
NSF Highlights

Fundamental Limit of Error-Correction Achieved
Highlight ID: 16270

 

Error-correcting codes are all around us

Permission Not Granted 
Credit: Hard Drive: Michael Connors, MorgueFile. Other Images: Unknown. 

 

Univariate interpolation and Reed-Solomon decoding
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In the information age in which we now live, reliable transmission and storage of digital information is of paramount importance.  What makes such reliable transmission
and storage possible, despite the errors inherent to communication channels and storage media, are error-correcting codes, first conceived by Claude Shannon over 60
years ago.  Recent advances made by two NSF-supported scientists --- Venkatesan Guruswami at the University of Washington and Alexander Vardy at the University
of California San Diego, along with their graduate students --- have led to the discovery of error-correcting codes with the best possible trade-off between
error-correction capability and redundancy.  The newly discovered codes yield an improvement by a factor of two over conventional error-correction algorithms that are
currently used in every CD player and every desktop PC, as well as a myriad other devices that directly impact our daily lives (Figure 1).

The basic idea of error-correction coding is relatively simple.  Suppose that a sender (Alice) wishes to communicate to a receiver (Bob) a message consisting of k
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Conceptual sketch of the Parvaresh-Vardy coding scheme
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symbols in such a way that Bob can always recover the message perfectly, even if e symbol errors occur during its transmission.  To do so, Alice first encodes the
message in a string of n > k symbols, using an error-correcting code that is capable of correcting any e transmission errors.  The ratio R = k/n is called the "information
rate" of the code, while the ratio t = e/n is known as its "error-correction radius."  Obviously, we would like both R and t to be as large as possible, transmitting
information at a high rate while, at the same time, correcting many errors.  However, these are conflicting goals: to correct more errors, one has to add more redundant
symbols to the message.  Ever since the dawn of coding theory in the 1940s, researchers have wondered what is the best possible trade-off between these parameters
R and t.  Even more importantly, could such trade-off be achieved efficiently --- that is, with polynomial-time encoding and decoding algorithms?  The recent results of
Vardy (with his student Farzad Parvaresh) and Guruswami (with his student Atri Rudra) provide a fascinating answer to both questions.  They show that it is possible to
achieve, with constructive codes and polynomial-time decoding algorithms, the ultimate information-theoretic limit t = 1-R.  This means that the redundancy in the
encoding can be as close as one desires to the proportion of errors we wish to correct, which is the best one can hope for.

To describe the remarkable journey that culminated in these results, we need to go back to the work of Irving Reed and Gustave Solomon in 1960.  Reed and
Solomon advised Alice to think of the k symbols she wishes to convey as the coefficients of a polynomial, and send to Bob the values of this polynomial at some n
different points.  They showed that Bob can always recover Alice's polynomial perfectly by interpolating through the n values he receives, even if (n-k)/2 of them are in
error (Figure 2).  The Reed-Solomon codes thus establish the following trade-off between information rate and error-correction radius: t = (1-R)/2.  Almost half a century
after their invention, Reed-Solomon codes are still ubiquitous today in applications ranging from magnetic recording to satellite communications and fiber-optic networks.
 
For several decades, this classical trade-off t = (1-R)/2 was considered the best one could hope for, until Madhu Sudan from MIT surprised the scientific community in
1996 by showing that Reed-Solomon codes can correct more errors than previously thought possible.  Sudan's algorithm does not always enable Bob to deduce Alice's
message uniquely, but rather produces a small list of possible messages one of which is guaranteed to be correct.  In practice, it turns out that error patterns that may
cause such list-ambiguity are extremely rare, and list-decoding works just as well as conventional unique decoding.  Somewhat counter-intuitively, Sudan's algorithm
used interpolation in the domain of bivariate polynomials to recover the univariate polynomial that encodes Alice's message.  Later, Guruswami and Sudan extended
this idea by allowing multiplicities at the interpolation points, an elegant and powerful feature that has been vital to subsequent developments.  This enabled them to
establish the trade-off t = 1- sqrt{R} between rate and decoding radius (see Figure 3). Soon afterwards, Ralf Koetter from the University of Illinois and Vardy discovered
a way to assign multiplicities in the Guruswami-Sudan algorithm so as to take into account the probabilistic measurements provided by a communication channel,
thereby making this algorithm suitable for use in a wide variety of applications.  These results have won broad acclaim, including the Nevanlinna Prize, the ACM
Doctoral Dissertation Award, and two IEEE Information Theory Society Best Paper Awards.  Further details on this NSF-supported work can be found at
http://nsf.gov/discoveries/disc_summ.jsp?cntn_id=100256.

As years since the 1999 publication of the Guruswami-Sudan paper went by, efforts to improve the algorithm further did not meet with much success.  There loomed
the possibility that correcting a larger number of errors would cause too much ambiguity, making it impossible to accomplish decoding with a small list.  It became clear
that decoding beyond the Guruswami-Sudan radius, if at all possible, would require radically new methods.  Such a breakthrough method was discovered by Parvaresh
and Vardy [1], who showed in 2005 that even more errors could be corrected.  To achieve this result, they ventured beyond the bivariate interpolation methods of
Sudan and used polynomials in M variables, where M > 2 is a design parameter.  They furthermore devised a clever new variant of Reed-Solomon codes based on the
idea of including more information in the encoding of every message.  Specifically, to encode a message polynomial f(X), Parvaresh and Vardy evaluate (at some n
points, as before) both f(X) and a carefully chosen related polynomial g(X); the ingenious way in which g(X) is picked based upon f(X) forms the crux of the coding
scheme.  The general concept is sketched-out in Figure 4 for the case of trivariate interpolation (M = 3). The resulting scheme does enable correcting more errors, but
unfortunately it also doubles the redundancy of the code, thereby reducing its information rate.  Thus, although Parvaresh and Vardy succeeded in beating the
Guruswami-Sudan radius for low rates, it appeared unlikely that their approach could be extended to high rates, which is often the regime of interest in communication
settings.

Yet, in a recent paper [2] published in January 2008, Guruswami and Rudra managed to do just that.  By orchestrating an algebraic miracle of sorts, they ensured that
the second polynomial g(X) in the Parvaresh-Vardy scheme becomes essentially identical to the first: when chosen according to the Guruswami-Rudra method, the
encoding of g(X) is just a cyclic shift of the encoding of f(X).  There is then no need to explicitly send the extra encoding at all, and hence there is no loss in rate.  The
upshot of all this is a truly remarkable result: Guruswami and Rudra showed that the ultimate error-correction radius t=1-R can be reached and, moreover, it can be
reached constructively, with polynomial-time encoding and decoding.  This achieves the information-theoretic limit on the best possible trade-off between rate and
decoding radius, for all possible rates!  This furthermore corrects twice as many errors as the conventional decoding algorithms for Reed-Solomon codes (see Figure 3).

Although very recent, the coding schemes invented by Parvaresh and Vardy [1] and Guruswami and Rudra [2] have already found striking applications in diverse areas,
ranging from compressed sensing to random number generation.  Their work was recognized by prestigious Best Paper Awards at the IEEE Symposium on
Foundations of Computer Science (FOCS'05) and at the IEEE Conference on Computational Complexity (CCC'07).  It was also featured in a recent perspective article
in Science [3].

It remains to be seen whether, some years from now, we will all be using the new decoding algorithms whenever we play a CD or access a computer hard disk.
Numerous challenges must be overcome in order to reduce to practice the theoretical promise of the results discussed in the foregoing paragraphs.  What is already
clear, however, is that Vardy, Guruswami, and their graduate students have achieved an elusive milestone that has been sought by researchers in coding theory ever
since the birth of this field 60 years ago.
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