
Lecture 2: Quantum Algorithms

1 Tensor Products

A single quantum bit is a unit vector in the Hilbert spaceC 2. Now suppose we have two quantum bits. How
do we write them together? We need a new Hilbert space which captures the interaction of the two bits.

If V , W are vector spaces with bases{v1 . . .vn}, {w1 . . .wm}, the tensor product V ⊗W of V andW is a
nm-dimensional vector space which is spanned by elements of the formv⊗w - calledelementary tensors.
These elementary tensors behave bilinearly, that is, we have the relations

α(v⊗w) = αv⊗w = v⊗αw

u⊗ v+w⊗ v = (u+w)⊗ v u⊗ v+u⊗w = u⊗ (v+w).

A basis for the tensor product space consists of the vectors:{vi ⊗w j : 1 ≤ i ≤ n,1 ≤ j ≤ m}, and thus a
general element ofV ⊗W is of the form

∑
i, j

αi jvi ⊗w j

This definition extends analogously to tensor products with more than two terms.

The tensor product space is also a Hilbert space with the inherited inner product:

(v⊗w,v′⊗w′) = (v,v′)(w,w′)

As it turns out, a two bit system is conveniently represented by a unit vectorin the Hilbert spaceC 2⊗C 2.
C 2⊗C 2 is necessarily isomorphic toC 4 since there is only one complex four dimensional Hilbert space,
but as we will see, in the world of quantum mechanics it is convenient to be able to “construct” the larger
space from the smaller ones.

Using Dirac “ket” notation, we write the basis ofC 2⊗C 2 as

{|0〉⊗ |0〉, |0〉⊗ |1〉, |1〉⊗ |0〉, |1〉⊗ |1〉}

We will often write|0〉⊗ |0〉 as|0〉|0〉 or |00〉.
In general, we represent ann-particle system byn copies ofC 2 tensored together. We will often write
(C 2)⊗n = C 2n

. So the state of ann-qubit system can be written as

|ψ〉 = ∑
x∈{0,1}n

αx|x〉.

This means that the state of ann-particle system is represented by a 2n dimensional space! The idea behind
quantum computation is to harness the ability of nature to manipulate the exponential number ofαxs.

1.1 The Significance of Tensor Products

Classically, if we put together a subsystem that storesk bits of information with one that storesl bits of
information, the total capacity of the composite system isk + l bits.

From this viewpoint, the situation with quantum systems is extremely paradoxical. We needk complex
numbers to describe the state of ak-level quantum system. Now consider a system that consists of ak-level

CS 294, Spring 2009, 1

subsystem and anl-level subsystem. To describe the composite system we needkl complex numbers. One
might wonder where nature finds the extra storage space when we put these two subsystems together.

An extreme case of this phenomenon occurs when we consider ann qubit quantum system. The Hilbert
space associated with this system is the n-fold tensor product ofC 2 ≡ C 2n

. Thus nature must “remember”
of 2n complex numbers to keep track of the state of ann qubit system. For modest values ofn of a few
hundred, 2n is larger than estimates on the number of elementary particles in the Universe.

This is the fundamental property of quantum systems that is used in quantum information processing.

Finally, note that when we actually a measure ann-qubit quantum state, we see only ann-bit string - so we
can recover from the system onlyn, rather than 2n, bits of information.

1.2 Tensor product of operators

Suppose
∣

∣v
〉

and
∣

∣w
〉

are unentangled states onC m andC n, respectively. The state of the combined system is
∣

∣v
〉

⊗
∣

∣w
〉

onC mn. If the unitary operatorA is applied to the first subsystem, andB to the second subsystem,
the combined state becomesA

∣

∣v
〉

⊗B
∣

∣w
〉

.

In general, the two subsystems will be entangled with each other, so the combined state is not a tensor-
product state. We can still applyA to the first subsystem andB to the second subsystem. This gives the
operatorA⊗B on the combined system, defined on entangled states by linearly extending its action on
unentangled states.

(For example,(A⊗B)(
∣

∣0
〉

⊗
∣

∣0
〉

) = A
∣

∣0
〉

⊗B
∣

∣0
〉

. (A⊗B)(
∣

∣1
〉

⊗
∣

∣1
〉

) = A
∣

∣1
〉

⊗B
∣

∣1
〉

. Therefore, we define
(A⊗B)(1√

2

∣

∣00
〉

+ 1√
2

∣

∣11
〉

) to be 1√
2
(A⊗B)

∣

∣00
〉

+ 1√
2
(A⊗B)

∣

∣11
〉

= 1√
2

(

A
∣

∣0
〉

⊗B
∣

∣0
〉

+A
∣

∣1
〉

⊗B
∣

∣1
〉)

.)

Let
∣

∣e1
〉

, . . . ,
∣

∣em
〉

be a basis for the first subsystem, and writeA = ∑m
i, j=1 ai j

∣

∣ei
〉〈

e j
∣

∣ (the i, jth element ofA
is ai j). Let

∣

∣ f1
〉

, . . . ,
∣

∣ fn
〉

be a basis for the second subsystem, and writeB = ∑n
k,l=1 bkl

∣

∣ fk
〉〈

fl

∣

∣. Then a basis
for the combined system is

∣

∣ei
〉

⊗
∣

∣ f j
〉

, for i = 1, . . . ,m and j = 1, . . . ,n. The operatorA⊗B is

A⊗B =

(

∑
i j

ai j
∣

∣ei
〉〈

e j
∣

∣

)

⊗
(

∑
kl

bkl

∣

∣ fk
〉〈

fl

∣

∣

)

= ∑
i jkl

ai jbkl

∣

∣ei
〉〈

e j
∣

∣⊗
∣

∣ fk
〉〈

fl

∣

∣

= ∑
i jkl

ai jbkl(
∣

∣ei
〉

⊗
∣

∣ fk
〉

)(
〈

e j
∣

∣ ⊗
〈

fl

∣

∣) .

Therefore the(i,k),(j, l)th element ofA⊗B is ai jbkl. If we order the basis
∣

∣ei
〉

⊗
∣

∣ f j
〉

lexicographically,
then the matrix forA⊗B is

a11B a12B · · ·
a21B a22B · · ·

...
...

. . .

;

in thei, jth subblock, we multiplyai j by the matrix forB.

2 The Principle of Safe Storage

In the last lecture we learned that performing a measurement changes the state of a quantum system. For
example, consider this circuit:

CS 294, Spring 2009, 2

∣

∣0
〉

H H M

The second Hadamard gate cancels out the first, sinceH2 = I. If the circuit is given the pure state
∣

∣0
〉

as input, the bit will again be in the state
∣

∣0
〉

before the measurement, and so the bit “0” will always be
observed:

State before measuring: Pr
[∣

∣0
〉]

= 1

Pr[0] = 1 Pr[1] = 0

Now, consider the same circuit with an additional measurement inserted between the two gates:

∣

∣0
〉

H HM M

The first measurement collapses the state of the qubit to
∣

∣0
〉

or
∣

∣1
〉

, so the input to the final measurement is
∣

∣+
〉

or
∣

∣−
〉

, and are no longer certain to observe the bit 0 in the final measurement. (Recall our notations
∣

∣+
〉

= 1√
2

∣

∣0
〉

+ 1√
2

∣

∣1
〉

and
∣

∣−
〉

= 1√
2

∣

∣0
〉

− 1√
2

∣

∣1
〉

.)

State before measuring: Pr
[∣

∣+
〉]

=
1
2

Pr
[∣

∣−
〉]

=
1
2

Pr[0] =
1
2

Pr[1] =
1
2

What if we replaced the first measurement with CNOT gate, which uses our qubit as the control bit with
another qubit as the target?∣

∣0
〉

∣

∣0
〉

H Ht

❞

M
t = 0 t = 1 t = 2 t = 3

Let’s compute the state of our qubits at each step.

t = 0
∣

∣0
〉

⊗
∣

∣0
〉

Recall the Hadamard matrix1√
2

(

1 1
1 −1

)

.

t = 1
∣

∣+
〉

⊗
∣

∣0
〉

=
1√
2

∣

∣00
〉

+
1√
2

∣

∣10
〉

The CNOT gate acts on the base states by flipping the second bit iff the first bit is one.

t = 2
1√
2

∣

∣00
〉

+
1√
2

∣

∣11
〉

=
∣

∣Φ+
〉

The second Hadamard gate maps
∣

∣00
〉

7→
∣

∣+
〉

⊗
∣

∣0
〉

= 1√
2

∣

∣00
〉

+ 1√
2

∣

∣10
〉

and
∣

∣11
〉

7→
∣

∣−
〉

⊗
∣

∣1
〉

=
1√
2

∣

∣01
〉

− 1√
2

∣

∣11
〉

. Adding these together, we have:

t = 3
1
2
(
∣

∣00
〉

+
∣

∣01
〉

+
∣

∣10
〉

−
∣

∣11
〉

)

We now see that our final measurement behaves exactly the same way as when we had a measurement in
the place of the CNOT gate:

Pr[0] =
1
2

Pr[1] =
1
2

CS 294, Spring 2009, 3

3 Quantum Teleportation

3.1 The No Cloning Theorem

TheNo Cloning Theorem states that no quantum system can copy a qubit; that is, there is no unitary operator
U sending

∣

∣ψ
〉

⊗
∣

∣0
〉

7→
∣

∣ψ
〉

⊗
∣

∣ψ
〉

.

Proof: Suppose our operatorU exists. Then for any states
∣

∣ψ1
〉

and
∣

∣ψ2
〉

,
〈

ψ1
∣

∣ψ2
〉

=(
∣

∣ψ1
〉

⊗
∣

∣0
〉

,
∣

∣ψ2
〉

⊗
∣

∣0
〉

)

=(U(
∣

∣ψ1
〉

⊗
∣

∣0
〉

),U(
∣

∣ψ2
〉

⊗
∣

∣0
〉

))

=(
∣

∣ψ1
〉

⊗
∣

∣ψ1
〉

,
∣

∣ψ2
〉

⊗
∣

∣ψ2
〉

)

=
〈

ψ1
∣

∣ψ2
〉2

,

which is impossible.✷

3.2 Quantum Teleportation

Despite the No Cloning Theorem, it is possible to transmit a qubit, even to a remote location, if we are
willing to destroy the original.

SupposeA has access to a quantum state|ψ〉 = a0|0〉+a1|1〉, which she wants to transmit to a remote party
B. She can accomplish this by transmitting only classical bits of information, provided A andB share the
entangled two-qubit state

|φ〉 =
1√
2
(|00〉+ |11〉).

The technique is known asquantum teleportation.

The basic idea is this.A controls|ψ〉 and the first qubit of|φ〉. A’s strategy, roughly speaking, is to forcibly
entangle|ψ〉 with the first qubit|φ〉. A then measures the first qubit of|φ〉, resolving it completely, and
hopes this will cause|ψ〉 to become entangled with thesecond qubit of |φ〉. Presumably,B could then
transfer|ψ〉 to the second qubit of|φ〉.
As a first try, consider the following diagram. The top line represents|ψ〉; the bottom two represent the two
qubits of|φ〉.

t

❞ M

That is,A passes|ψ〉 and the first qubit of|φ〉 through a CNOT gate, and then measures the first qubit of
|φ〉. Now the input into the system as a whole is

|φ〉⊗ |ψ〉 = ∑
i=0,1

ai|i〉⊗ ∑
j=0,1

1√
2
| j, j〉.

After passing through the CNOT gate this becomes

∑
i, j

ai
∣

∣i, i⊕ j, j
〉

.

CS 294, Spring 2009, 4

Now A measures the middle qubit. Suppose it is measured asl; thenl = i⊕ j. The state is now

∑
j

a j⊕l

∣

∣ j⊕ l, j
〉

.

Next, A transmitsl to B. If l = 0, B takes no action, while ifl = 1, thenB performs a bit flip on his qubit

(the bottom qubit in the diagram.) A bit flip is just the transformation

(

0 1
1 0

)

. Thus we have

∑
j

a j⊕l

∣

∣ j, j
〉

.

Finally, B does a phase flip on his qubit, yielding

∑
j

a j
∣

∣ j, j
〉

.

This is almost exactly what we want. The only problem is that now, the qubit corresponding to|ψ〉 is
entangled withB’s qubit. The entanglement that was necessary to get the whole process started is now a
liability. One way to disentangle them would be forA to measure her remaining qubit. But this would
destroyB’s qubit as well.

The ideal solution would be to send the entangle qubits through a CNOT gate—but A controls the first
qubit andB controls the second. This would require quantum communication betweenA andB, which is
prohibited.

The correct solution is to go back and modify the original diagram, inserting aHadamard gate and an
additional measurement:

t

❞ M

H M

Now the algorithm proceeds exactly as before. HoweverA’s application of the Hadamard gate now induces
the transformation

∑
j

a j
∣

∣ j, j
〉

−→ ∑
i j

a j(−1)i j
∣

∣i, j
〉

.

Finally A measuresi and sends the measurement toB. The state is now:

∑
j

a j(−1)i j| j〉.

If i = 0 then we are done; ifi = 1 thenB applies a phase flip. In either case the state is nowa0|0〉+a1|1〉.
SoA has transported the quantum state toB simply by sending two classical bits.

4 Quantum Circuits and the class BQP

In the previous lecture, we saw some examples of quantum gates. A quantumcircuit is a sequence of gates
composed together. Each gate acts on a subset of the bits, and leaves the rest unchanged. For example, a

CS 294, Spring 2009, 5

CNOT gate acting on the first two bits of ann-bit system corresponds to the unitary transformation CNOT⊗
In−2. If the ith gate performs the transformationUi, then the whole circuit performs the transformation
U = UTUT−1 · · ·U1. We measure the efficiency of the circuit by the number of gatesT .

At this point it is natural to ask what gatesUi we allow when constructing our circuit. We will show later
that there are small “universal” families of gates, such that anyk× k unitary matrix can be approximated by
a circuit of size(k) composed of gates from the family. (Note that in ann-qubit system,k = 2n.) CNOT and
arbitrary single-qubit operations together form one such family.

To perform a computation using a quantum circuit, we prepare an input state
∣

∣ψ
〉

, apply the circuit, and
perform a measurement on the resultU(

∣

∣ψ
〉

). We usually allow the circuit a small probability of giving the
wrong answer. The class of decision problems that can be solved with polynomial-size quantum circuits,
where the final measurement gives the wrong answer with probability at most 1/3, is called BQP. Since
inputs have different lengths, we allow a family of circuits{Un}. For uniformity, we assume there exists an
algorithm that on inputn constructs the circuitUn, in time polynomial inn.

BQP is analagous to the classical complexity class BPP, of classical algorithmsthat can flip coins during
their computation, and must give the right answer in the end with probability at least 2/3. In the classical
case, the probability of error can be reduced exponentially by running the algorithm many times and taking
the answer that appears a majority of the time. A natural question to ask is whether quantum algorithms can
likewise reduce their probability of error – we’ll come back to this later on.

5 Reversible Computation

Another question we might ask is whether P⊆ BQP. Is there a method for converting classical algorithms
to quantum ones? One problem is that since quantum operations are always unitary, quantum computations
cannot erase information: given a functionf : {0,1}n →{0,1}n, unlessf is a bijection, we cannot construct
a quantum circuit that givenx as input outputsf (x).

Our solution is to convert a classical circuit for computingf into a reversible circuitR f . A reversible circuit
is one in which each gate computes a bijection, and can therefore be reversed to compute its input from
its output. Given our classical circuit forf , we construct a reversible circuit which takes as inputx and a
string of zeroes, and outputsx, f (x) and some extra output junk(x). We do this by replacing each classical
gate with a reversible equivalent: for example, NOT gates are already reversible, and an AND gate can be
replaced by a gate which takesx, y and 0 as input, and outputsx, y andx∧ y.

In a reversible circuit, we can even eliminate the extra output junk(x) by replacing it with a string of zeroes.
Given a reversible circuitR f mappingx,~0 7→ x, f (x), junk(x), we construct its inverseR−1

f . Then on input

x,~0, we first applyR f to getx, f (x), junk(x),~0. Then we copy the valuef (x) onto some of the zeros; we
could use CNOT gates for this. Now we havex, f (x), junk(x), f (x). Applying R−1

f gives usx,~0, f (x), which
is what we wanted.

Reversible gates correspond to unitary transformations that permute the basis states, so given a reversible
circuit for computingf , we can construct a quantum circuitU f for computingf . Whenever the input

∣

∣φ
〉

is
a basis state, the outputU f

(∣

∣φ
〉)

is also a basis state.

In general, though, we don’t need to feedU f a classical state|x〉. If we feedU f a superposition

∑
x∈{0,1}n

αx |x〉 |0〉

CS 294, Spring 2009, 6

then, by linearity,

U f

(

∑
x∈{0,1}n

αx |x〉 |0〉
)

= ∑
x∈{0,1}n

αxU f (|x〉 |0〉) = ∑
x∈{0,1}n

αx |x〉 | f (x)〉

and we’ve computedf (x) simultaneously for each basis state|x〉 in the superposition. Note that if we had
not been able to eliminate the extra output junk(x) from the output of our circuit, we would have ended up
with the quantum state∑x∈{0,1}n αx

∣

∣x
〉∣

∣ f (x)
〉∣

∣junk(x)
〉

instead, which is a very different.

The procedure for converting classical circuits into quantum circuitsU f is a useful primitive which we will
use extensively in this course. A second primitive, introduced in the last lecture, is the Hadamard transform
H, also called the Fourier transform.H is the unitary transformation on one qubit defined by the matrix

(

1√
2

1√
2

1√
2

− 1√
2

)

.

In other words,H maps|0〉 onto 1√
2
|0〉+ 1√

2
|1〉, and|1〉 onto 1√

2
|0〉− 1√

2
|1〉. Given ann-qubit system,

we’ll often want to applyH separately to each of the qubits in turn. We call the resulting transformation
H2n = H⊗n; it equalsH tensored with itselfn times. For alln > 0, H⊗n can also be defined recursively by
the matrix

(

1√
2
H⊗n−1 1√

2
H⊗n−1

1√
2
H⊗n−1 − 1√

2
H⊗n−1

)

.

whereH⊗0 =
(

1
)

. (Incidentally, it is an exercise to show that for alln×n matricesU andV , if U andV
are unitary then the tensor productU ⊗V is also unitary.)

6 The Deutsch-Jozsa Algorithm

The Deutsch-Jozsa algorithm was published in 1992, and provided one of the first formal indications that
quantum computers can solve some problems more efficiently than classical ones.

Suppose we’re given a Boolean functionf : {0,1}n → {0,1}. We’re promised thatf is either identically
zero (meaning thatf (x) = 0 for all inputsx ∈ {0,1}n), or else balanced (meaning thatf (x) = 0 for precisely
half of all inputsx, and f (x) = 1 for the other half). The challenge is to decide which is the case. To
do this, we can make queries of the form “Isf (x) equal to 1?” for particular values ofx. Our goal is to
minimize the number of queries that have to be made.

Clearly, a deterministic classical algorithm requires 2n−1+1 queries in the worst case: if 2n−1 bits have been
queried and all turned out to be 0, we still need to query one more bit to decide whether the function is zero
or balanced.

On the other hand, the problem admits an efficient randomized algorithm, as follows. Choose a value ofx
uniformly at random; iff (x) = 1 then conclude thatf is balanced, otherwise repeat. If, afterk iterations
(for some constantk), we still haven’t found anx such thatf (x) = 1, then we halt and conclude thatf
is zero. This algorithm uses onlyO(1) queries. However, has a nonzero probability of error, equal to

CS 294, Spring 2009, 7

2−k, or slightly less if we choosex values without replacement. This is because, even iff is balanced, the
randomized algorithm has a nonzero probability of never seeing anx such thatf (x) = 1.

What Deutsch and Jozsa showed is that a quantum computer can decide whether f is balanced, with cer-
tainty, using only two queries tof . What follows is an algorithm to accomplish this.

The algorithm uses two quantum registers, the first havingn qubits and the second having only one qubit.
We initialize the system to the basis state|0· · ·0〉 |0〉. Then we apply the Hadamard transformH2n to the
first register (or equivalently, the Hadamard transformH to each qubit of the first register separately). This
results in the superposition

1

2n/2 ∑
x∈{0,1}n

|x〉 |0〉 .

We then computef (x) and store the result in the second register. How is this done? Iff is a black-box
oracle, then (by assumption) we don’t need to worry about how it’s done. If, on the other hand,f is given
explicitly (say, as a Boolean circuit), then we’ve seen that we can computef reversibly using Fredkin gates.
In either case, the resultant superposition is

1

2n/2 ∑
x∈{0,1}n

|x〉 | f (x)〉 .

Next we apply the one-qubit transformation

(

1 0
0 −1

)

to the second register. This transformation, which is easily seen to be unitary, is a “phase flip”: if f (x) = 0
then it leaves the amplitude of|x〉 | f (x)〉 alone, whereas iff (x) = 1 then it inverts the amplitude. So we get

1

2n/2 ∑
x∈{0,1}n

(−1) f (x) |x〉 | f (x)〉 .

At this point we want to erasef (x) from the second register, to allow for proper interference among the
states. (What goes wrong if we don’t erasef (x) is left as an exercise.) We can’t do this directly, since
erasure is not a unitary operation. But since we have an oracle forf , we can simply computef a second
time and CNOT the result into the second register, so that the bit in that registeris f (x)⊕ f (x) = 0. Doing
so, we obtain

1

2n/2 ∑
x∈{0,1}n

(−1) f (x) |x〉 |0〉 .

The final step is to perform another Hadamard transformH2n on the first register. We could work out the
result of this algebraically, but would rather reason about it to obtain moreinsight. We’ve seen that the
Hadamard transform is its own inverse, and that

CS 294, Spring 2009, 8

H2n (|y〉) =
1

2n/2 ∑
x∈{0,1}n

(−1)y·x |x〉 .

From these it follows that iff is identically zero, then applyingH2n brings us back to|0· · ·0〉 |0〉. If, on the
other hand,f is balanced, then the state

1

2n/2 ∑
x∈{0,1}n

(−1) f (x) |x〉

is a linear combination ofH2n (|y〉) for various values ofy. However, none of these values can bey = 0, since
the state is orthogonal toH2n (|0〉) in the vector spaceZn

2 (the two having inner product 2n−1−2n−1 = 0).

Therefore, if f is zero, thenx = 0 at the end of the computation, whereas iff is balanced, thenx 6= 0. So
by observing the|x〉 register, we can decide with certainty whetherf is zero or balanced. We’ve done this
using two queries tof andΘ(n) steps of computation.

CS 294, Spring 2009, 9

	Tensor Products
	The Significance of Tensor Products
	Tensor product of operators

	The Principle of Safe Storage
	Quantum Teleportation
	The No Cloning Theorem
	Quantum Teleportation

	Quantum Circuits and the class BQP
	Reversible Computation
	The Deutsch-Jozsa Algorithm

