0.1 Non Abelian Hidden Su]ogroup

The input to the hidden subgroup problem is a function f : G — C that is constant on all cosets
of a subgroup H C G and takes distinct values on different cosets. Given oracle access to f, the
task is to output a set of generators for H. We recall the steps to solve the abelian hidden subgroup
problem using the quantum Fourier transform:

¢ Construct a random coset state |gH) = , /|17| Z |gH).
heH

* Apply the Fourier transform to map the coset state |gH) — /ﬁ Z Xq(h)|h). The QF T
heH'
maps all coset states to superpositions over the dual group H+ := {k€ G| yx(h) =1V hc H}
differing only in phase.

* Measure to obtain a random element of . The linear constraints corresponding to elements
of H+ determine H. After sufficiently many measurements a spanning set for - is known,
and hence H can be reconstructed.

This algorithm works for abelian groups and it is natural to ask is whether quantum algorithms can
offer similar speedups when G is non abelian. Solving the non abelian hidden subgroup problem
on the symmetric group S, yields a solution to the graph isomorphism problem. One way to see
this is to observe that the automorphism group of graph G is the hidden subgroup for the function
f(P) := P~ 'AGP where Ag is the adjacency matrix and P is a permutation matrix. Graphs G and H
are isomorphic if and only if there is a generator of Aut(H U G) that maps vertices of G to vertices
of H.

There are strong negative results showing that it is unlikely that the Fourier sampling approach
can be used to design an efficient quantum algorithm solving the non abelian hidden subgroup
problem. However, we begin with a positive result by Ettinger, Hoyer and Knill showing that the
quantum query complexity of the hidden subgroup problem is polynomial.

Theorem 12.1: There is a quantum algorithm that outputs generators for a subgroup H of G

with probability 1 — 2log|GP? making O(log |G|*) queries to a quantum oracle f known to be H-
periodic.

Proof: Suppose H is a subgroup of G generated by {1,g1,82, - ,8x}. Let H; be the group gen-
erated by {1,g1,82, -+ ,8&i}. |Hi+1| > 2|H;| as H;y1 is the union of cosets of the form gf.‘HH,-. It

follows that k < log(|G|) yielding an upper bound of (10‘gG‘|G|) = O(ZIOg(‘GDz) on the total number of

subgroups of G.

Let E be an enumeration of the subgroups of G in descending order of size. The algorithm tests
whether H is a hidden subgroup for f, for subgroups H ordered according to E. It stops at the first
H for which the test accepts. The descending order of size in E is required because a function that
is H-periodic is also periodic for a subgroup H of H.

The first step of the algorithm is the preparation of m = O(log(|G|)*) random coset states to obtain
the state |®) = ®|g;H),1 < i < m. Measurements My corresponding to subgroups H C G are
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performed sequentially on |®) with the outcome of My revealing if the hidden subgroup is H
Measurements My are such that |||®) — My |®)||, <27, so that the state is not disturbed much
by the measurement.

The measurement My on a single register is described by an orthogonal projection to (A,A") where
A:=span(|H),|g1H), - ,|grH)), where {g1,82,--, gk} is a set of distinct coset representatives
for H. If the state bemg measured is a coset state |gH ) then the measurement outcome will be 0.
If the state being measured is a coset state for a group H = H then we show that the measurement
outcome is 1 with probability at least 1/2.

The following group theoretic lemma is required which we leave for the reader to prove:

Lemma 12.1: Let H and H be two subgroups of G with H NH =K. If the intersection of cosets
aH and bH is non empty then |aH NbH | = |K|. The probability of obtaining a vector in A on
measuring |aH ) is given by:

2 _ »_ 1 |H| 2 o
X et 1) = Lt it = i P <12 )

Lemma 0.1 has been used to evaluate the sum. The final inequality holds as K is a proper subgroup
of H.

The measurement My is performed on all the m registers |Hg;) with outcome 0 if all registers
project to the subspace A and 1 otherwise. If H is the hidden subgroup the outcome is always
0 while if H is the hidden subgroup the outcome is 0 with probability at most 1/2™ by (1). If
the answer is correct, the distance between the states |||My®) —|D)|[, < 27™". We bound the
probability of obtaining a correct answer in the i th measurement made.

Pr| My (d;) = 0 | H = Hj] > Pr[My(®) =0 | H = H] — |||®;) — |®)|| > 1 — 2™

The success probability for the algorithm is at least 1 — 27816 if 1 is taken to be O(log|G|*).
The error probability is negligible small. O

0.2 Representation Theory

A matrix representation of a group G is a group homomorphism p : G — GL;(C). A representation
is irreducible if there is no invariant subspace V C C? such that p(V) C V. Matrix representations
of a finite group can be decomposed into a direct sum of irreducible representations.

The group algebra CY is a |G| dimensional vector space over C generated by |g),g € G with
multiplication defined by |g) |i) = |gh). The regular representation ¢ : G — Aut(C%) maps group
elements to operators corresponding to left multiplication:

Og|h) = |gh)

The regular representation decomposes into a direct sum of d, copies of irreducible representation
p with p ranging over the set of non isomorphic irreducible representations of G. It follows that
the number of non isomorphic irreps of G is finite and satisfies }., dl% =|G|.
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The Fourier transform for abelian groups can be viewed as a change of basis over CY that diag-
onalizes the operators Og. This is not possible for non abelian groups because diagonal matrices
commute. The Fourier transform for non abelian groups is a change of basis over CY such that the
operators O, are block diagonal with the block sizes given by the dimensions d,, of the irreps of G.
The Fourier transform is given by:

=) pu g)lp.i. j)

p.i.Jj

Assuming that the irreps p are unitary the normalization factor \/dp /|G| ensures that |g) is a
unit vector. Using orthogonality relations for group characters it can be proved that the Fourier
transform is a unitary operator and hence its rows and columns are orthogonal.

Unlike the case for Abelian groups, the Fourier transform on non abelian groups depends on the
choice of basis used for the irreps. Basis independent sampling reveals the name of the represen-
tation p and is referred to as weak sampling. Strong Fourier sampling is the measurement of p, i, j
in a chosen basis. The next result shows that HSP on the symmetric group can not be solved using
strong Fourier sampling.

Theorem 12.2: The hidden subgroup problem on the symmetric group can not be solved efficiently
by strong Fourier sampling over any basis by an algorithm that is allowed to perform arbitrary
measurements on two coset states. Strong Fourier sampling makes an arbitrary measurement on
a single coset state. It is known that an algorithm that solves the HSP on the symmetric group
efficiently, would have to make measurements on Q(log(|G|) coset states.

0.2.1 Characters and orthogonahty

In class it was mentioned that people who study representation theory love it because the most
beautiful statements that one could think of turn out to be theorems. We attempt to substantiate
this claim by proving some theorems from representation theory.

A representation p over vector space V is unitary with respect to the inner product <v| w> p =
Y (Pgv| pgw), where (v|w) denotes the standard inner product. Changing basis to construct an

equivalent representation, wlog we assume that representations of a finite group are unitary.

The trace function satisfies the commutativity property as 7r(AB) = Tr(BA) for matrices A and B.
This property makes the trace of a representation a very useful quantity. Combining two represen-
tations by taking the direct sum and the tensor product corresponds to addition and multiplication
of the trace.

Tr(ps®0g) =Tr(pg) +Tr(og), Tr(py® o) =Tr(pg).Tr(on)

The character of a representation p is a function y, : G — C defined as Y, (g) := T7(p,). A char-
acter is constant on conjugacy classes as X, (h—1gh) = Tr(ph’lpgph) = Tr(ph’lphpg) =Tr(p,) =
Xp(g) by the commutativity of the trace. A function constant on conjugacy classes of G is called a
class function.

Theorem 12.3: The characters Xp of distinct irreducible representations of group G form an
orthonormal basis for the space of class functions for G.
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Proof: Suppose p and o are distinct irreps acting on spaces A and B such that the characters x,
and Y are not orthogonal. The representation |1 on A® B is defined as g := pg @ Op-1.

Tr TrG Tr ®G Tr
(K| 25) = |G’&§pr Xo(g) = |G,g§G (pg)-Tr(c,1) =G ggé (pg©0,-1) |G|g§é (kg)
()

It follows that the linear operator R := ‘G| Y ¢cG Mg has non zero trace. Operator R is a projection

as R> = Z Z Une = R. A projection operator with non zero trace must have an eigenvector
heGgeG

V with eigenvalue 1.

P

1 1
VII=|IRV|| £ — V| =—= Vv
VIl =18V < G Bl ll = g Z v

The eigenvector V € A® B is such that u,V =V for all g € G. Decomposing V' in the basis a; @ b;
where a; and b; are basis vectors for A and B we have

eV = Py © Gt Yoviglai @b;) = [pg) (L v |ai) (by]) (0,11 = 1pe)V (G| =V

i,j i,j
The matrix V : B — A commutes with the action of irreps. p and o as p,V = Vo, for all g € G.
This implies that the subspaces Ker(V) :={b € B|Vb =0} and Im(V):={a €A |a=Vb} are
invariant under the action of the representations p and o respectively. The representations do not
have non trivial invariant subspaces as they are irreducible and V' is assumed to be non zero, so
Ker(V) =0 and Im(V) = B. The matrix V is an isomorphism between p and ¢ contradicting the
assumption that they are distinct irreps. O

The argument in the last part of the proof of the above theorem is known as Schur’s lemma in the
literature.

Lemma 12.2: Suppose V is a matrix that commutes with irreps. p and ¢ of group G so that
psV =Vogforallg € G. i)If p=0thenV =cl. ii) If p and G are non isomorphic then V = 0.

Part 1) of the lemma follows as an eigenspace for V is invariant under the action of p. We use the
Schur lemma to prove that the Fourier transform is a unitary operator. This result is known as the
great orthogonality theorem.

Theorem 12.4: The following orthogonality relations hold for unitary irreps. p and o for group

G.
N ——— G
¥ 0e(i7)-5500) = L6 o0
g dP

Proof: The matrix M = Z pgX 0,-1 where X is an arbitrary dp X ds matrix commutes with the p

g
and o. It can be easily verified that p,M = Mo, for all g € G. Applying the two parts of Schur’s
lemma we have:
i) p=o0: If V#0 then Tr(M) = cdp = |G|Tr(X), so ¢ must be equal to

X = |x;) (xx| we note that

%. Choosing

G G
Zpg ij).pg-1(kl) Zpg ij)-pg(1k) = |dp| 5i1Tr(X):%5ﬂ5jk
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ii) p # 0: Choosing X = |x;) (x¢| we have My = Y., p;(ij).0p-1(kl) = ¥ pg(if). 0, (lk) = 0. O
Using the orthogonality theorem for characters, it is a good exercise to prove that the regular
representation decomposes as C% = @pdp

0.3 HSP on the dihedral group

We have seen that it is unlikely that the hidden subgroup problem for highly non abelian groups
like S, is in BQP. This leaves the case of simpler non abelian groups on which it might be possible
to solve the hidden subgroup problem. The dihedral group D, is the group of symmetries of a
regular n-gon. It is generated by the rotation element x and the reflection element y satisfying the
relations:

D,:=< xy| x¥"=1, y¥»=1, yoyx=1 >

The dihedral group D;, has 4 one dimensional irreps. and (n — 1) two dimensional irreps. The two
dimensional irreducible representations are given by:

w’! O}

0 1
pJ(x):|: 0 w—jl

pj(y):[l 0], I<j<(n-1) )

The hidden subgroup problem on the dihedral group reduces to the problem of finding a hidden
reflection H = {1,x"y},0 < h < n. The hidden subgroup on the cyclic part of Dy, can be found
classically once the factors of n are known. We discuss Kuperberg’s algorithm to solve the HSP on
Dy, in time O(2V").

We assume that n is a power of 2. The algorithm works by finding the parity of 4, thus reducing to
the problem to a HSP on D, />, which is solved recursively.

A coset state —= (\x ) 4 |x"**y)) is prepared and the Fourier transform on D, is applied to it fol-
lowed by a measurement revealing the irrep. p to obtain the state:
ik Jj(h+k)
itk ’ o
p; () +pj (" Hry) = @Ik ik

The row of the matrix p; (the qubit in register i) is measured to obtain the quantum state V) =
0) + @/ |1), where j is distributed uniformly in the range [1,n — 1].

The parity of 4 can be determined by measuring the state [0) 4 (—1)"|1) in the Hadamard basis.
The sieve algorithm attempts to construct the state |0) + (—1)"|1) starting from a list Lo of 20(v7)

copies of states |0) + @/" |1) prepared through Fourier sampling. The algorithm has a parameter m
and performs the following steps to determine the parity of /.

* The list L; is split into pairs [¥;),|Wy) such that j and k agree in the m non zero least
significant bits (apart from mi trailing zeroes). In the last iteration, agreement is required on
all the n — 1 bits except the most significant bit.

* A measurement projecting onto the space (|00),|11)) is performed on the joint state |¥;) ®
W)

(10) + @™ 1)) @ (|0) + @ 1)) = (|00) + @V 11)) + &**(|01) + 0!/ ~0"|10))
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The measurement yields one of the states |¥; ) ,|¥;_x) with probability 1/2.

* The list L; is obtained from L, by retaining states of the form |¥;_;) obtained in step 2. If
the state |W;) € L; then k ends with a string of at least mi zeroes. The algorithm repeats for
t = (n—1)/m iterations.

* The states in the list L, are either |¥y) or |¥,v-1). Measuring the state |¥,n-1) in the
Hadamard basis gives the parity of 4.

The algorithm correctly finds the parity if the final list L; is non empty. At most 2" elements remain
unmatched in step 1 and the list size for matched elements decreases by a factor of 4.

Li—2m

Liy1 > )

This gives a bound of O(2"+?") on the size of Ly for the algorithm to correctly compute the parity
of s. The minimum value of m+ 2(n— 1)/m equals 3y/n for m = \/n, showing that the sieve
algorithm runs in time 23V,

0.3.1 Reductions

There are two reductions due to Regev relating the hidden subgroup problem on the dihedral group
to the subset sum problem and the unique SVP problem on the lattices. We sketch out these
reductions making a number of simplifying assumptions.

* Reconstruction of /4 can be done if the subset sum problem can be solved classically.

* The unique SVP problem on lattices can be solved if reconstruction of 4 is possible.

There is an efficient quantum algorithm to reconstruct 4 that uses an efficient classical algorithm for
solving the subset sum problem as a subroutine. Fourier sampling on » = O(log |n|) copies of the
coset state, yields the state ®”|0) + @/ |1). The elements of J := {ji, jo,---, j,} are distributed
uniformly in [1,n — 1], so the distribution of the subset sums will also be close to uniform. We
make the simplifying assumption that every element of [n] has a unique representation as a subset
sum of J.

@ (I0)+01) = ¥ om|s) - ¥ oSmSh|s) [Sum(s))
SCJ N
— Y o™ |0) |Sum(s)) = " " k) =T |n) 4)
SCJ k

Since subsets are identified uniquely by their sums and we have a classical algorithm to solve the
subset sum problem, the state |S) [Sum(S)) can be uncomputed to obtain |0) |[Sum(S)). The actual
analysis must handle many more details in the absence of a simplifying assumption.

We next sketch a reduction of the unique SV P on lattices to the problem of reconstructing 4. The
input to the unique SV P problem is a basis B = {by,b,,--- ,b,} for a lattice A which is known to
have a unique shortest vector v such that |w| > /n|v| for all w € A not parallel to v. The output
must be the vector v.
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The algorithm guesses a length for the unique shortest vector and generates a superposition over
states |Y;a;b;) where the integers a; are selected from a sufficiently large range. The space is
partitioned into cubes of side length equal to the guess for the length of the shortest vector. These
cubes can not have more than one lattice point in a direction other than v because of the uniqueness
constraint. The lattice is scaled so that not more than two points in the direction of V can occur
in a cube. A measurement revealing the cube generates with high probability a state of the form
|x) + |x+ cv) for a suitable constant ¢ and a random vector x. Making several such measurements
the direction v can be recovered using the HSP solver on the dihedral group.
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