ such that T = T ′\{k}, S = S ′∪{k}. Hence |S ′\(T ′∪{i, j})| =
|S \ (T ∪ {i, j})| − 1. Therefore∑

(S,T)∈L

f(S,T),(S′,T ′) =
∑

k∈T ′\S′

1

|S ′ \ (T ′ ∪ {i, j})|+ 1

=
|T ′ \ S ′|

|S ′ \ (T ′ ∪ {i, j})|+ 1
(10.4)

We have |S ′| = |T ′| + 1 ≥ 3, |S ′ \ (T ′ ∪ {i, j})| + 1 ≥ |S ′ \ T ′| − 2 + 1. Therefore
eq. (10.4) can be upper bounded by:

≤ |T ′ \ S ′|
|S ′ \ T ′| − 1

= 1 (10.5)

where eq. (10.5) follows from |S ′| = |T ′|+ 1 =⇒ |S ′ \ T ′| = |T ′ \ S ′|+ 1.

136

We now use the Schur-concavity to prove our upper bound on Sr+1(σ)
Sr(σ)

.

Lemma 10.5.2. For any non-negative vector ρ ∈ R[n]
+ , positive integers k, r such that

r ≥ k:
Sr+1(ρ)

Sr(ρ)
≤ 1

r + 1− k

(∑
i≥k+1

ρ↓i
)

Proof. Note that, for any β:

Sr+1(βρ)

Sr(βρ)
=
βr+1

βr
Sr+1(ρ)

Sr(ρ)
= β

Sr+1(ρ)

Sr(ρ)
.

Thus without loss of generality, we may assume that
∑

i ρi = 1. Further, we can
assume that ρ is sorted in non-increasing order. Let α def

=
∑

i≤k ρi. Consider the
following series ρ′.

ρ′i =

{
1−α
n−k if i ≥ k + 1,
α
k

else.

Since ρ is sorted in non-increasing order, it is easy to see that, for all i we have
ρ′i ≥ ρ′i+1. We have (ρ′1, . . . , ρ

′
k) = (α

k
, . . . , α

k
) ≺ (ρ1, . . . , ρk) and (ρ′k+1, . . . , ρ

′
n) =

(1−α
n−k , . . . ,

1−α
n−k) ≺ (ρk+1, . . . , ρn). Therefore ρ′ ≺ ρ which implies:

Sr+1(ρ)

Sr(ρ)
≤Sr+1(ρ′)

Sr(ρ′)
=

∑
0≤`≤k

(
k
`

)(
n−k
r−`+1

) (
1−α
n−k

)r−`+1 (α
k

)`∑
0≤`≤k

(
k
`

)(
n−k
r−`

) (
1−α
n−k

)r−` (α
k

)`
=

1− α
n− k ·

∑
0≤`≤k

(
k
`

)
n−k−r+`
r−`+1

(
n−k
r−`

) (
1−α
n−k

)r−` (α
k

)`∑
0≤`≤k

(
k
`

)(
n−k
r−`

) (
1−α
n−k

)r−` (α
k

)`
≤ n− r
n− k

1− α
r − k + 1

≤ 1

r − k + 1
(1− α) .

10.6 Bounds on Column Reconstruction

We now present the upper bound relating the best r-column reconstruction of a
matrix X to the error ‖X −X(k)‖2

F of the best rank-k approximation in the Frobe-
nius norm.

Theorem 10.6.1. For any X ∈ R[m]×[n] and positive integers r ≥ k ≥ 1,

min
S∈([n]

r)
Tr(XTX⊥SX) ≤ EC∼Cr(X)

[
Tr(XTX⊥CX)

]
≤ r + 1

r + 1− k‖X −X(k)‖2 .

137

where C ∼ Cr(X) denotes sampling C with probability proportional to determinant of
XT
CXC ,

∣∣XT
CXC

∣∣. In other words, for any positive real ε > 0,

min
S∈([n]

k/ε+k−1)
Tr(XTX⊥SX) ≤ (1 + ε)‖X −X(k)‖2.

Furthermore, for any r = o(n), this bound is tight up to lower order terms in the number
of columns chosen: There exists a matrix X̃ ∈ R[n]×[n] such that

(1 + ε− o(1)) ‖X̃ − X̃(k)‖2 ≤ min
S∈([n]

k/ε)
Tr(X̃T X̃⊥S X̃).

Proof. The first bound is obvious since the minimum is upper bounded by the
average. For the second bound, note that

EC∼Cr(X)

[
Tr(XTX⊥CX)

]
=

∑
S∈([n]

r)

∣∣XT
SXS

∣∣Tr(XTX⊥SX)∑
S∈([n]

r) |XT
SXS|

=

∑
S∈([n]

r)
∑

u

∣∣XT
SXS

∣∣ ‖X⊥SXu‖2∑
S∈([n]

r) |XT
SXS|

=

∑
S∈([n]

r)
∑

u

∣∣XT
S,uXS,u

∣∣∑
S∈([n]

r) |XT
SXS|

(using Lemma 10.4.7)

=
(r + 1)

∑
T∈([n]

r+1)

∣∣XT
TXT

∣∣∑
S∈([n]

r) |XT
SXS|

= (r + 1)
Sr+1(σ)

Sr(σ)
(using Lemma 10.4.6)

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the eigenvalues of XTX . The claimed upper
bound now follows by applying the bound from Lemma 10.5.2 and recalling ‖X−
X(k)‖2

F =
∑

i≥k+1 σi.
Existence of X̃ follows from Lemma 10.9.4 given in Section 10.9.

10.7 Fast Volume Sampling Algorithm

In this section, we describe and analyze our volume sampling algorithm, which
leads to the proof of Theorem 10.1.2.

138

Algorithm 11 C = Vol-Sample(X, r): Algorithm for volume sampling subsets of
columns.

Input: • X ∈ R[m]×[n] and positive integer r.

Output: • C ∈
(

[n]
r

)
chosen probability ∝

∣∣XT
CXC

∣∣, i.e. C ∼ Cr(X).

Procedure: 1. Let C ← ∅. Initialize the table T of the n outer products X[`,n]X
T
[`,n],

for all ` in [n].

2. Choose τ uniformly at random from [0, 1], τ ∈u [0, 1].

3. t← τ · Sr(XTX).

4. For i← 1 to r:

1. `← 1, u← n.

2. While ` 6= u

(a) m← b `+u
2
c.

(b) h ← Sr

(
XT

[`,n]X[`,n]

)
− Sr

(
XT

[m+1,n]X[m+1,n]

)
which is equal to

Sr
(
X[`,n]X[`,n]

T
)
− Sr

(
X[m+1,n]X[m+1,n]

T
)

using T .
(c) If t > h, then t← t− h and `← m+ 1.
(d) Else u← m.

3. C ← C ∪ {`}, X ← X⊥` X and update the table T of outer products.

5. Return C.

Theorem 10.7.1. Given a matrix X ∈ Rm×n, m ≤ n, and an integer r, Algorithm Vol-

Sample(X, r) returns C ∈
(

[n]
r

)
with probability |XT

CXC|∑
T∈([n]

r)|XT
TXT | .

Furthermore it can be implemented using at most O (rm2n) arithmetic operations.

Proof of Correctness. For correctness, notice that for C sampled with probability∣∣XT
CXC

∣∣, if we let C = {i1 < i2 < . . . < ir}:

Probi1,...,ir

[
i1 = j

]
= ‖Xj‖2

Sr−1(XT
[j+1,n]X

⊥
j X[j+1,n])

Sr(XTX)
.

139

Notice that the algorithm, when it exists out of the while loop for the first time,
chooses each ` with probability

Sr(X
T
[`,n]X[`,n])− Sr(X

T
[`+1,n]X[`+1,n])

Sr(XTX)
= ‖X`‖2

Sr−1(XT
[`+1,n]X

⊥
` X[`+1,n])

Sr(XTX)

which completes the proof.

Proof of the Running Time. We assume each elementary arithmetic operation takes
unit time.

Using the algorithm given in [Bürgisser et al., 2010, Section 16.6], we can com-
pute Sr(X

T
[`,n]X[`,n]) = Sr(X[`,n]X

T
[`,n]) in time O (mω logm) given the outer product

X[`,n]X
T
[`,n]. Since XA∪BXA∪B

T = XAX
T
A +XBXB

T , we can compute the table T all
the n outer products X[`,n]X

T
[`,n], for ` ∈ [n], in time O(m2n). Also, given X`, if we

let z = X`
‖X`‖

:

(X⊥` XS)(X⊥` XS)T = XSXS
T + zzT (zTXSX

T
S z)− zzTXSX

T
S −XSX

T
S zz

T .

Hence, after choosing some column `, we can update each outer product matrix
in the table T in O(m2) time. Since there are at most n matrices in this table, each
update step takes O(m2n) time.

For each column we choose, we evaluate at most O(log n) many symmetric
functions Sr. Thus choosing one column takes time O(mω logm log n) given the
table T . Since we choose r columns, the total amount of time, including the time
to initialize and update T in each iteration, is bounded by

O
(
rmω logm log n+ rm2n

)
= O

(
rm2(mω−2 logm log n+ n)

)
.

Since mω−2 logm log n ≤ √n log2 n = o(n), this bound becomes O (rm2n).

The claim in Theorem 10.1.2 about the performance of Algorithm Vol-Sample

as a column-selection algorithm follows from the upper bound on EC∼Cr(X)

[
Tr(XTX⊥CX)

]
in Theorem 10.6.1.

10.8 Deterministic Column Selection Algorithm

Recall that for simplicity we restricted the seed selection procedure of our faster
solver framework Chapter 5 to be deterministic. Combined with the fact that the

140

exact running time is not important as long as it is polynomial in both matrix di-
mensions and number of columns to choose, we describe a simpler deterministic
column selection algorithm. It is quite similar to algorithm of Deshpande and
Rademacher [2010], and is based on the method of conditional expectations.

However there is another more sinister issue for integrating column selection
into our rounding algorithms: In finite precision, it is not possible to exactly com-
pute the Cholesky decomposition from a given Gram matrix. Although it is pos-
sible to get around of this problem by taking into account the rounding errors,
there is a much simpler way: To run the column selection procedure directly on
the Gram matrix itself.

The final deterministic algorithm for Gram matrices is given in Algorithm 12.

Algorithm 12 S = Find-Cols-Det(XTX, r): Deterministic column selection for
Gram matrices.

Input: • Gram matrix XTX ∈ S[n]
+ for some X ∈ R[m],[n], positive integer r.

Output: • S ∈
(

[n]
r

)
satisfying Theorem 10.6.1.

Procedure: 1. For i← 1 to n:

(a) Compute Y (i) = [Y (i)a,b]a,b∈[n] as the following symmetric matrix in exact
arithmetic:

Y (i)a,b ← 〈Xa, Xb〉 −
〈Xa, Xi〉〈Xb, Xi〉

‖Xi‖2
.

(b) Let τi ← Sr−1(Y (i))
Sr−2(Y (i))

.

2. Let i∗ ← argmini τi.

3. Return {i∗} ∪ Find-Cols-Det(Y (i∗), r − 1).

We want to remark that Algorithm 12 is not the most efficient implementa-
tion, as the one given by Deshpande and Rademacher [2010] is faster: But for our
rounding algorithms, this is sufficient. Moreover it can be implemented exactly as
it does not rely on Cholesky decomposition.

Theorem 10.8.1. Algorithm 12 runs in time O (rn3+ω log n) and it returns S ∈
(

[n]
r

)
satisfying Tr(XTX⊥SX) ≤ r+1

r+1−k‖X −X(k)‖2 for any k ≤ r.

141

Proof. Running time bound is trivial. Observe that the matrix Y (i) satisfies Y (i) =
XTX⊥i X for any i. The rest of correctness proof follows from arguments of Desh-
pande and Rademacher [2010].

10.9 Lower Bound on Number of Columns Needed

In this section, we construct matrices for given k and r for which the upper bound
stated in Theorem 10.6.1 is nearly tight. Our construction is in fact the same as
the one given by Deshpande and Vempala [2006]. Our analysis is different and
shows a lower bound on the quantity Tr(XTX⊥SX) where the full column span of
the chosen r columns is allowed for approximating X .

Definition 10.9.1. Given δ > 0 and m, we define M (m,δ) ∈ R[m]×[m] as

M (m,δ) def
= δI + J,

where I is the identity matrix of dimension m, and J the all 1’s m×m matrix.

Observation 10.9.2. Given any δ > 0 and positive integer m, the followings hold for the
matrix M (m,δ):

1. Tr(M (m,δ)) = m(1 + δ).

2. Its largest eigenvector is the all 1’s vector, with corresponding eigenvalue σ1 =
σ1

(
M (m,δ)

)
given by σ1 = δ + m. Rest of the eigenvalues are all equal with value

σ2 = σ3 = . . . = σm = δ.

3.
∣∣M (m,δ)

∣∣ =
∏m

i=1 σi = δm +mδm−1.

Lemma 10.9.3. Given any δ > 0 and positive integer r, for n ≥ r, if we let XTX =
M (n,δ), then

min
S∈([n]

r)

Tr
(
XTXS

⊥X
)

‖X −X(1)‖2
F

≥ 1 +
k

r
− o(1).

Proof. Note that ‖X −X(1)‖2
F =

∑
i≥2 σi = (n− 1)δ. For any subset C ⊆ [n] of size

|C| = r, the corresponding minor of XTX is given by

XT
CXC = M (|C|,δ) =⇒

∣∣XT
CXC

∣∣ = δr + rδr−1.

142

Consequently for i /∈ C,

∥∥X⊥CXi

∥∥2
=

∣∣∣XT
C∪{i}XC∪{i}

∣∣∣
|XT

CXC |
=
δr (δ + (r + 1))

δr−1 (δ + r)
= δ

(
1 +

1

r + δ

)
.

In particular,

Tr(XTX⊥CX) = (n− r)δ
(

1 +
1

r + δ

)
.

Therefore
Tr
(
XTXS

⊥X
)

‖X −X(1)‖2
F

=
n− r
n− 1

(
1 +

1

r + δ

)
.

Lemma 10.9.4. For any positive integer n and positive integers k and r, r ≥ k, such that
r = o(n), there exists an n-by-n matrix X ∈ R[n]×[n] for which the following holds:

min
S∈([n]

r)

Tr(XTX⊥SX)∥∥X −X(k)

∥∥2 ≥
n− r
n− k

(
1 +

k

r
− o(1)

)
.

Proof. We will fix δ to be an infinitesimally small number, δ = o (1).
For n = n0 · k with n0 ≥ r + 1, let X be chosen so that XTX is block diagonal

matrix of size n× n = n0k × n0k with k copies of M (n0,δ) on its diagonals:

XTX =

M (n0,δ) 0(n0) · · · 0(n0)

0(n0) M (n0,δ)
...

... . . .

0(n0) · · · M (n0,δ)

 = I(k) ⊗M (n0,δ)

where we used 0(m) and I(m) to denote matrices of size m × m consisting of all
zeroes and identity respectively. Here ⊗ denotes tensor (Kronecker) product. By
property of tensoring [see Horn and Johnson, 1991], XTX has k copies of each
eigenvalue of M (n0,δ). In particular,∥∥X −X(k)

∥∥2
= n(1 + δ)− n− kδ = (n− k)δ. (10.6)

We will use [k] × [n0] to index the columns of matrix X , so that for any i ∈ [k],
if we let X(i) def

= X{i}×[n0], we have X(i)TX(i) = M (n0,δ), and for any i 6= j ∈ [k],
X(i)TX(j) = 0(n0).

143

Proceeding as in [Deshpande and Vempala, 2006], given S, let Si be the set of
columns chosen from ith block, so that Si

def
= {j ∈ [n0] | (i, j) ∈ S}. It is easy to see

that,

Tr
(
X(i)TX⊥SX

(i)
)

= Tr
(
X(i)TX

(i)
Si

⊥
X(i)

)
≥ δ(n0 − |Si|)

(
1 +

1

δ + |Si|

)
.

where we used Lemma 10.9.3. Therefore

Tr
(
XTXS

⊥X
)

=
∑
i

Tr
(
X(i)TX

(i)
Si

⊥
X(i)

)
=
∑
i

δ(n0 − |Si|)
(

1 +
1

δ + |Si|

)
.

(10.7)
Note that (n − x)(1 + 1/(δ + x)) is convex as long as x + δ ≥ 0. Therefore we can
use Jensen’s inequality and lower bound the expression in eq. (10.7) by

δk

(
n0 −

1

k

∑
i

|Si|
)(

1 +
1

δ + 1
k

∑
i |Si|

)
= δk

(
n0 −

r

k

)(
1 +

1

δ + r
k

)
= δ (n− r)

(
1 +

1

δ + r
k

)
Recalling the bound (Equation (10.6)) for the best rank-k approximation, we see
that for any S with |S| = r = o(n) and δ = o(1):

Tr
(
XTXS

⊥X
)∥∥X −X(k)

∥∥2 ≥
n− r
n− k

(
1 +

k

r
(1− o(1))

)
≥ 1 +

k

r
− o(1).

144

Chapter 11

Existence of Primal and Dual
Optimal Solutions

In this chapter, we analyze our relaxations from a dual perspective and we show
the existence of primal and dual optimal solutions.

11.1 Preliminaries

First we review the basic notions of open and closed sets for Euclidean spaces
from geometric topology.

Definition 11.1.1 (Closed and Open Sets). Given X ⊆ RA, X is a closed set if,
for any y /∈ X , there exists a ball of radius ε > 0 around y, Bd(y, ε), disjoint from X :
Bd(y, ε) ∩X = ∅. Similarly X is a open set if its complement, RA \X , is closed.

11.1.1 Linear Conic Programming

Recall the definition of (convex) cones from Section 2.5 and consider the problem
of linear optimization over such sets.

Definition 11.1.2 (Linear Conic Programming). Given:

• Two linear spaces E1, E2 with a bi-linear form 〈〈·, ·〉〉 : E1 × E2 → R;

• A linear transform T : E1 → E1 with adjoint T̂ : E2 → E2 such that:

for any p ∈ E1, q ∈ E2 〈〈T (p), q〉〉 = 〈〈p, T̂ (q)〉〉;

145

• A convex cone K ⊆ E1 with dual K∗ ⊆ E2 such that:

K∗
def
=
{
q ∈ E2

∣∣ 〈〈p, q〉〉 ≥ 0 for all p ∈ K
}

;

• Two points b ∈ E1, c ∈ E2;

eq. (11.1) is a linear conic programming (LCP) instance with dual eq. (11.2):

inf 〈〈x, c〉〉 st T (x) = b, x ≥K 0, x ∈ E1. (PRIMAL) (11.1)

sup 〈〈b, y〉〉 st T̂ (y) ≤K∗ c, y ∈ E2. (DUAL) (11.2)

Given x ≥K 0 (resp. y), we say x is primal feasible if T (x) = b (resp. dual feasible if
T̂ (y) ≤K∗ c). We will denote the optimum value of eqs. (11.1) and (11.2) with ηP and ηD
respectively. We say x (resp. y) is a primal (resp. dual) optimal solution if it is feasible
and 〈〈x, c〉〉 = ηp (resp. 〈〈b, y〉〉 = ηd).

The associated primal and dual cones are defined as:{
(T (x), 〈〈x, c〉〉)

∣∣x ∈ K} , (PRIMAL CONE) (11.3){
(T̂ (y), 〈〈b, y〉〉)

∣∣y ∈ K∗} . (DUAL CONE) (11.4)

Lemma 11.1.3. Given a linear conic programming instance as in Definition 11.1.2:

1. (Weak Duality) For any pair of feasible primal and dual solutions (x, y), 〈〈x, c〉〉 ≥
〈〈b, y〉〉.

2. (Optimality Condition) Provided that ηp = ηd x, y are optimal primal and dual
solutions iff 〈〈x, c− T̂ (y)〉〉 = 0.

Proof. [see Barvinok, 2002, Borwein and Lewis, 2000]

Theorem 11.1.4 (Strong Duality). Given a linear conic programming instance as in Def-
inition 11.1.2 if (1) There exists a primal feasible solution, (2) Primal is bounded, (3) Pri-
mal cone is closed; Then ηP = ηD and there exists optimal primal solution.

Proof. [see Borwein and Lewis, 2000, Barvinok, 2002].

Corollary 11.1.5 (Cone Programming Duality). Given a linear conic programming
instance as in Definition 11.1.2 if

(1) There exist primal and dual feasible solutions,

146

(2) Primal is bounded,

(3) Primal and dual cones are closed;

then ηP = ηD and there exists optimal primal and dual solutions satisfying optimality
condition.

Proof. ηP = ηD and existence of primal solution follows from Theorem 11.1.4. By
weak duality from Lemma 11.1.3, dual is bounded. Therefore we can use Theo-
rem 11.1.4 on dual to infer the existence of dual optimal solution. Our proof is
complete by using optimality condition from Lemma 11.1.3.

Corollary 11.1.5 allows us to characterize when a primal or dual optimal solu-
tion exists in terms of closedness of primal and dual cones as in Definition 11.1.2.

11.1.2 Closed Convex Cones

First we list some standard examples for closed cones.

Lemma 11.1.6. For any A, RA, RA
+, SA, SA+ are closed, convex cones.

Claim 11.1.7. 1. K∗ is a closed, convex cone.

2. (K∗)∗ ⊇ K.

3. If K,L ⊆ RA are two convex cones then

(K ∩ L)∗ = convex(K∗ + L∗).

4. If K,L ⊆ RA are two closed convex with K ⊥ L, K + L is a closed convex cone.

5. If K ⊆ RA, L ⊆ RB are two closed convex cones with A ∩ B = ∅, then K ⊕ L is a
closed convex cone.

Proof of Item 1. Note H+(x)
def
=
{
h
∣∣〈〈x, h〉〉 ≥ 0

}
is a closed, convex set for any x.

Since
K∗ =

⋂
x∈K

H+(x),

K∗ is also closed and convex. For any y ∈ K∗ and t ∈ R+, 〈〈y, x〉〉 ≥ 0 =⇒
〈〈ty, x〉〉 ≥ 0 hence y ∈ K∗ =⇒ ty ∈ K∗ so K∗ is a cone.

147

Proof of Item 2. For any h ∈ K∗,
∀x ∈ K : 〈〈h, x〉〉 ≥ 0 =⇒ K ⊆ H+(h).

Consequently
K∗∗ =

⋂
h∈K∗

H+(h) ⊇ K.

Proof of Item 3. (⊇) Given h ∈ convex(K∗ + L∗) of the form h = αh′ + βh′′ with
h′ ∈ K∗, h′′ ∈ L∗ and α, β ≥ 0; observe that

〈〈h′, x〉〉 ≥ 0 for all x ∈ K ⊇ K ∩ L,

hence h′ ∈ (K ∩ L)∗ (similarly h′′ ∈ (K ∩ L)∗ as well).

(⊆) By contradiction. Given h ∈ (K ∩ L)∗, suppose h /∈ convex(K∗ + L∗). Then
there exists a hyperplane separating h and convex(K∗ + L∗), y, such that

〈〈h, y〉〉 < 0 and 〈〈 convex(K∗ + L∗), y〉〉 ≥ 0 =⇒ 〈〈K∗ ∪ L∗, y〉〉 ≥ 0.

Hence y ∈ (K∗)∗ ⊆ K as well as y ∈ (L∗)∗ ⊆ L so y ∈ K ∩ L. But then
〈〈h, y〉〉 < 0 implies h /∈ (K ∩ L)∗ which is a contradiction.

Proofs of Items 4 and 5. K+L andK⊕L are convex cones by construction. Closed-
ness directly follows from properties of direct sum topology.

Theorem 11.1.8. If K is a closed convex cone, then

K∗∗ = K.

Proof. Observe that K∗∗ is closed by Claim 11.1.7 and contains K. Consider

inf
y∈K∗∗

sup
x∈K:‖x‖≤1

‖x− y‖2.

Since both K ∩ B(0, 1) and K∗∗ are closed, convex sets, there exists an optimal
value δ ≥ 0 and corresponding optimal solutions x′ and y′ such that:

max
x∈K∗∗:‖x‖≤1

min
y∈K:‖y‖≤1

‖x− y‖2 = ‖x′ − y′‖2 = δ.

Moreover δ = 0 iff K = K∗∗. Now suppose δ > 0. Consider the hyperplane h
that goes through y′ and origin in the direction from x′ to y′. Then 〈〈h,K〉〉 ≥ 0 for
otherwise y′ will not be optimal so h ∈ K∗. Moreover 〈〈h, x〉〉 < 0. But x ∈ K∗∗

which means 〈〈x, h〉〉 ≥ 0 a contradiction.

148

Our primal and dual cones are defined as linear transformations of some other
cones whose closedness usually follows from Lemma 11.1.6 and Claim 11.1.7.
Then if we can characterize what kind of transformations preserve closedness we
can easily show that associated primal and dual cones are closed as well.

Proposition 11.1.9 ([See Barvinok, 2002, Borwein and Lewis, 2000]). Given linear
subspaces E1, E2, a closed convex cone K ⊆ E1 and a linear mapping T : E1 7→ E2, if

ker(T) ∩K = {0}
then T (K) is closed.

Lemma 11.1.10 ([See Borwein and Moors, 2009]). Given linear subspaces E1, E2, a
closed convex cone K ⊆ E1 and a linear mapping T : E1 7→ E2, if

ker(T) ∩K
is a linear subspace then T (K) is closed.

Proof. Let U be the linear space corresponding to ker(T)∩K. Then we can express
K as the direct sum of two orthogonal sets,K = U⊥K⊕U . Furthermore both U⊥K
and U are convex and closed (by closedness of K) cones. Observe that ker(T) ∩
U⊥K = {0} hence by Proposition 11.1.9, T (U⊥K) is a closed convex cone. Finally
T (K) = T (U⊥K)⊕ T (U) = T (U⊥K) therefore T (K) is closed also.

As an immediate application, we can prove that the convex cone of SoS poly-
nomials, which we introduced back in Definition 3.1.32, is also closed:

Theorem 11.1.11. (i) ΣF is closed.

(ii) Σ∗F is the closed dual cone of ΣF.

Proof. (i) By first property from Lemma 3.1.33, we have ŜF
+ = ΣF. We know SF

+ is
closed by Lemma 11.1.6. Since ·̂ is a linear map, let ker = {G ∈ RF,F | Ĝ = 0}
be its kernel and consider G ∈ SF

+ ∩ ker. Then Ĝ =
∑

i g
2
i but

∑
i g

2
i ≡ 0

(mod BV) which means gi ≡ 0 for all i. But gi ∈ MLF[X] thus gi = 0 =⇒
G = 0. By Proposition 11.1.9 our proof is complete.

(ii) Duality follows from Theorem 3.1.34. Since it is dual cone, it is closed by Claim 11.1.7.

Corollary 11.1.12. f ∈ ΣF ⇐⇒ 〈〈f, x〉〉 ≥ 0 for all x ∈ Σ∗F.

Proof. Since ΣF is a closed and convex cone, we see that dual of its dual cone is
equal to itself, (ΣF)∗∗ = ΣF, by Theorem 11.1.8.

149

11.2 Existence of Primal and Dual Optimal Solutions
for Select Problems

In this section, we present the duals for some of our relaxations and prove exis-
tence of primal and dual optimal solutions. As opposed to the overall theme of
our thesis, we will work on a problem-by-problem basis in this section.

As mentioned in the beginning of this chapter, our focus will be on Lasserre
relaxations for binary partitioning problems but it is trivial to translate all our
results to k-labeling problems as well. For such relaxations, we can define our
linear subspaces E1, E2 as:

E1 = RF⊕F, E2 = {f ∈ R[X] : [f] ∈MLF]F[X]} .

We defined an inner product between these two spaces, 〈〈·, ·〉〉, in terms of the
pseudo-evaluation operator so that given x ∈ E1 and f ∈ E2:

〈〈f, x〉〉 =
∑
S∈F]F

xS[f]S.

11.2.1 Minimum Bisection

Recall the integer programming formulation for minimum bisection problem:

min
∑

u<v w
G
u,v(xu − xv)

2

st
∑

u xu = µ,
x ∈ {0, 1}V .

In Table 11.1, we give primal and dual formulations for Minimum Bisection prob-
lem.

Theorem 11.2.1. Given graph G = (V,E,W), down family F ⊇ V≤1, positive integer µ,
the moment relaxation for Minimum Bisection problem on F along with its dual as given
in Table 11.1 both have optimal solutions and any pair of such optimal solutions always
satisfy optimality condition.

Proof. Note the usual relaxation for Minimum Bisection in terms of moment se-
quences:

min 〈〈L̂G, x〉〉
st 〈〈(∑uXu − µ)2, x〉〉 = 0,

x∅ = 1, x ≥Σ∗
F

0, x ∈ RF]F.

150

Minimum Bisection
Primal Dual

min
∑

u<v w
G
u,v‖~xu − ~xv‖2

st
∑

u ~xu = µ~x∅,
‖~x∅‖2 = 1,
〈〈~xS, ~xT 〉〉 = xS∪T for all S, T ∈ F.

max η

st y

(∑
uXu − µ

)2

+ η ≤ΣF
L̂G,

η ∈ R, y ∈ R.

Optimality Condition∑
u<v w

G
u,v ‖~xu − ~xv‖2 = η.

Table 11.1: Primal and dual SDP formulations corresponding to moment relax-
ations of Minimum Bisection on down family F over V . Theorem 11.2.1 proves
existence of optimal primal and dual solutions satisfying optimality condition.
Note that here, for any positive integer r, F =

(
V
≤r

)
corresponds to r-rounds of

Lasserre relaxation.

We can see that the dual of this formulation indeed corresponds to the dual from Ta-
ble 11.1 using Definition 11.1.2 and Corollary 11.1.12. In order to proceed, we
verify the conditions from Corollary 11.1.5 one by one:

(1) Let x ∈ {0, 1}V be such that
∑

u xu = µ. Then the vectors [~xS ← XS(x)]S form
a primal feasible solution. Similarly y ← 0 and η ← 0 forms a dual feasible
solution since LG � 0.

(2) LG � 0, thus primal is bounded from below by 0.

(3) Σ∗F is a closed convex cone. Primal cone is given by:{
(〈〈p, x〉〉, 〈〈q, x〉〉, x∅)

∣∣x ∈ Σ∗F
}
,

where p
def
= L̂G and q

def
=

(∑
uXu − µ

)2

. For any x ∈ Σ∗F in its kernel, we have

x∅ = 0. By Claim 3.1.22, this implies x = 0. Using Proposition 11.1.9 we see
that the primal cone is closed.

151

Dual cone is {
(η, yq + η)

∣∣yq + η ≥ΣF
0, y ∈ R, η ∈ R

}
.

It is easy to see that the cone
{

(y, η)
∣∣yq + η ≥ΣF

0, y ∈ R, η ∈ R
}

is closed. For
any (η, y) in the kernel, η = 0 and yq ≡ 0 ⇐⇒ y = 0. Using items 4 and 5
from Claim 11.1.7 we see that the dual cone is closed.

11.2.2 Sparsest Cut

Now we consider the problem of sparsest cut:

min

∑
u<v w

G
u,v(xu − xv)

2∑
u<v w

H
u,v(xu − xv)2

st
∑

u<v w
H
u,v(xu − xv)

2 ≤ 2
∑
u,v

wHu,v︸ ︷︷ ︸
def
=mH

,

x ∈ {0, 1}V .

This formulation might seem odd: The first inequality constraint is always satis-
fied as (xu − xv)

2 ≤ 1 always for any u, v ∈ V rendering it redundant. However
we chose to explicitly state this constraint as it will ensure that the primal cone in
our relaxation will be closed.

For this problem, due to the objective function being non-linear, we were not
able to use the standard relaxation. But we can normalize the denominator instead
of x∅ to express this as an SDP formulation as in ?? (where the equivalence was
also proven.) In Table 11.2, we give this formulation, along with its dual and state
the optimality condition:

Theorem 11.2.2. Given graphs G and H on node set V , down family F ⊇ V≤1, positive
integer µ, the moment relaxation for Non-Uniform Sparsest Cut problem on F along
with its dual as given in Table 11.2 both have optimal solutions and any pair of such
optimal solutions always satisfy optimality condition.

Proof. Let ε def
= 1

2mH
. Our relaxation in terms of moment sequences is:

min 〈〈L̂G, y〉〉
st 〈〈L̂H , y〉〉 = 1,

y∅ ≥ ε, y ≥Σ∗
F

0,

y ∈ R(V
≤2r).

y:= x

〈〈L̂H,x〉〉↼−−−−−−−−−−−−⇁
x:= y

y∅

min 〈〈L̂G,x〉〉
〈〈L̂H ,x〉〉

st x∅ = 1, 〈〈L̂H , x〉〉 ≤ 1
ε
,

x ∈ R(V
≤2r).

152

Non-Uniform Sparsest Cut
Primal Dual

min
∑
u<v w

G
u,v‖~xu−~xv‖2∑

u<v w
H
u,v‖~xu−~xv‖2

st
∑

u<v w
H
u,v‖~xu − ~xv‖2 ≤ 2mH ,

〈〈~xS, ~xT 〉〉 = xS∪T for all S, T ∈ F.

max Φ + 2mHγ

st Φ · L̂H + γ ≤F L̂G,
Φ ∈ R, γ ∈ R+.

Optimality Condition

γ = 0∑
u<v w

G
u,v‖~xu − ~xv‖2 = Φ

∑
u<v w

H
u,v‖~xu − ~xv‖2.

Table 11.2: Primal and dual SDP formulations corresponding to moment relax-
ations of Non-Uniform Sparsest Cut on down family F over V . Theorem 11.2.2
proves existence of optimal primal and dual solutions satisfying optimality con-
dition. Note that here, for any positive integer r, F =

(
V
≤r

)
corresponds to r-rounds

of Lasserre relaxation.

Dual of left hand side is:

max Φ + γ
ε

st Φ · L̂H + γ ≤ΣF
L̂G,

Φ ∈ R, γ ∈ R+.

(11.5)

Let’s verify the conditions from Corollary 11.1.5.

(1) Let x ∈ {0, 1}V be xu = 1 and xV \{u} = 0. By assumption, H has no isolated
node so xTLHx > 0. Furthermore xTLHx ≤ Tr(LH) < 1

ε
. Hence the moment

sequence y = [yS] defined as yS ← XS(x)
xTLHx

is feasible.

Similarly Φ← 0 and γ ← 0 forms a dual feasible solution since LG � 0.

(2) LG � 0 thus primal is bounded from below by 0.

(3) Σ∗F is a closed. Primal cone is given by:{(
〈〈L̂G, y〉〉, 〈〈L̂H , y〉〉, y∅

) ∣∣y ∈ Σ∗F

}
.

153

For any y ∈ Σ∗F in its kernel, we have y∅ = 0. By Claim 3.1.22, this implies
y = 0. Using Lemma 11.1.10 we see that primal cone is closed. Dual cone is:{(

Φ +
γ

ε
,Φ · L̂H + γ

) ∣∣Φ · L̂H + γ ≥ΣF
0, Φ ∈ R, γ ∈ R+

}
.

It is easy to see that the cone
{

(Φ, γ)
∣∣Φ · L̂H + γ ≥ΣF

0,Φ ∈ R, γ ∈ R+

}
is closed.

For any (Φ, γ) in the kernel:

0 =Φ +
γ

ε
=⇒ Φ = −γ

ε
≤ 0.

0 ≡Φ · L̂H + γ ≡ −γ
ε
L̂H + γ

=⇒ γ

(
L̂H
ε
− 1

)
≡ 0 =⇒ γ = 0 =⇒ Φ = 0.

By Proposition 11.1.9, we see that dual cone is closed.

Optimality conditions are (stated in terms of normalized moment sequence x∅):

0 =〈〈L̂G − ΦL̂H − γ, x〉〉,

0 =γ

(
1

ε
− 〈〈L̂H , x〉〉

)
.

For sake of contradiction, assume γ 6= 0 in an optimal solution. Then 1
ε

= 〈〈L̂H , x〉〉 ≤
Tr(LH) < 1

ε
, a contradiction, therefore γ = 0.

154

Chapter 12

Conclusion

In this thesis, we developed new approaches for rounding solutions of relaxations
based on Lasserre Hierachy for many fundamental graph partitioning problems
such as Non-Uniform Sparsest Cut, Minimum Bisection, k-Unique Games, etc...
We related the quality of solutions constructed by the rounding to column based
matrix reconstruction problem for which we proved optimal bounds on the num-
ber of columns necessary as well as gave efficient deterministic and randomized
algorithms. By exploiting the way our rounding algorithms work, we also gave
a recursive ellipsoid based algorithm only constructs the relevant portion of so-
lution read by the rounding, effectively reducing the running times from nO(r) to
2O(r)nO(1).

For many problems we studied, there were no known way to obtain constant
factor approximation even for restricted classes of graphs. Our algorithms are
the first in this sense: Provided that graph spectrum increases relatively fast, we
proved that all our algorithms achieve constant factor approximation.

We believe that the research presented in this thesis opens up a lot of interest-
ing directions to pursue. However our main question still remains open:

“Is there a constant factor approximation algorithm for any of the problems
we studied running in quasi-polynomial time?”

Now we survey some future research directions, all based on trying to understand
the above question better.

Approximation Guarantees Independent of Spectrum. One intermediate ques-
tion one can ask is whether our approximation algorithms achieve factors such as
O(log n) or O(

√
log n).

155

Other Possibilities for Conditioning. The rounding framework we proposed is
based on conditioning partial labelings on seeds. But are these the only events
we can condition on? For example, Karlin et al. [2010] showed how to “derive”
variables corresponding to larger subsets for knapsack problem. Is there such
variables we can use?

Handling Graphs with Bounded Tree-width or Genus. These are two natural
graph classes whose spectrum is worst possible for us: Number of eigenvalues
smaller than, say expansion, is on polynomial in number of nodes! On the other
hand, for such graphs there are efficient algorithms which achieve constant factor
(or better) approximation. Moreover Chlamtac et al. [2010] showed that a weaker
hierarchy allows decent approximation for sparsest cut on bounded tree-width.

Exact Solver for Relaxations. Unlike LP, no optimal (or exact) solver for SDP is
known. However our SDP relaxations are nicely structured, some of which we
showed in Chapter 11. Therefore it might be possible to devise exact solvers for
such relaxations, while avoiding the difficulties faced in exactly solving generic
SDPs.

Handling Small Set Expander Graphs. Despite recent progress on lower bound-
ing graph spectrum in terms of small set expansion [????], the bounds still fall
too short to be useful for us in disproving small set expansion conjecture. But
such a detour might not be necessary at all: Can we bound the projection distance
assuming underlying graph is small set expander?

156

Bibliography

Christoph Ambühl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability
results for maximum edge biclique, minimum linear arrangement, and sparsest
cut. SIAM J. Comput., 40(2):567–596, 2011. 6

Reid Andersen and Kevin J. Lang. An algorithm for improving graph partitions.
In SODA, pages 651–660, 2008. 115, 116, 125

Sanjeev Arora and Rong Ge. New tools for graph coloring. In APPROX-
RANDOM, pages 1–12, 2011. 57, 73, 74, 95, 96, 98

Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new charac-
terization of NP. J. ACM, 45(1):70–122, 1998. 5

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. J.
ACM, 45(3):501–555, 1998. 5

Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani,
and Nisheeth K. Vishnoi. Unique games on expanding constraint graphs are
easy. In STOC, pages 21–28, 2008a. 47, 104

Sanjeev Arora, James Lee, and Assaf Naor. Euclidean distortion and the sparsest
cut. J. American Mathematical Society, 21(1):1–21, 2008b. 115

Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric
embeddings and graph partitioning. J. ACM, 56(2), 2009. 4

Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for
Unique Games and related problems. In FOCS, pages 563–572, 2010. 115, 116,
126

157

Yonatan Aumann and Yuval Rabani. An o(log k) approximate Min-Cut Max-Flow
theorem and approximation algorithm. SIAM J. Comput., 27(1):291–301, 1998.
114

Per Austrin, Subhash Khot, and Muli Safra. Inapproximability of vertex cover
and independent set in bounded degree graphs. Theory of Computing, 7(1):27–
43, 2011. 5

Baruch Awerbuch and David Peleg. Sparse partitions (extended abstract). In
FOCS, pages 503–513, 1990. 1, 113

Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An
application of combinatorial optimization to statistical physics and circuit lay-
out design. Operations Research, 36(3):493–513, 1988. 2

Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite pro-
gramming hierarchies via global correlation. In FOCS, pages 472–481, 2011. 56,
57, 73, 74, 95, 99, 100, 104, 105

Boaz Barak, Aram Harrow, Jonathan Kelner, David Steurer, and Yuan Zhou. Hy-
percontractivity, Sum-of-Squares proofs, and their applications. In STOC, pages
307–326, 2012. 7

Alexander Barvinok. A Course in Convexity, volume 54 of Graduate Studies in Math-
ematics. American Mathematical Society, 2002. 146, 149

Aditya Bhaskara, Moses Charikar, Aravindan Vijayaraghavan, Venkatesan Gu-
ruswami, and Yuan Zhou. Polynomial integrality gaps for strong sdp relax-
ations of densest k-subgraph. In SODA, pages 388–405, 2012. 4

Sandeep N. Bhatt and Frank Thomson Leighton. A framework for solving VLSI
graph layout problems. J. Comput. Syst. Sci., 28(2):300–343, 1984. 1, 113

Jonathan Borwein and Adrian S. Lewis. Convex Analysis and Nonlinear Optimiza-
tion: Theory and Examples, volume 3 of CMS Books in Mathematics. Springer, 2000.
146, 149

Jonathan M. Borwein and Warren B. Moors. Stability of closedness of convex
cones under linear mappings. J. Convex Analysis, 16(3):699–705, 2009. 149

Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal
column-based matrix reconstruction. In FOCS, 2011. 50, 130, 131, 132

158

Peter Bürgisser, Michael Clausen, and Mohammad Shokrollahi. Algebraic Com-
plexity Theory. Springer, 2010. 140

Ali Çivril and Malik Magdon-Ismail. Deterministic sparse column based matrix
reconstruction via greedy approximation of SVD. In ISAAC, pages 414–423,
2008. 131

Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivaku-
mar. On the hardness of approximating Multicut and Sparsest-Cut. Computa-
tional Complexity, 15(2):94–114, 2006. 5

Shuchi Chawla, Anupam Gupta, and Harald Räcke. Embeddings of negative-
type metrics and an improved approximation to generalized sparsest cut. ACM
T. Algorithms, 4(2), 2008. 115

Eden Chlamtac. Approximation algorithms using hierarchies of semidefinite pro-
gramming relaxations. In FOCS, pages 691–701, 2007. 4

Eden Chlamtac and Gyanit Singh. Improved approximation guarantees through
higher levels of SDP hierarchies. In APPROX-RANDOM, pages 49–62, 2008. 4,
57, 74

Eden Chlamtac and Madhur Tulsiani. Convex relaxations and integrality gaps. In
Handbook on Semidefinite, Cone and Polynomial Optimization, 2011. URL http:
//www.cs.princeton.edu/˜chlamtac/sdpchapter.pdf. 4, 7

Eden Chlamtac, Robert Krauthgamer, and Prasad Raghavendra. Approximating
sparsest cut in graphs of bounded treewidth. In APPROX-RANDOM, pages
124–137, 2010. 56, 156

Amit Deshpande and Luis Rademacher. Efficient volume sampling for
row/column subset selection. In FOCS, pages 329–338, 2010. 130, 131, 132,
133, 141, 142

Amit Deshpande and Santosh Vempala. Adaptive sampling and fast low-rank
matrix approximation. In APPROX-RANDOM, pages 292–303, 2006. 131, 132,
133, 142, 144

Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix
approximation and projective clustering via volume sampling. Theory of Com-
puting, 2(1):225–247, 2006. URL http://www.theoryofcomputing.org/
articles/v002a012. 131, 132, 133

159

http://www.cs.princeton.edu/~chlamtac/sdpchapter.pdf
http://www.cs.princeton.edu/~chlamtac/sdpchapter.pdf
http://www.theoryofcomputing.org/articles/v002a012
http://www.theoryofcomputing.org/articles/v002a012

Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast Monte-Carlo algorithms
for finding low-rank approximations. J. ACM, 51:1025–1041, November 2004.
131

Michel X. Goemans and David P. Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite pro-
gramming. J. ACM, 42(6):1115–1145, 1995. 3, 18

Gene H. Golub and Charles F. Van Loan. Matrix Computations (Johns Hopkins Stud-
ies in Mathematical Sciences)(3rd Edition). The Johns Hopkins University Press,
3rd edition, October 1996. ISBN 0801854148. 130

Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization. Springer-Verlag, 1993. 2, 18, 61, 62

Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher eigenval-
ues, and approximation schemes for graph partitioning and quadratic integer
programming with PSD objectives. In FOCS, pages 482–491, 2011. 11

Venkatesan Guruswami and Ali Kemal Sinop. Optimal column-based low-rank
matrix reconstruction. In SODA, pages 1207–1214, 2012a. 12

Venkatesan Guruswami and Ali Kemal Sinop. Faster SDP hierarchy solvers for
local rounding algorithms. In FOCS, 2012b. To appear. 11

Venkatesan Guruswami and Ali Kemal Sinop. Lasserre SDPs, `1-embeddings,
and approximating non-uniform sparsest cut via generalized spectra. In SODA,
2013. To appear. 12

Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghaven-
dra, and Moses Charikar. Beating the random ordering is hard: Every ordering
CSP is approximation resistant. SIAM J. Comput., 40(3):878–914, 2011. 5

Venkatesan Guruswami, Ali Kemal Sinop, and Yuan Zhou. Constant factor
lasserre integrality gaps for graph partitioning problems. CoRR, abs/1202.6071,
2012. 4

Magnús M. Halldórsson. Approximations of independent sets in graphs. In AP-
PROX, pages 1–13, 1998. 90

Eran Halperin. Improved approximation algorithms for the vertex cover problem
in graphs and hypergraphs. SIAM J. Comput., 31(5):1608–1623, 2002. 90

160

Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859,
2001. 5

Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, 1991. 143

Anna R. Karlin, Claire Mathieu, and C. Thach Nguyen. Integrality gaps of linear
and semi-definite programming relaxations for knapsack. CoRR, abs/1007.1283,
2010. 4, 40, 57, 156

Subhash Khot. On the power of unique 2-prover 1-round games. In STOC, pages
767–775, 2002. 5

Subhash Khot. Ruling out PTAS for Graph Min-Bisection, Dense k-Subgraph, and
Bipartite Clique. SIAM J. Comput., 36(4):1025–1071, 2006. 6

Subhash Khot and Rishi Saket. SDP integrality gaps with local `1-embeddability.
In FOCS, pages 565–574, 2009. 7

Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal in-
approximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Com-
put., 37(1):319–357, 2007. 5

Subhash Khot, Preyas Popat, and Rishi Saket. Approximate Lasserre integrality
gap for unique games. In APPROX-RANDOM, pages 298–311, 2010. 104

Alexandra Kolla. Spectral algorithms for unique games. In CCC, pages 122–130,
2010. 116

Jean B. Lasserre. An explicit equivalent positive semidefinite program for nonlin-
ear 0-1 programs. SIAM J. Optimization, 12(3):756–769, 2002. 4, 7, 9, 37

Monique Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and
Lasserre relaxations for 0-1 programming. Math. Oper. Res., 28(3):470–496, 2003.
7, 71

Frank Thomson Leighton and Satish Rao. An approximate max-flow min-cut the-
orem for uniform multicommodity flow problems with applications to approx-
imation algorithms. In FOCS, pages 422–431, 1988. 114

Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and
some of its algorithmic applications. Combinatorica, 15(2):215–245, 1995. 114,
119

161

Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the
exponential time hypothesis. Bull. EATCS, 105:41–72, 2011. 71

László Lovász and Alexander Schrijver. Cones of matrices and set-functions and
0-1 optimization. SIAM J. Optimization, 1:166–190, 1991. 4, 7

Michael Mahoney and Petros Drineas. CUR matrix decompositions for improved
data analysis. Proc. of the National Academy of Sciences USA, 106:697–702, 2009.
130

Rajsekar Manokaran, Joseph Naor, Prasad Raghavendra, and Roy Schwartz. SDP
gaps and UGC hardness for Multiway Cut, 0-extension, and Metric Labeling.
In STOC, pages 11–20, 2008. 5

Albert W. Marshall, Ingram Olkin, and Barry C. Arnold. Inequalities: Theory of
Majorization and its Applications. Springer, 2009. 133, 135

Lorant Porkolab and Leonid Khachiyan. On the complexity of semidefinite pro-
grams. J. Global Optimization, 10:351–365, 1997. 61

Prasad Raghavendra. Optimal algorithms and inapproximability results for every
CSP? In STOC, pages 245–254, 2008. 5, 104

Prasad Raghavendra and David Steurer. Integrality gaps for strong SDP relax-
ations of Unique Games. In FOCS, pages 575–585, 2009. 7

Prasad Raghavendra and David Steurer. Graph expansion and the unique games
conjecture. In STOC, pages 755–764, 2010. 6

Prasad Raghavendra and Ning Tan. Approximating CSPs with global cardinality
constraints using SDP hierarchies. In SODA, 2012. 55, 57, 74, 105

Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between
expansion problems. In CCC, 2012. 6

Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998. 5

Thomas Rothvoß. Directed Steiner Tree and the Lasserre hierarchy. CoRR,
abs/1111.5473, 2011. 74

Tamás Sarlós. Improved approximation algorithms for large matrices via random
projections. In FOCS, pages 143–152, 2006. 131

162

Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In
FOCS, pages 593–602, 2008. 4

Issai Schur. Uber eine klasse von mittelbindungen mit anwendungen in der de-
terminantentheorie. Sitzungsber Math Gesellschaft, 22:9–20, 1923. 135

Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming prob-
lems. SIAM J. Discrete Mathematics, 3:411–430, 1990. 4, 7

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 22(8):888–905, 2000. 1, 113

Ali Kemal Sinop and Leo Grady. Uninitialized, globally optimal, graph-based
rectilinear shape segmentation: The Opposing Metrics method. In ICCV, pages
1–8, 2007. 1, 113

Luca Trevisan, Gregory B. Sorkin, Madhu Sudan, and David P. Williamson. Gad-
gets, approximation, and linear programming. SIAM J. Comput., 29(6):2074–
2097, 2000. 5

Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In STOC,
pages 303–312, 2009. 4

Vijay V. Vazirani. Approximation algorithms. Springer, 2001. ISBN 978-3-540-65367-
7. 2

163

	Introduction
	Approximation Algorithms
	Convex Relaxations and Rounding Algorithms
	Integrality Gaps as Limitations
	Hierarchies of Relaxations

	Hardness of Approximation
	Unique Games Conjecture
	Small Set Expansion Conjecture

	Our Motivation
	Lasserre Hierarchy Relaxation
	Our Contributions and Thesis Structure
	Bibliographic Note

	Background
	Sets and Families
	Linear Algebra
	Geometry
	Convex Optimization and Semi-definite Programming
	Conic Ordering
	Generalized Eigenvalues
	Graphs and Laplacian Matrices
	Some Probabilistic Inequalities

	Moment Based SDP Relaxations
	Algebraic Background
	Polynomial Ideals and Quotient Algebra
	Pseudo-Moments
	Sum of Squares Ordering

	Moment Based SDP Relaxations
	Labeling Vectors
	Binary Labeling Vectors
	k-Labeling Vectors

	Case Study: Minimum Bisection
	Lasserre Hierarchy Relaxation
	Main Theorem on Rounding
	The Rounding Algorithm
	Factor 1+1r Approximation of Cut Value
	Improved Analysis and Factor 1r Approximation on Cut Value
	Bounding Set Size

	Local Rounding Framework and Faster Solvers
	Introduction
	Our Rounding Framework and Method Overview
	An Algorithm for a Simple Case
	Our Algorithm
	Our Contribution: A Separation Oracle with Restricted Support

	Preliminaries
	Convex Geometry
	Ellipsoid Method

	Finding Separating Hyperplanes on a Subspace
	An Equivalent Convex Problem
	Ellipsoid Algorithm with Certificate of Infeasibility

	Faster Solver for Local Rounding Algorithms
	Separation Oracle for Lasserre Hierarchy

	Our Results
	Graph Partitioning with Linear Constraints
	Seed Based Rounding
	Choosing Good Seeds
	Combining with Our Faster Solver
	Applications
	Minimum Bisection
	Small Set Expansion
	k-Way Partitioning Problems

	Independent Set
	Variance Reduction Perspective
	Analysis of Other Rounding Algorithms
	Partial Coloring of 3-Colorable Graphs
	Approximating 2-CSPs

	Maximum Cut, Unique Games and Similar Problems
	Introduction
	Related Work
	Maximum Cut
	Unique Games

	Sparsest Cut and Other Expansion Problems
	Introduction
	Previous approximation algorithms for sparsest cut
	Overview of Our Contributions

	Our Algorithm and Its Analysis
	Intuition Behind Our Rounding
	Seed Based 1-embedding
	Choosing Seed Edges

	Using Subspace Enumeration for Uniform Sparsest Cut

	Column Based Matrix Reconstruction
	Introduction
	Related Work
	Our Techniques
	Preliminaries
	Bound on Ratio of Symmetric Functions
	Bounds on Column Reconstruction
	Fast Volume Sampling Algorithm
	Deterministic Column Selection Algorithm
	Lower Bound on Number of Columns Needed

	Existence of Primal and Dual Optimal Solutions
	Preliminaries
	Linear Conic Programming
	Closed Convex Cones

	Existence of Primal and Dual Optimal Solutions for Select Problems
	Minimum Bisection
	Sparsest Cut

	Conclusion
	Bibliography

