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| Recap: Simon's A]gorithm

Recall that in the Simon’s problem, we are given a functfonZ? — Z5 (i.e. from n-bit strings ton-bit
strings), with the promise that there is a non-zero stsiggZ5 \ {0} such that

forall x#£y, f(x) = f(y)ifand only ifx®y=s.

The challenge is to determirse As we saw last time, the problem can be solved with the fatigveircuit.
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Figure 1: Circuit for Simon’s Algorithm
The above circuit corresponds to the following sequenceapfformations.
0)
010 =3

fzw

measure

— 75 ([x0) + [0 ®s)) ®|a)

)| f(x

(measuring the 2nd register, we obseave Z5 such thata = f(xg) = f(Xo® S))
Hen 1
o 2. |Y) [2)

for some numbersy.

Recall that the Hadamard transform of a general statés

HEM) = jz_ng(—n*y\w,

%2((_1)Xo~y+ (_1)(XOEBS)'Y).

There are now two cases. For eaghf s-y = 1, thenay = 0, whereas i6-y = 0, thenay = (—1)0Yy/2.

ay:
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When we observe the first register, we get a uniformly rang@uch thats-y = s1y1 + - - + Siyn = 0. We
repeat to collect more and more equations, and recoirem n linearly independent equations.

There is another way to view the final Hadamard transform. We have|xp) + [0 & s), measuring
immediately would destroy the state. That's why we tramafdrto another basis (the Hadamard basis)
before measuring.

2 Fourier Transform on Zy fOI‘ Integer M

Let f : Zy — ¥ be a complex-valued function afy. Its Fourier transfornf : Zy — ¢ is given by
- 1
ft)=—

\/MXE M
wherew = exp(2rti /M) is a primitive M-th root of unity. If we writef as the vector

£(0)
f(1)

f(x)w™

al
I

eeM,
F(M—1)

and similarly writef asf € 4™, then the vectorg and f are related by a change of badis- Fy f, where
the matrixky takes the form

1 1 1 1 1
1 w w? W M1
1|1 o2 W W . M2
FM - W l Cl)3 Cl)6 wg e w3M_3 )
T P P Y

that is, (i, j)-th entry ofFy is w'! (if we ignore the normalization factor/3/M).

3 Classical Fast Fourier Transform

Straightforward multiplication of the vectdt by Ry would takeQ(M?) steps because multiplication 6f
by each row requires multiplications. Exploiting the symmetry &y, it is possible to perform Fourier
transform inO(MlogM) operations wheM is a power of two, i.eM = 2™. This algorithm is known as
fast Fourier transform (FFT).

The idea is to rewrite the Fourier coefficierftsj) as
M-1
f(j)= % W f(i) (where for simplicity we ignore the normalization factghAM)
i=

= > i)+ S wlif(i) (splitting into odd and even terms)
i even i odd
M/2-1 M/2-1
= Z ()£ (2) + ol Z (w¥)f(2'+1)  (write eveni as 2/, odd as # + 1)
=0 =0

_ (FM/2@> (j) + ol (FM/ZE;) (i)
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Figure 2: A circuit for classical fast Fourier transform

The above idea is summarized in the diagram below.

This representation gives a recursive algorithm for coimguhe Fourier transform in timé(M) = 2T (M /2) +
O(M) =O(MlogM).

4 Quantum Fourier Transform

We continue to assurmd = 2™. Suppose a quantum state) on mqubits is given a$f) = z'\" L (%)]x).

Quantum Fourier transform (QFT) is the operation that njdpsto | f), where|f) = ¥ f(x)|x) (and
f(x) are the Fourier coefficients d).

As we shall see, QFT can be implemented by circuit of QZI@gZM). However, this does not constitute
an exponential speed-up over the classical algorithm tsectne result of quantum Fourier transform is a
superposition of states which can be observed, and any meeasat can extract at most= logM bits of
information.

We now describe a circuit that implements quantum Fouraarstiorm.
Step 1: QF Ty 2 on the firstm— 1 qubits
Similar to the classical fast Fourier transform, we willisl, f(x)|x> into odd and even terms. Hence

M/2—-1 M/2—-1

> f@R0)+ 3 fE+H]).

where|2i> is written as|i> \0> because appending a zero to a binary number is the same dsdadhle
number (e.g. if is 101100 in binary, theniZs 1011000). In a quantum circuit for uantum Fourier transfo
we will first apply QF Ty /2 on the first register (i.e. the first— 1 qubits), obtaining

M/2-1 M/2—1

> aili)]o)+ ;BI )11

CS 294, Spring 2009, Lecture 4 3



1st bit /Rl\
)
PN
most .
significant § —2ndbt_ QFTm/2 /Rz\
bits \Z
least
significant [H]
bit

Figure 3: Circuit for quantum Fourier transform

for certain amplitudes; andf;.
Step 2: Controlled phase shifts

Next, for each of the first m-1 qubits (1 < k < m), if both thek-th qubit and the last qubit are 1, then
we need to multiply the phase byszk, and otherwise leave the phase unchanged. Thus, we apply the
following transformation$Ry:

k-th qubitlast qubit

AN AN m-k
R "1 "1 ) =« |11)
R¢|01) = |01)
R«|10) =|10)
R¢|00) = |00)

Hence,Ry is just a controlled phase shift (with angler/2¥). After the controlled phase shift, we get the

state
M/2—-1 M/2—1

aili) [0) + w BiliY]1).
Y al)io)+ Y Bl
Step 3: Hadamard gate
Finally, we apply a Hadamard gate to the last qubit, and enditipthe state

1 w21 M/2-1
215 e+ 1+, i o) -1n)

:% Za.+w[3. \O +Z —wpB) w

|th output (i4+M/2)th output

Putting together, in the circuity above the quantum Fouramsform onm— 1 qubits corresponds to two
Fourier transforms om— 1 bits in the figure??. The controlled phase shifts correspond to multiplication
by w! in classical circuit. Finally, the Hadamard gate at the @y corresponds to the summation.

The number of gate3 (M) satisfies the recurrence relatidiM) = T(M/2) +logM. ThusT(M) =
O(log®M).
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5 Period Finding

Period finding is the problem in which we are given a functionZy, — ¢, with the promise thaf is
periodic with period, i.e.

there is a such that for alk #y, f(x) = f(y) if and only if x=y modr.

The challenge is the find the period
This problem can be solved efficiently using the followinccuit.
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Figure 4: Circuit for period finding

The above circuit corresponds to the following sequenceamsformations.
oFtw 1
0)[0) — —= ; %) [0)
M Xelm

AU

. M/r—1
measure 2nd register 1 /
—

C4kry|f(4
(Here we assumedividesM to simplify the analysis. We will remove this restriction
later.)

QF T r 1
iy \/%W g ayly),

— M1 ekn)y kr
whereay = 3,0~ @KV = @Y 5, @Y.

There are two cases fgr

1. Case lyis a multiple of=.

i kry _ g2mi _ _VIiM_ 1
In this case, thea"Y = &™Y/M = 1. Soa, = %T =7
Note that there aremultiples ofM /r. The sum of the magnitudes squared for these valugssof.

This implies that for any othey, ay = 0.

2. Case 2y is not a multiple ofF.

We already showed that, must be 0 from the previous case. But we can also give anioiuior
why this is the case. Note that, w??, ... are evenly spaced vectors of unit length around the origin.
Being the sum of these complex numbexgjs O.
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In other words, if we measure the output from the second guatourier transform, we get a uniformly
random multiple oM /r. If we repeat the whole procesgimes, getting random multiplesys, ...,y of
M/r, the greatest common divisor of tiggs is likely to beM /r. Since we knowM, we can recover from

M/ng(YL---aYt)-

Let us compute the chance of finding the correct period wighmples. Suppose after repeatinimes,
we have not found the desired peribtJr, but instead a multiple, sayM/r. This means that each of the
samples must be a multiple &M /r. There areM /(AM/r) =r/A multiples ofAM/r, and since there are
r multiples in total, the probability of getting a multiple &M /r is 1/A. Therefore,

1 t 1 t
Prigcd is a multiple oAM /r] = (X) < <§> ;

and we err with probability t
Prigcd> M /r aftert samples< M (%) .

Sot = O(logM) measurements suffice to guarantee a solution. A more cangdilyfsis shows that a constant
number of samples is sufficient.

6 Period Finding: The General Case

For the general case whekkis not a multiple ofr, we will fix M = 2™ to be a power of two that is at least
2
re.

The change to the above analysis is that, after measurirgntheegister, we get

2nd registerl
measure 2nd regis e:[ kz [+kr)|f(0))

wheres= |[M/r| ors= |[M/r] + 1. If we now take QFT on the first register, we @}aﬂy} with
1 / s—1 k
Qv — VS MY
R EY kZO
Case 1 now becomes:

1. Case 1iry modM| < 5 (in this section the remainder mad is allowed to be negative):

Intuitively, in this case the amplitudes’Y “almost line up” in the complex plane. Previously, when
the periodr dividesM exactly, all the amplitudes for multiples df /r “line up” at 1.

Claim: If [ry modM| < %, then|ay| > Csfor some constarg.

This claim implies that we have substantial probability bEerving ay that falls into case 1. How
manyy belong to this case? Whenis coprime toM (which is the usual case when we run period
finding as a subroutine in factoring), the $ey |y € Zy } is justZy. Put differently, ay runs through
Z\, the producty also runs throug . Hence there are abouf 2= r suchy. Then

1
PriObservi hel>r-C2.2— >C2.5. > t
HObserving such g > r Ve 2 M cons

CS 294, Spring 2009, Lecture 4 6



For the rest of the discussion, assume that we measuwyreatisfying|ry modM| < r /2. How does this help
us compute the period® By assumptiotry — cM| < r/2 for some integec, and hence

Y _ E‘ <>
M rl— 2M
Herey andM are both known. We shall show, assuming that> r2, how to recoverc/r by continued

fraction.

Here is the ideac/r is a close approximation tg/M. Is it possible to get a better rational approximation
with denominator at most? We will show it is impossible. Suppos€/r’ is a better rational approximation

with denominator’ <r. Then -
c

rr

o4
~r2

o’ —cr
rr’

But now it follows that
c_yl,1 1 1
rr- M| =r2 2M~ 2M°

So if we compute the continued fraction expansiory ¥l and look at the successive approximations to
y/M, one of these must &', thus yieldingr. (See the section on continued fractions below.)

7 Continued Fraction
Definition 4.1 (Continued Fraction). A real numberx can be approximated by an iterated fraction
1 R
a;+

whereay, . .., a, (and hencd?, andQp) are integers.
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2 Example 1 Let us approximatert to two decimal places with a rational number. We know that

m = 314...
14

Q

w

+
I

Example 2: If we decide to approximata to four decimal places, we would have

m = 31415...
1415

+ 10000
1

* 10000
1415

= 3

= 34+ ——

&Q
w
+

7 1
12
311
99

The following lemmas are well known facts about continuedttion that we state without proof.
Lemma 4.1 CF,(a) isthe best rational approximation of o with denominator < Qj,.
Lemma 4.2 If a isrational then it occurs as one of the approximations CFy(a).
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Moreover, it is easy to see that the continued fraction ig &msompute for any rational number.

8§ Shor’s Quantum Factoring Algorithm

Below we give a quantum algorithm that factdtsn polylog(N) time (factoring in polyN) time is trivial
and is too slow). It turns out the problem of factoring redutzefinding a nontrivial square root.

Claim: If we can findu such that? = 1 (modN) andu # +1 (modN), then we can factoN. (Such a
numberu is called a nontrivial square root of fmod N).)

Proof: The condition onu is equivalent toN | u? — 1= (u+1)(u—1) butNtu+1orNfu—1. So
gcdN,u+ 1) and gcdN,u— 1) are nontrivial factors oN. O

To find a non-trivial square root, we simply pick a random nemb(mod N) and compute its order, where
the order ofx is the least positive such that’ =1 (mod N).

Claim: If N is odd, with probability at least/R2 over a randomx € Zy, the orderr of xis even and/2 Zz+1
(modN).

Example: Let N = 15. Then let's suppose we pickad= 7. Thenx = 7,x> = 4,x3 = 13,x* = 1, sox has
order 4. Now, takingy = X'/2 = 4, notice thay — 1 = 3 andy+ 1 =5 are both factors of 15.

To compute the order, we can use a quantum circuit to compete= x* (mod N). The function maps
element froniZy to Zy with M > N2. This function can be implemented efficiently W(ﬂﬁlogzN) gates if
we do modular exponentiation with repeated squaring.

Below we give the algorithm that, given an odd inte@groutputs a nontrivial factor ol with constant
probability.

[1] Pick a randomx € Zy gcd(x,N) > 1 Output gcdx, N) Run period finding orf (a) = x® (mod N) to get
the orderr of x (mod N) Computex'/2 (mod N) X/2 # +1 (mod N) Output gcdN,x/? £ 1) Abort

Note that GCD can be computed quickly using Euclid’s aldponit

Because of randomized nature of part of the algorithm, we negg to repeat this procedure many times.
Since the algorithm succeeds with constant probabilityprastant number of repititions suffice to split
into two non-trivial factors. We can then repeat the procedun each factor until we are down to the prime
factors.
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