CS 294 Recursive Fourier Sampling, Simon’s Algorithm 2 / 25 / 2009
Spring 2009 Lecture 3

1 Review

Recall that we can write any classical circait> f(X) as a reversible circuR;. We can viewR; as a unitary
operationU;, which acts on a quantum superposition using linearity. Weuse this representation of a
function throughout the lecture.

2 Phase State

We will first see how to set up an interesting state which wd usk later in Fourier sampling. Re-
call the Deutsch-Jozsa procedure which, given a classioalittfor computing a boolean functiom :
{0,1}" — {0,1}, shows how to transform it into a quantum circuit that pragtuthe quantum state) =
1/2V25,(—1)"™]x).

The quantum algorithm to carry out this task uses two quamagisters, the first consisting nfqubits, and
the second consisting of a single qubit.

Start with the registers in the std®') |0)

Compute the Fourier transform on the first register toygto 1)n IX) ®10).

Computef to gety4|x) | f(X)).

Apply a conditional phase based 6(x) to gety,(—1) ™ |x) | f(x)).

Uncomputef to gets,(—1)"™ |x) |0).

3 Fourier Sampling

Consider a quantum circuit acting onqubits, which applies a Hadamard gate to each qubit. Thétes,
circuit applies the unitary transformatiét®", or H tensored with itselfi times.

Applying the Hadamard transform (or the Fourier transforrar@?) to the state of all zeros gives an equal
superposition over all"2states

%ﬂzn‘o...@:i

%)
@ xe%l}”

In general, applying the Hadamard transform to the comjoutait basis statéu) yields:

1
o |U) = —— —1)"%|x
wlh= 5 5 (UM

[EnY

CS 294, Spring 2009, Lecture 3

We define the Fourier sampling problem as follows: Inpubaubit state{ cp> = Y xef{o}n ax|x>. Compute
H®"|@) and measure the resulting statedy|y) to outputy with probability |Gy |.

Clearly this problem is easy to solve on a quantum computetit ppears to be hard to solve classically.
We will see later by making the procedure recursive that ifosampling is indeed difficult in genereal.

4 Extracting n bits with 2 evaluations of Boolean Function

Suppose we are given a black box (or an obfuscated classicaitthat computes the function function
fs:{0,1}" — {1,—1}, wheref(x) = s-x, wheres- x denotes the dot produstx; + - - - + S,xxomod 2. The
challenge is to use this black box to efficiently deternmgne

It is easy to see how to perform this task witlqueries to the black box: simply input in turn thénputsx
of Hamming weight 1. The outputs of the black box are the Hits &ince each query reveals only one bit
of information, it is clear thah queries are necessary.

Remarkably there is a quantum algorithm that requires amby(juantum) queries to the black box:

» Use the black box to set up the phase stae=1/2"2y,(—1)"®|x).

» Apply the Fourier transfornii®" and measure. The outcome of the measurement is

To see that the outcome of the measuremest iscall thatH®"|s) = 1/2V2y,(—1)5%|x) = |@). Since
H®"is its own inverse, it follows thatl “"| @) = |s).

More generally, the transformatidt®" maps the standard ba$s to the Fourier basigg) = 1/2V2y,(—1)S*|x)
and vice-versa.

We have shown that a quantum algorithm can be more efficiantahy probabilistic algorithm in terms of
the number of queries. One way to use this difference in timelmu of queries in order to demonstrate a
gap between quantum and probabilistic algorithms is to nfadkgueries very expensive. Then the quantum
algorithm would ben/2 times faster than any probabilistic algorithm for the givask. It turns out that we
can increase this gap substantially, as we will see next.idéeeis to make each query itself be the answer
to a Fourier sampling problem, so each query itself is musleedor the quantum algorithm than for any
probabilistic algorithm. Carrying this out recursivelyr fogn levels leads to the superpolynomial speedup
for quantum algorithms.

5 Recursive Fourier Sampling

Our goal is to give a superpolynomial separation betweentgonacomputation and classical probabilistic
computation. The idea is to define a recursive version of theiér sampling problem, where each query
to the function (on an input of length n) is itself the answeematrecursive Fourier sampling problem (on
an input of length n/2). Intuitively a classical algorithrowd need to solvan subproblems to solve a
problem on an input of length(since it must maka queries). Thus its running time satisfies the recurrence
T(n) > nT(n/2) 4+ O(n) which has solutiorT (n) = Q(n'°9"). The quantum algorithm needs to make only
two queries and thus its running time satisfies the recuerdrio) = 2T (n/2) + O(n), which solves to
T(n) = O(nlogn).

Recall that for one level we have an oracle fdx) with the promise thaff (x) = s-x. For two levels,
we are given functiond (x) and f'(x,y) with the promise that for somg(x) we havef(x) = s-g(x) and

CS 294, Spring 2009, Lecture 3 2

f'(x,y) = g(x) -y. To computes we must know a few values @f(x), and to compute each of these values
we sampley and usef’. More generally, we are given oracles ftg.. ., fy and g« with the promise that
fi(Xe,. .., %) = Gi—1(X1,...,%-1) - G (X,...,X) and we wish to computgy = s. lllustrated below is level
three:

1. To finds, sample enough values from(-) and use the promisB (x;) =s-g1(X1).

2. To sampleg; (x1) for some particulax;, sample enough values froga(x;,-) and use the promise
fa(X1,%2) = 91(X1) - G2(X1, X%2).

3. Tosamplay,(x1,x2) for some particulax, xz, use the oracle fayz(xq, X2, -) and the promisés(x1,Xp,X3) =
G2(X1, X2) - U3 (X1, X2, X3).-

It should be clear now why this is the procedure we want. Ferénhgths to scale appropriately, we must
have 2x| = |x_1| andk = logn.

The proof that no classical probabilistic algorithm carorestructs is somewhat technical, and establishes
that for a randony satisfying the promise, any algorithm (deterministic astbilistic) that makeg(°9n)
queries tay must give the wrong answer on at leag2® o(1) fraction ofg’s. This lemma continues to hold
even if the actual queries are chosen by a helpful(but uetl)genie who knows the answer.

This establishes that relative to an oraBl@P £ MA. MA is the probabilistic generalization &fP. It is
conjectured that recursive Fourier sampling does not lilaénpolynomial hierarchy. In particular, it is an
open question to show that, relative to an oracle, recusitei€r sampling does not liaM or in BPPNP,
The latter class is particularly important since it incladgproximate counting.

6 BQP C PSPACE

To put this gap result in context, we give an important coxipteesult relatingBQP to PSPACE.
Theorem 3.1: P C BPP C BQP C P C PSPACE.

We give a sketch of the proof thBQP C P, We assume without loss of generality that all the transitio
amplitudes specified in the transition functidrare real (exercise). The action of a quantum circuit may
be described by a tree, each node is labelled with a compngdtbasis state, i.e. a bit string. The root
of the tree corresponds to the inqurl} and applying a gate to any node yields a superposition ofbasi
states represented by the children of that node. We labetdhge to each child by the corresponding
amplitude. Let us assume that the quantum circuit acceptjants depending upon whether the first qubit,
when measured in the computational basis is 0 or 1. Thus eaftof the tree is either an accepting or
rejecting node depending on whether the first bit of the gtidibeling it is 0 or 1. The amplitude of a pgth
from the root to a leaf of the tre@,,, is just the product of the branching amplitudes along tth,@nd is
computable to within 12} in time polynomial inj. Several paths may lead to the same configuratidrhus

the amplitude ot after application ofl gates is the following sum over dlllength pathgy: ac =3 ;1o ¢ Bp-

The probability that quantum circuit acceptSigeping ¢ |0c|?. Letap = max(Bp, 0) andb, = max(—Bp,0).
Then|ac|? can be written afc|? = 3 1o o(@p — bp)? = T p1o ¢85+ D5 — T .y to c 2apbp. It follows that the
acceptance probability of the quantum circuit can be writie the difference between the two quantities
¥ accepting ¢ ¥ p to ¢85 + D3, ANAY accepting ¢ ¥ p.p' to ¢ 28pby. Since each of these quantities is easily seen to be
in P? | it follows thatBQP C P,

In view of this theorem, we cannot expect to prove tB&P strictly containsBPP without resolving the
long standing open question in computational complexigptl, namely, whether or nét= PSPACE.

CS 294, Spring 2009, Lecture 3 3

6.1 Extended Church—Turing Thesis

The extended Church-Turing thesis is a foundational gsledn computer science. It asserts that any "rea-
sonable” model of computation can be efficiently simulatecaagtandard model such as a Turing Machine
or a Random Access Machine or a cellular automaton. Thisstfi@sns the foundation of complexity the-
ory — for example ensuring that that the clé&s§polynomial time) is well defined. But what do we mean
by "reasonable”? In this context, reasonable means "phlgicealizable in principle”. One constraint that
this places is that the model of computation must be digifdius analog computers are not reasonable
models of computation, since they assume infinite preciarthmetic. In fact, it can be shown that with
suitable infinite precision operations, an analog compeca@rsolve NP-Complete problems in polynomial
time. And an infinite precision calculator with operations¢;t=07?, can factor numbers in polynomial time.

We first establish that quantum computers are digital:

7 Is Quantum Computation Digital?

There is an issue as to whether or not quantum computingitaldig/e need only look at simple gates such
as the Hadamard gate or a rotation gate to find real values.

L L cosf sin@
_ | V2 V2 _ -

When we implement a gate, how accurate does it need to be? Dwmedkinfinite precision to build this
gate properly? A paper by Shamir, “How To Factor On Your Clalicw,” shows that if we assume infinite
precision arithmetic, then some NP complete problems casohed in polynomial time. However, we
obviously cannot have infinite precision, so we must digitgantum computation in order to approximate
values such as/4/2. It turns out that log bits of precision are necessary.

Suppose we want to build a gate that rotates the inpu,dyut the best accuracy we can actually build is
rotation by8 + A0 (finite precision). Lel,,...,Un, be a set of ideal gates that implement an exact rotation
by 6. LetVi,...,Vn be a set of actual (constructible) gates that implementiootéy 6 + AB. Let |(p> be

the initial state. Letw> be the ideal output

@) =UiUz---Un|9), (2)
and let|y’) be the actual output
W) =ViV2---Vin| @) . (3)

The closer|y) and|y’) are to each other, the better the approximation. If we canoappate each gate
to within € = O(1/m), then we can approximate the entire circuit with small caniserror.

Theorem 3.2: If |U; —Vi|| < & for 1<i<m,then |g) — |¢/') || < §.
Proof:Consider the two hybrid states

|g) = Ui---Ue1Vk---Vim|@) ,and
[Ur1) = Uz---UNViga--Vin|).

Subtractyy, 1 from yy to get

| W) — [Whr1) = Uz Uk 1(Vk = Uk)Vir1 -+ Vin| @) (4)

CS 294, Spring 2009, Lecture 3 4

Since the unitary transformations don't change the nornm@f/ector, the only term we need to consider is
Ukr1 — k1. But we have an upper bound on this, so we can conclude that

()

I i) = [Weea) | an-

Another way to see this is that applying unitary transforomes toUm\cp> andvm\(p> preserves the angle
between them, which is defined to be the norm.

We use the triangle inequality to finish to proof.

) =)l = ||‘1,U0 — |) |
< %”W’l — @)]
£ €
< <t
4 4

We have already seen that quantum computers are digitaltensp and therefore a reasonable model of
computing. But we also established thatC BPP C BQP C PSPACE. Since we do not know how to
separatd® from PSPACE, it follows that we cannot unconditionally prove that quantcomputers are more
powerful than classical computers. Instead there are twe whestablishing that quantum computers are
more powerful than classical computers: by an oracle séparar by giving an efficient quantum algorithm
for a problem believed to be hard for classical algorithmistdtically, the first demonstrations that quantum
computers are more powerful than classical computers wepedving oracle separations, starting with the
recursive Fourier sampling problem, which we will outlineldw. We will briefly sketch this below and
discuss the conjecture that recursive Fourier sampling dog lie in the polynomial hierarchy. The next
oracle separation, Simon’s problem, provided the basipkat®that Shor followed in his quantum algorithm
for factoring.

§ Quantum Circuit Implementation

As an aside, let us think about how one might implement a quawwomputer. One way to do it would be to
have an environment state witiphotons. Then for a bit flip operation, the qubit either abs@n electron
or emits one. This scheme unfortunately entangles the withitthe environment however:

(0) +[))@[ne = [L)[n-1)e+[0)|n+1)e ©)

This seems like an unsurmountable problem, but one can madgat the environment state would have
many more electrons than there are qubits. Slightly moreisely, if the environment is in stal{ep> then
after a bit flip it would be in statép’) , wheregp = ¢/. In fact, one can show thap— ¢/| = 1/ /nasn — c.

We will think about our quantum computations as an arrap qfibits and a classical computer as a con-
troller, which chooses qubits and performs ‘gates’ on thexquentially. It is still not clear though that
guantum mechanical theory will hold when there are manytqubi

9 Communication Complexity of Inner Product Function

Suppose Alice hasand Bob hay. Show that it requires at lea&(n) communications between Alice and
Bob to compute-y. (Hint: use the classical algorithm and the Hadamard gate.)

CS 294, Spring 2009, Lecture 3 5

10 Simon’s A]gorithm

Recall that our basic primitive for designing quantum aitipons is Fourier sampling: prepare some quantum
state|) = yxax|x) onn qubits; perform a Hadamard transform, resulting in the gugsition 5, B|x) ;
now measure to samplewith probability |3,%. The point is that classically it is difficult to simulate the
effects of the quantum interference, and therefore to ater for which stringsx there is constructive
interference and are therefore output with high probabilit

We now consider a new way of setting up the initial super'[msihtm =3y ax|x> .

10.1 Setting up a random pre-image state

Suppose we're given a classical circuit fok a 1 function f : {0,1}" — {0,1}".

We will show how to set up the quantum st@é = 1/¢szzf(x>:a |x> . Hereais uniformly random among
all ain the image off.

The algorithm uses two registers, both withqubits. The registers are initialized to the basis state
|0---0)|0---0). We then perform the Hadamard transfokh¥" on the first register, producing the su-
perposition
1
on/2 z n|X>|O"'O>-
xe{0,1}
Then, we computé (x) through the oracl€; and store the result in the second register, obtaining #te st

o Y XIT00).

xe{0,1}"

The second register is not modified after this step. Thus weimake the principle of safe storage and
assume that the second register is measured at this point.

Let a be the result of measuring of the second register. Thisma random element in the range fafand
according to rules of partial measurement, the state of theréigister is a superposition over exactly those
values ofx that are consistent with those contents for the secondieegi<.

o) =1/vk Y %

x.f(x)=a

10.2 The Algorithm

Suppose we are given function-2L f : {0,1}" — {0,1}", specified by a black box, with the promise that
there is ara € {0,1}" with a # 0" such that

 Forallx f(x+a) = f(x).
 If f(x) = f(y) then eithex=yory=x-+a.

The challenge is to determire It is intuitively obvious that this is a difficult task for dassical probabilistic
computer. We will show an efficient quantum algorithm.

1. Usef to set up random pre-image state

¢=1/V2|z) +1/V2|z+a)

CS 294, Spring 2009, Lecture 3 6

0" Hang Herly)
0 [f()
Figure 1: Simon’s algorithm
wherezis a randomm-bit string.

2. Perform a Hadamard transfoid".

After step 2 we obtain a superposition

ayly)
ye{0,1}"
where
1 1 1 1 1
T T qVyE T T \W(ma) _1\yz _1\ya
ay = \/ézn/g(l) \/22”/2(1) 2(n+1)/2(l) [l+(1)]
There are now two cases. For eaglf y-a= 1, thenay = 0, whereas if/-a= 0, then
+1
ay = 2(n-1)/2°

So when we observe the first register, with certainty we't ag/ such thaty-a = 0. Hence, the output
of the measurement is a randgnsuch thaty-a = 0. Furthermore, eachsuch thaty-a = 0 has an equal
probability of occurring. Therefore what we've managedearh is an equation

Yiag ® - DY@y =0 (7)
wherey = (y1,...,Yn) is chosen uniformly at random frof©0,1}". Now, that isn't enough information to
determinea, but assuming that # 0, it reduces the number of possibilities foby half.

It should now be clear how to proceed. We run the algorithnt anel over, accumulating more and more
equations of the form irt{7). Then, once we have enough ottegsations, we solve them using Gaussian
elimination to obtain a unique value af But how many equations is enough? From linear algebra, we
know thata is uniquely determined once we hame- 1 linearly independent equations—in other words,
n— 1 equations

yY.a=0(mod2

y"Y.a=0(mod?2

such that the sefy®, ...,y is linearly independent in the vector spat Thus, our strategy will be
to lower-bound the probability that amy— 1 equations returned by the algorithm are independent.

Suppose we already hakéinearly independent equations, with associated vegtdrs .., yK. The vectors
then span a subspage Z; of size X, consisting of all vectors of the form

bry® + - + by®

with by, ..., b € {0,1}. Now suppose we learn a new equation with associated wi&tdt. This equation
will be independent of all the previous equations provideat yk+1 lies outside of S, which in turn has

CS 294, Spring 2009, Lecture 3 7

probability at least2” — 2¥) /2" = 1 — 2" of occurring. So the probability that anyequations are
independent is exactly the product of those probabilities.

(-2) () (2) ()

Can we lower-bound this expression? Trivially, it's at keas

M <1— ik> ~ 0.28879;
2
k=1

the infinite product here is related to something in analgaled a g-series. Another way to look at the
constant ®8879... is this: it is the limit, as goes to infinity, of the probability that anx n random matrix
overZ, is invertible.

But we don’t need heavy-duty analysis to show that the prodas a constant lower bound. We use the
inequality (1—a)(1—b)=1—-a—b+ab>1—-(a+b), if a,be (0,1). We just need to multiply the
product out, ignore monomials involving two or maj‘Reterms multiplied together (which only increase the
product), and observe that the product is lower-bounded by

1-— i_|_ 1 4+ _|_1' }>}
2n - 201 4 2= 4

We conclude that we can determiaavith constant probability of error after repeating the aitdpon O (n)
times. So the number of queries taused by Simon’s algorithm i©(n). The number of computation
steps, though, is at least the number of steps needed to &aystem of linear equations, and the best
known upper bound for this i® (n*37¢), due to Coppersmith and Winograd.

10.3 Classical solution

We are going to prove that any probabilistic algorithm neadsxponential time to solve this problem.
Suppose that is chosen uniformly at random frof0,1}" — {0"}. Now consider a classical probabilistic
algorithm that's already madequeries, to inputsgy,...,X. We want to know how much information the
algorithm could have obtained abaytgiven those queried paits;, f(X;)).

On the one hand, there might be a pair of inputs; (with 1 <i, j <K) such thatf (x;) = f (xj). In this
case, the algorithm already has enough information to utera: a = x; © ;.

On the other hand, suppose no such gaig), f(x;) exists. Then the queriet(x;)’s are distinct and is
none of(l;) valuesx; @ X;.
The probability that the next query will succeed is at most

k
k

n_1_
n 1 <2>

because there are at lea8t-21 — ; possible values of u for choosing at tke+ 1)-th query. Andf (xx1)
should be equal to one of the prior obsenféd,), i € [1,k].

CS 294, Spring 2009, Lecture 3 8

Taking the sum over ak € {1,...,m}. We get

In order to have an constant probability, we must chanse Q(2"2). Hence, any deterministic algorithm
has to run in exponential time to get a correct answer withaglodity larger than a constant.

CS 294, Spring 2009, Lecture 3 9

	Review
	Phase State
	Fourier Sampling
	Extracting n bits with 2 evaluations of Boolean Function
	Recursive Fourier Sampling
	BQP PSPACE
	Extended Church-Turing Thesis

	Is Quantum Computation Digital?
	Quantum Circuit Implementation
	Communication Complexity of Inner Product Function
	Simon's Algorithm
	Setting up a random pre-image state
	The Algorithm
	Classical solution

