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State estimation for hybrid systems: applications

to aircraft tracking

I. Hwang, H. Balakrishnan and C. Tomlin

Abstract: The problem of estimating the discrete and continuous state of a stochastic linear hybrid
system, given only the continuous system output data, is studied. Well established techniques for
hybrid estimation, known as the multiple model adaptive estimation algorithm, and the interacting
multiple model algorithm, are first reviewed. Conditions that must be satisfied to guarantee the con-
vergence of these hybrid estimation algorithms are then presented. These conditions also provide a
means to predict, as a function of the system parameters, which transitions in a hybrid system are
relatively easy to detect. A new variant of hybrid estimation algorithms, called the residual-mean
interacting multiple model (RMIMM) algorithm, is then proposed and analysed. The performance
of RMIMM is demonstrated through multi-modal aircraft trajectory tracking examples.

1 Introduction

Hybrid systems are dynamical systems that combine
continuous dynamics modelled by differential (or differ-
ence) equations and discrete dynamics modelled by finite
automata. Since hybrid systems can suitably model the
complex behaviour of varied embedded control systems,
such as robotic, transportation, and process control
systems, there has been considerable interest in the
estimation and control of hybrid systems among researchers
in both academic and industrial communities [1—4]. The
objective of hybrid estimation is to compute both the
discrete and continuous state estimates of a hybrid system
at any given time. Hybrid estimators usually consist of the
combination of a bank of continuous state estimators,
each one designed for a different discrete state, or mode,
and a mode-selecting algorithm. How the correct mode
is selected depends on the type of output data available.
The hybrid estimators analysed in this paper address a
particularly challenging problem: that of mode and
continuous state estimation given only the observation of
the continuous state. In this case the hybrid estimators use
the differences in statistical properties (such as mean and
covariance) of the outputs of the different continuous state
estimators to choose the correct mode.

In air traffic surveillance, the accurate tracking of aircraft
is important because all traffic advisories are based on the
current state estimates of the aircraft. In this domain, the
observations correspond to radar measurements of the pos-
itions of the aircraft (observation of the continuous state).
The flight mode of the aircraft, indicating, for example,
constant velocity straight flight, or coordinate turn, is not
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observed. Yet knowledge of the flight mode would be
valuable to a surveillance system, as it is one of the stron-
gest indicators of the aircraft’s future trajectory. For
example, we consider an aircraft tracking problem in
which a possible flight trajectory of the aircraft is
shown in Fig. 1. The trajectory is composed of lines in
which the aircraft flies straight and level at constant speed
and circular arcs in which the aircraft maneuvres with
different yet constant yaw rates. The more accurate and
the faster the flight-mode detection, the more accurate the
aircraft trajectory prediction, leading to safe and efficient
air traffic control.

A traditional continuous state estimator, such as a
Kalman filter designed using a single linear aircraft model
with constant system parameters, process and measurement
noise, does not perform well when the aircraft changes its
mode unexpectedly. This difficulty arises because the
model on which the filter is based does not accurately rep-
resent the behaviour of the aircraft over all of its flight
regime. The flight mode changes in an aircraft depend on
the pilot’s input. In the aircraft tracking problems we con-
sider in this paper, this input is usually unknown to the sur-
veillance system. The lack of knowledge of the pilot’s
actions makes the flight-mode changes of an aircraft non-
deterministic because they cannot be determined a priori.
We model this input as a random process. If a single
linear continuous model is used for aircraft tracking the
process noise covariance in the model has to be large to
account for model inaccuracy. This large process noise
covariance leads to poor state estimates. A hybrid model
with multiple modes that represent the flight regimes of
an aircraft could represent the dynamics of the aircraft
more accurately than one continuous model, and thus
would give more accurate state estimates. We model the
dynamics of an aircraft as a discrete-time stochastic linear
hybrid system whose modes correspond to the flight
modes of the aircraft. The flight-mode logic of the aircraft
is represented by the discrete-state dynamics and governed
by a finite Markov chain. In this framework, aircraft
tracking is a hybrid estimation problem that requires the
computation of both the continuous state and discrete
mode estimates. Therefore, we consider a class of hybrid
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Fig. 1 Aircraft trajectory

systems, called discrete time stochastic linear hybrid
systems which have continuous dynamics modelled by
linear difference equations and discrete state dynamics
modelled by a finite Markov chain.

Hybrid estimation algorithms have been developed for
discrete time stochastic linear hybrid systems in which the
mode transitions are governed by finite-state Markov
chains. The multiple model adaptive estimation (MMAE)
algorithm [5] is an algorithm in which, during hypothesis
testing, the residuals of the different Kalman filters for
each mode are used to form functions that reflect the likeli-
hood that estimates of each of the different modes is the
correct one. These functions, called likelihood functions,
serve as adaptive weights, and the state estimate is the
weighted sum of the state estimates computed by individual
Kalman filters. In MMAE, the individual Kalman filters
matched to the different modes run independently. In the
interacting multiple model (IMM) algorithm [6] which is
a refinement of MMAE, a set of mode-matched Kalman
filters interact with each other by using combinations of pre-
vious estimates computed by individual Kalman filters as
initial conditions for each of the Kalman filters at every
time step. The original rationale behind this refinement
was to reduce the exponential complexity O(N”) of the
optimal hybrid estimator which minimises the mean-
square estimation error (where N is the number of modes
and T is the total number of time samples) to O(N).
Maybeck [5], Bar-Shalom et al. [6], Sworder and Boyd
[7], and Hawkes and Moore [8] describe several similar
hybrid estimation algorithms and their applications.

The performance of such hybrid estimators has been
studied for several decades. Magill [9] provided sufficient
conditions for the convergence of the adaptive weight for
the correct mode to unity. These conditions are valid for
the hybrid estimation of a specific class of systems, in
which a constant parameter vector is unknown and the con-
tinuous dynamics in each mode has a single output.
Lainiotis et al. [10—12] extended these results to systems
with multiple outputs, and derived the recursive form of
the optimal adaptive estimator as well as its exact error
covariance. Hawkes et al. [8] examined the asymptotic
behaviour of the adaptive weights which determine the per-
formance of hybrid estimation algorithms. Many other
approaches to the performance analysis of hybrid esti-
mation, in which hypothesis testing is performed using
adaptive weights, can be found in the work of Hawkes
et al. [8], and the references therein. Baram et al. [13, 14]
provided conditions under which, for a set of systems
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driven by stationary white Gaussian inputs and no discrete
transitions, the mode probability of the true model converges
to unity, i.e. the probability that the estimated model is the
true model converges asymptotically to unity. However, the
system studied by Baram et al. [13, 14] is a set of stochastic,
stationary Gaussian models which run independently. Thus
the conditions derived in [13, 14] are more relevant to the
observability of stochastic linear hybrid systems [15].
Caputi [16] derived a necessary condition for the convergence
of hybrid estimation algorithms through the analysis of
steady-state residuals, and showed that the performance of
the hybrid estimator depends on the DC gain of the
continuous dynamics. This condition is only valid for a
specific class of hybrid systems in which the continuous
dynamics for all the modes is the same, but the inputs are
distinct and consist of a constant bias vector and zero-mean
white Gaussian random noise.

The researchers cited have analysed hybrid estimation in
several special classes of systems, yet general analysis tech-
niques for evaluating the performance of hybrid estimation
algorithms for stochastic linear hybrid systems have not
been investigated in detail. In this paper we analyse the
properties of hybrid estimation algorithms for stochastic
linear hybrid systems and derive conditions under which
the computed hybrid estimates converge exponentially to
the exact hybrid states. We say that a mode transition is
more detectable than another if the time taken for the
mode estimate to converge to the true mode is less for the
former transition than for the latter. The results of this
analysis give some insight into which mode transitions are
more detectable than others and also into how to improve
the performance of hybrid estimators. We then show ana-
lytically why the IMM algorithm, which has been widely
and successfully used in the area of multiple target tracking,
has better performance than the MMAE algorithm. Using
the results of this performance analysis of hybrid estimation
algorithms, we propose a modified IMM algorithm called
the residual-mean interacting multiple model (RMIMM)
algorithm, which uses the mean of the residual produced
by each Kalman filter, producing better mode estimates as
well as continuous state estimates than the standard IMM
algorithm. We return to the aircraft tracking example to
demonstrate the effectiveness of RMIMM.

2 Discrete-time stochastic linear hybrid systems

We consider a discrete-time stochastic linear hybrid system

[ x4 1) = Ax(k) + Bau(k) + wilk)
i { 20 = Calh) +wilh) M

where k € N, and x € R”, u € R’ and z € R” are the con-
tinuous state, control input, and output variables, respect-
ively. The index i € {1, 2, ..., N} represents the mode
whose evolution is governed by the finite state Markov
chain

plk + 1) = (k) )

where Il = {m;} € R is the mode transition matrix and
w(k) € RY is the mode probability at time k. The system
matrices 4; € R™", B; € R™/, and C; € R"*" for i €
{1, 2, ..., N} are assumed known. We denote the covari-
ance of the initial state x(ko) as m, € R", and assume that
the process noise w;(k) and the measurement noise vi(k)
are uncorrelated, zero-mean white Gaussian sequences
with the covariance matrices E[w(k)w;(k)’] = Q; € R™"
and E[vi(k)vi(k)"] = R; € RP*P, respectively; E[-] and (-)”
denote expectation and matrix transpose, respectively. It
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is assumed that w;(k) and v,(k) are both uncorrelated with
the initial state, i.e. E[x(ko)wik)"] = E[x(ko)vi(k)']1 = 0.
We define Z(k) = {z(0), ..., z(k)} as the measurement
sequence up to time k. Since the state evolution of a
hybrid system has continuous trajectories as well as discrete
jumps, we define a hybrid time trajectory as follows:

Definition 2.1: (Hybrid time trajectory): A hybrid time tra-
Jectory is a sequence of intervals [ko, ki — 1][k1, ko — 1] ...
[ki, ki1 — 1] ... where k; (i > 1) is the time at which the ith
mode transition occurs.

From this definition, the sojourn time is defined as the time
spent by the hybrid system between discrete state tran-
sitions. By ‘exponential convergence of a hybrid estimator’
we mean the following:

Definition 2.2: (Exponential convergence of a hybrid
estimator): Given a hybrid system H with N modes, we
say that a hybrid estimator is exponentially convergent if
its mode estimate exhibits correct identification of the
mode transition sequence of the original system in a finite
number of steps; the continuous state estimate at any
instant has a unique mean and convergent covariance in
the sense of the minimum mean square error; and the
mean of the continuous state estimation error converges
exponentially to the given steady-state error bound.

Definition 2.2 indicates the fact that a hybrid estimator
converges exponentially only if the divergence of the
mean of the continuous state estimation error when the
mode estimate is incorrect does not destroy the exponential
convergence of the mean of the estimation error when the
mode estimate is correct.

Through the performance analysis of hybrid estimation
algorithms, we address interesting problems: under what con-
ditions the states estimates converge exponentially to the true
states; how quickly can hybrid estimation algorithms correctly
detect mode transitions; and which mode transitions are easier
to detect than others. Based on these analysis results, a new
variant of hybrid estimation algorithms is proposed.

3 Hybrid estimation algorithms

We consider a generic hybrid estimation algorithm [5] for
the discrete-time stochastic linear hybrid system (1) and
(2). As seen in Section 1, such an algorithm typically con-
tains a set of Kalman filters matched to the different
modes of the hybrid system. Following the Bayesian
estimation derivation in [5], the continuous state estimate
is the conditional mean

Xk +1) = Elx(k + 1)I1Z(k + 1)]
= Jw x(k + Dp(e(k + 1)|Z(k + 1)dx(k + 1)
3)

where p(-|-) is the conditional probability density function,
given by

N
pxk+ 1), Z(k + 1), m(k + 1))
x(k+ D) Z(k+ 1)) =

P & P+ 1)

and m(k + 1) denotes the event that the mode at time £ +1

is i. Then the state estimate (3) is

Xk+1)= %%i(k + Dp(mi(k+ 1)|Z(k+1)) (4)
i=1
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where  X(k+1)= [T  x(k+ Dpx(k+ 1)|Z(k + 1),
mi(k + 1))dx(k + 1) is the mode-conditioned state estimate
of x(k + 1), which is the state estimate based on the assump-
tion that the mode at time k41 is m;(k 4 1) and is computed
by the state estimator (in this paper, a Kalman filter)
matched to mode i. Therefore the state estimate (4) is a
weighted sum of N mode-conditioned state estimates
produced by each Kalman filter with the weight
p(m(k+ 1)|Z(k + 1)). The weight is given by

Ai(k + Dp(mi(k + 1) Z(k))
pla(k + 1)IZ(k))

where Aik+ 1) = Mrik+1); 0, S(k+ 1)) is the like-
lihood function of mode i, ri(k+1)=z(k+1)—
CxXi(k+ 1|k) is the residual produced by Kalman filter i,
Si(k + 1) € RP*? is the corresponding residual covariance,
X;(k+ 1]k) is the state estimate by Kalman filter i at time
k+1 before the measurement update, Ma; b, c) is the
probability at a of a normal distribution with mean b and
covariance ¢ and p(mgk + 1)|Z(k)) is the mode probability
estimate at time k + 1. If the mode transitions are governed
by a finite Markov chain the mode probability estimate can
be expressed by

plmi(k + 1D|Z(k + 1)) =

)

N
plmi(k + 1)IZ(k)) = 1; mup(m(k)|Z(k)) (6)

Thus the weight (5) is

Ak + 1)
ek+1) 2

= ik + 1)

plmik + DIZ(k +1)) = Z mup(m(k)|Z(k))

@)

where c(k + 1) is a normalisation constant, and u{k + 1) in
(7) denotes the probability of mode i at time (k+ 1). The
mode estimate at time k is chosen to be the mode which
has the maximum mode probability at that time. The
mode probability depends not only on the finite Markov
chain (discrete dynamics) but also on the likelihood pro-
duced by each Kalman filter (continuous dynamics). The
state estimate (4) is

Ak +1) &

N
Xk+1)= ;)?i(k+ l)[ ki) &

> mp(w(k)IZ(k))}
®)

Equations (7) and (8) are the core of the multiple model
adaptive estimation (MMAE) algorithm [5]. In MMAE,
all individual Kalman filters run independently at every
time-step. Equations (7) and (8) show that the state estimate
depends on the likelihood function; the performance of the
hybrid estimator thus greatly depends on the behaviour of
the likelihood function. A variant of MMAE, the interacting
multiple model (IMM) algorithm [18] (on which RMIMM
is based) has the same structure as MMAE except that
it has a mixing/interacting step at the beginning of the esti-
mation process, which computes new initial conditions for
the Kalman filters matched to the individual modes at
each time-step. Figure 2 shows a schematic of the IMM
algorithm for a system with two discrete modes. The
IMM algorithm uses a bank of Kalman filters (KF, and
KF,) and computes the mode probabilities u(k+ 1) and
the continuous state estimate xX'(k + 1) in the same way as
MMAE does in (7) and (8), respectively. However, indi-
vidual Kalman filters share information about the other

IEE Proc.-Control Theory Appl., Vol. 153, No. 5, September 2006



X4(K), Py(k)

Xa(K), Pok)

mixing/interacting [— 4 (klk)
l l (ij=12)
)}01(’(); P01(k) )A(OZ(k)' POZ(k)
z(k+1) Aqlk+1) z(k+1) Aglk+1)
— p KF, —» —Pp KF, —>
)A(1(k+1), Pyk+1) )A(2(k+1), Po(k+1)

Aq(k+1) ) — .

— 'y mode > uy(k+ 1K+ 1) Xylk+1), Pylk+1)—p combination X (k+1)
robabilit . (state estimate,

Ag(k+1) P updatl(_;y y(k+1) Xolk+1), Poik+1)—p{ covariance, and > Pk+1)
> ol 1) gk 1), pplhes 1)—p| MGG ESIMAE) | ey )

Fig.2 Structure of IMM algorithm (two-mode system) from [17]

Kalman filters through new initial conditions (Xp;(k), Po:(k)
(i=1, 2)) at each time-step. The components of IMM in
Fig. 2 are defined as follows:

(i) Mixing probability: This is the probability that the
system is in mode i at time k%, given that it is in mode j at
time k+1 (i, € {1, ..., N})

1
k1K) = — 1 (K) ©
7

where c; is a normalisation constant, and where u,(k) is the
mode probability of mode i at time £, i.e. a measure of how
probable it is that the system is in mode i at time k. The
initial condition w;(0) is assumed given, and is usually
obtained from properties of the system.

(ii) New initial states and covariances: The input to each
Kalman filter is adjusted by weighting the output of each
Kalman filter with the mixing probability as the weight

N
Xoj(k) = ; Xi(k) (k)

N
Poi(k) = ;[Pi(k) + [Ri(k) — Xoi(k)]
x [Ri(k) — %o;(k)] 11 (K1K)

where x;(k) and Pi(k) are the state estimate and its covari-
ance produced by Kalman filter i after the measurement
update at time k.

(iii) Kalman filter- N Kalman filters run in parallel
(multiple-model-based (hybrid) estimation).

(iv) Mode likelihood functions: The likelihood function of
mode j is a measure of how likely it is that the model
used in Kalman filter j is the correct one; it is computed
with the residual and its covariance produced by Kalman
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filter j
Aj(k + 1) = N(ri(k + 1); 0, Si(k + 1)) (10)

where ri(k + 1) :== z(k + 1) — CxX(k + 1]k) is the residual of
Kalman filter j and S;(k + 1) is its covariance.

(v) Mode probabilities: The probability of mode j is a
measure of how probable it is that the system is in mode j

N
k4 1) = ﬁw ADE ma® (D)

where c(k + 1) is a normalisation constant. The probability
of each mode is updated using the likelihood function.

(vi) Combination (output of IMM algorithm): The state esti-
mate is a weighted sum of the estimates from N Kalman
filters and the mode estimate is the mode which has the
highest mode probability

B+ 1) = Y+ Dk + 1)
j=1

Pk+1)= %{Pj(k + D)+ [E(k+1) —X(k+1)]
j=1

X %k + 1) = 20k + D) )k + 1)
m(k + 1) = arg max;p,(k + 1) (12)
where mi(k + 1) is the mode estimate at time £+ 1.

In the following Section we investigate the performance of
hybrid estimation algorithms such as MMAE and IMM in
detail.

4 Performance analysis of the hybrid estimation
algorithm

In this section, we first analyse the performance of the
hybrid estimation algorithm (either MMAE or IMM) by
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analysing the steady-state mean residuals. Since steady-
state analysis gives only necessary conditions on the per-
formance of hybrid estimation, we then analyse the transient
behaviour of mode probabilities, which are functions of the
likelihoods and therefore of the residuals.

4.1 Performance derived from steady-state
analysis

Motivated by Caputi [16], we derive the steady-state mean
residual for each mode i for the hybrid system (1) and (2).
We define

AA,' Z:AT—A,‘, AB,' = BT—B,‘
AC,' =Cr -G, )%im = khm )%,(k)
Au;, = ur, —u;, = klim ur(k) — klim u; (k)

&, = Jim Ele(0)] = lim E[G:(k) — 5:(0)

where the subscript 7 € {l, , N} represents the true
mode. The mean residual and the mean estimation error
of the filter i (i# 7) at time k are
ri(k) = Crdrei(k — 1) + (CrA4;
+ ACiAr — AC;A4)x(k — 1) + (CrAB;
+ AC;Br — AC;AB)u(k — 1)
ei(k) = (I — K;Cr)Arei(k — 1)
+ (I — KiCr)Ad4; — K;ACA)xi(k — 1)
+ (({ — K;Cy)AB; — K;AC;B))u(k — 1)

The steady-state mean residual for mode i is
I_"iw = lim ;’,(k)
. f— 00

= (CrArO(( — K;Cr)A4; — K;ACiA;))
+ (CrAd4; + Cidr — ACiA4)))x;,
+ (CrArO( — K;Cr)Br + CrBr)Au;
+ (CrA7O((I — K;C7)AB; — K;AC;B))
+ (CrAB; + CBr — ACAB)u,,

where O = (I — (I — K;Cp)A 7~ 'and K; is the steady-state
Kalman filter gain for mode i. We assume that © is inverti-
ble If mode i is the correct mode (i = 7), then 7; = 0. If

7 #0 (V;#1), then the correct mode can be detected
because only the steady-state mean residual of the true
mode is zero, and those of the other modes are not zero.
However, even if mode i is not the correct mode (i # T),
the steady-state mean residual for mode i is zero if all of
the following equalities are satisfied:

([ - K[CT)AAI‘ - K,‘ACZ‘A,‘ == O

(CTAA,‘ + AC,‘AT - AC,AA,) =0

(I — K;Cr)AB; — K;AC;B; =0

(CrAB; + AC;By — AC;AB;) =0

Au; =0
This means that if at least two models are identical and the
corresponding control inputs are the same, then the steady-
state residuals of both the corresponding modes are zero. In
this case, the hybrid estimator cannot uniquely determine
the correct mode. In other words, the performance of the

hybrid estimation algorithm depends on the differences
between the residuals which in turn arise from model

560

differences and input differences. In the above condition
the first four equalities come from model differences and
the last equality comes from input differences. This analysis
result supports Maybeck’s observation that the performance
of MMAE depends on a significant difference between the
residual characteristics [5].

4.2 Performance derived from transient analysis

We now consider the transient mean behaviour of a hybrid
estimator, and analyse its performance in the sense of expo-
nential convergence in Definition 2.2. A steady-state
Kalman filter is assumed to be used as the state estimator
for each mode. For the sake of notational simplicity, we
define w; (k) := Zfil Tk — 1). The condition for
correct mode detection at time £ is

wrk) > p(k), Vi# T (13)
Using wik) == p(m,(k)|Z(k)) from (7) and

Ai(k) = N(Fi(k); 0, 8) == @m) 215!
X exp [— %F,»(k)TS,.“ ?i(k)]

in (5), where S; = S/>0 and 7 is the mean residual, (13)
becomes

0 < Fr(k)' Sy Fr(k) < Filk)" Sy Filk)

IS;] Mr(k))
+2 ln(|ST|) +2 ln(l’«i_(k) (14)
To detect the correct mode exactly for any £ € N, (14) must
hold for all £k € N (V; # 7). If there is a time delay &7 for
correct mode detection when a mode transition into mode 7'
occurs at time k (I € N1, (14) holds for k € [k, + &7,
ki1). For the existence of an 77(k) satisfying (14), using

the properties of the eigenvalues of positive definite
matrices [19], we derive the following:

Proposition 4.1: The correct mode can be detected in at
most 07 time-steps after a mode transition at time k; if
there exists 6; € NV such that for k € [k + &7, ki)
(le NT, Vv, # T), condition (i) holds, and either condition
(ii) or condition (iii) is true.

@ (k)" S7 k) + 2[1“<||5;||) +in <Zi gg)} i

W) 0TS ) < RGOSR
i MF(’O)}
”[I“(mﬂ) ““(u,»(k)
(i) [Fr () < 2mnGS0) 7 2
max(STl) K

2 5 M?(@)]
RS [h‘(wﬂ) * 1“(m(k>

Conditions (i) and (ii) indicate that the probability of the
true mode should be greater than those of the other modes
for correct mode detection. Since condition (iii) is obtained
by considering the worst case, i.e. when the upper bound on
the left-hand side of the inequality in condition (ii) is less
than the lower bound on the right-hand side, condition
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(ii1) is a sufficient condition for correct mode detection, and
might be very conservative. However, it gives valuable
insight into the performance of hybrid estimation. Fast
mode detection is dependent not only on the magnitudes
of the residuals produced by each Kalman filter but also
on the residual covariances. If A, (S; 1)/ )\max(SFl) is
small and/or |S;|/|S7| is small, it is difficult for condition
(iii) to hold and thus to detect the correct mode. Therefore
by checking the eigenvalues and determinant of S; ' we
can tell which mode transitions are more detectable than
the others. This is similar to the idea of the observability
grammian as a measure of which states are more observable
than others [20]. If we consider the steady-state residual
mean, condition (iii) becomes, Vi # T,

)\min (S l_ ! )
Amax(S7")

2 15| K1,
e (s) ()] 00

Therefore if the asymptotic behaviour of the residuals
satisfies (15) and the sojourn times are long enough
for the residuals to converge to their steady-state values,
then MMAE is guaranteed to estimate the hybrid states
correctly.

We now derive the mode estimation delay §; using con-
dition (iii) in Proposition 4.1. The mean residual of the
correct filter at time k;+ &; (I € NT), when i =T, is
Filki+ 87) = CrAs{(I — KrCpA7™ ek, where er(k)
is the mean of the estimation error of the correct filter at
time k;. For the sake of notational simplicity we define

-2 -2
lrr, 17 < 17,

Fr:=(I—KrCrp)dr, Fi:=—KCr)4r

HY := CrAM, + ACiAr — ACAd,

H' := CrAB; + AC,By — AG/AB; 6
G = (I — K,Cr)M, — KACA,

G := (I — K,Cr)AB; — K,ACB;

L[ = [CTAT I‘[;Y [‘Ilu]

The norm of the mean residual of the correct filter at time
k[ + 5T iS

77k + 80)| < &(CrAr)a (Fr)™ " |ler(k)| (17)

where &(-) denotes the maximum singular value. Similarly
we can show that the norm of the mean residual of the
incorrect filter at time k; + 67 is

7k + 80)ll = a(L)a((Fi GF G'D ek)| (18)

where o () denotes the minimum singular value, and &(k;) is
the mean estimation error of the incorrect filter at time £;.
We define

Amin(S;l)
o=
Amax(S71)

S WA W (0
P = ST (i) o)

Substituting this along with (17) and (18) in condition (iii)
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of Proposition 4.1 we obtain the following condition:

o(CrAr)*a(Fr)* Vler(k)I* < Bk + 6r)

tacyo([Fi G G VeI (19)

To find 67 explicitly we alternatively write the mean
residual of the incorrect filter at time k; + &7, ;(k; + 67) as

Fiki + 87) = CrArF e i(k)) + H%y(ky + 87 — 1)

+ CrAr[F > G5y(kr)
bt Gk + 87— 2)]

+ CrA7[F 2 G"u(k;)
+ -+ Glulk; + 67 — 2)] + H'u(k; + 8r — 1)
(20)
We denote the last four terms of (20) by b,(k; + 67 — 1) and
Jitk + 87) = a ||bik;+ 87 — 2)II” + B(k, + 87). Using this

in condition (iii) of Proposition 4.1 and combining it with
(19), we get

Proposition 4.2: The correct mode can be detected 67 time-
steps after a mode transition if condition (i) of Proposition
4.1 holds and there exists 6; € N*, 8, <k —k, | €
N™, V;# T, such that either of the following conditions is
true.

() HACrdr)*a(Fr)* > Vlerk)I* < Bk + 87)
+aoLo([Fr G G lahky)I?

-1
(i) 8T>1+{21n|:0-(Fi):|}

a(Fr)

X {— Ina+2 ln[a(CTAT)]

a(CrAr)

. m[néT(kz)n

- ,  when J;(k; + é7) > 0.
||ei<kz)||}} (ki + &)

Proposition 4.2 indicates that for correct mode detection
in at most O time-steps after a mode transition the mean
residual of the correct filter should be less than that of the
incorrect filters. Although the actual value of B(k;+ 67),

given by
2 Si (ki + 6
i) )
)\max(ST ) |ST| M (kl + ST)
might be negative, its magnitude is given in a logarithmic
scale, and thus Jik;4+67) >0 1is easily satisfied.
Condition (ii) in proposition 4.2 provides a source of intui-

tion on the performance of hybrid estimation algorithms.
For a small mode estimation delay, the following must be

Bk + 67) =

small if J(k;+ 67) > 0: (VT € {1, ..., N}, V;#T7):

1 /\max(SZ_“l)> [f_f (CTAT)) |:||ér(k1)||:|

=1 e log| ———= 1 21
2 °g<)«mm(s;‘) gl o cran) T8 g ] Y

where mode T is the correct mode after the mode transition
at time k; (I € NT). Firstly, Amax(S7')/Amin(S; ') must be
small. Here the residual covariance S; computed by
Kalman filter i satisfies the algebraic Riccati equation.
Therefore A (ST 1)//\min(S,7 D! depends only on the
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system parameters 4;, C;, Q;, R;and A7, Cr, Or, R7. Thus by
checking the residual covariance matrices for each Kalman
filter which can be done without any measurements we can
tell which mode transition is more detectable than the
others. Secondly, if the condition number of Cz4 7 is close
to 1, the second term in (21) becomes small. Thus we
also say which mode is more easily estimated than the
others by checking the condition number of CzA47 for all
T. Thirdly, |le{k)Il/ll€{k;)|| must be small, i.e. the mean
state estimation errors produced by mode-mismatched
Kalman filters should be small and close to the error pro-
duced by the correct Kalman filter.

For a system with two modes, if we assume that the esti-
mator converges between transitions and that the mode tran-
sition matrix II is diagonally dominant, we obtain the
following condition:

Proposition 4.3: For a hybrid system with two modes the
correct mode can be detected &7 time-steps after a mode
transition if there exists 6; € NV, 8T <k, —k, | €
N*, i % T, such that

ao(LY ' a[F; GF G Vek)I?

#amison ) (75
/\max(SZ_“l) |ST] 1 —
> o(CrAr) a(Fr)* ™ Ver(k)|? (22)

Proposition 4.3 implies that if (22) is satisfied, i.e. the mean
residual of the correct mode is less than that of the other
mode, then the mode probability of the correct mode is
greater than that of the other mode &7 time-steps after a
mode transition at time k;. Thus the correct mode is detected
o7 time-steps after a mode transition.

Now we consider the conditions under which the mode
change detection is instantaneous. Assuming that the time
between mode transitions is sufficient to allow the
Kalman filters and mode probabilities to converge, we
obtain for a system with N modes.

Proposition 4.4: The correct mode is detected instan-
taneously if the following condition holds:

ao(L)o(F; GF G letky — DI

+—2 | +1n( 2
/\max(S;l)l: ('ST| Tj / min
> a(CrAr)|ler(k — 1))

where (777/ ;)min is the smallest ratio of off-diagonal to
diagonal elements in any row of the N x N transition
matrix.

Proposition 4.4 provides a means to test if the correct mode
can be detected without delay after a mode transition.

Finally, we present the conditions to guarantee exponen-
tial convergence of the hybrid estimator once the correct
mode sequence has been detected [15].

Theorem 4.1 (Theorem 3 from [15]): Consider a given sto-
chastic linear hybrid system, an error convergence set M,
and rate of convergence ¢, |{| <1, |a(4; — K;Cy)| < |{]
foralli=1, ..., N, where a(A4) is the maximal absolute
value of the eigenvalues of 4. Let k(4) = ||T'|||T""||, the
condition number of A4 wunder the inverse, where
I AT = 7, the Jordan canonical form. Then if the follow-
ing seven conditions are satisfied:

562

e The system is observable in the sense of a hybrid system
[15].

e {4;, C;} couples are observable foralli=1, ..., N.

o {A;, F}/z} couples are controllable foralli =1, ..., N.

e (4; — K,C;) is stable for all i = 1, ..., N with all distinct
eigenvalues.

e There exists X > 0 such that |x(k)||eo <X, i,j=1, ...,
N, k=1, 2, ... such that
I[(4; — 4)) — Ki(Ci — CIX(K) | oo

(23)
< U =max ||(4; — 4)) — Ki(C; — C)II, X

e The maximum mode estimation delay, & satisfies the
relation

5 < Mo
— /nU max[«(4; — K;C;)]

(24)
e The minimum time between mode transitions A known
as the minimum sojourn time, satisfies the conditions
A> Bmin + 0, where
Uéd Ai - K,C,-
el (1)

My

Bmin > max|:
|log £

log(k(4; — K;C;))
T og(a4; — K; c,»))|]

(25)

Then a hybrid estimator can be designed that converges to
the set M, with a rate of convergence greater than or
equal to .

Proof: See [15].

Along with Theorem 4.1, Propositions 5.1—5.4 present
the conditions under which, in the event of a mode detection
delay 6, the sojourn time is long enough for the error con-
vergence during the period of correct detection (A — 6)
to balance the divergence of the error during the mode
mismatch. From the present results we can evaluate
the performance of a given hybrid estimator and also find
the minimum sojourn time required in each mode to
guarantee exponential convergence of the mean-square
estimation error.

4.3 Performance comparisons

We use the mode estimation delay as a performance metric
for comparison of the MMAE and IMM algorithms since a
small mode-estimation delay usually corresponds to a small
estimation error. Analysing condition (ii) of Proposition 4.2
or (21) we can explain the performance of hybrid estimation
algorithms qualitatively. Since condition (ii) of Proposition
4.2 shows that small Apax(S7") /Amin(Si " leads to a small
mode-estimation delay, Ap.<(S7 1)/)\mm(S,-_ ' is indicative
of which mode transition is easier to detect than the
others. In addition, )\max(S}l)/ Amin(S; 1) is a function of
system parameters such as Q;, R;, Or and Ry which are
design parameters for the Kalman filters i and 7. Thus we
can make Apmex(S7")/Amin(S; ') small by adjusting these
parameters (Kalman filter funing) and thus reduce the
mode-estimation delay. For a small estimation delay,
llexkp)ll/1lék)]l in (21) should be small and this holds
when the mean state estimation errors computed by
incorrect Kalman filters are close to that of the correct
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Kalman filter. The mixing step in IMM was originally devised
to reduce the complexity of the algorithm, yet it also keeps the
estimation errors due to filter mismatch small. At the mixing
step at each time instant, IMM shifts the initial conditions for
each Kalman filter closer to the (correct) estimate computed
by IMM at the previous time step. Therefore the means of
the state estimation errors produced by the incorrect
Kalman filters are close to that of the correct Kalman filter.
The mode-estimation delay of IMM is therefore smaller
than that of MMAE which does not have this mixing
mechanism, and translates to better performance. Maybeck
[5] proposes two ad hoc methods to improve adaptability of
MMAE: enforcing a lower bound on the mode probabilities
and adding extra noise to the the Kalman filter models.
IMM does both inherently.

We now illustrate this through an aircraft tracking
example, with two discrete modes, the constant velocity
(CV) mode and the coordinated turn (CT) mode. In this
example we use a discrete-time stochastic linear hybrid
system with two modes as the aircraft model. This hybrid
model is different from the typical linear aircraft model
(e.g. (4.9,19) in [21]) used for the analysis and synthesis
of aircraft control systems. The accuracy of the linear
model is strongly dependent on system parameters, whose
precise values are usually not available in aircraft tracking
problems. In contrast, the hybrid model does not require
information on these system parameters. The dynamics of
the hybrid model are given by

1 7T 0 O
xk+1)= 01 0 x(k)

0 0 1 T

0 0 0 1
TZ
> 0

| T+ wik)
3
0o T
y(k)z[l - O}x(k)w,»(kx (i (cv.cry
0 0 1 0

where x = [x; X1 X, xz]T where x; and x, are the position
coordinates, u = [u; u,]’ where u; and u, are the
acceleration components. The control input has a different
constant value for each mode

0
Ucy = [0] for CV mode,

1.5
Ucr = |:1 5] for CT mode

where T 'is the sampling interval and wey, wer, vey, and ver
are zero-mean, uncorrelated, white Gaussian process and
measurement noise for the CV mode and the CT mode,
respectively. An aircraft trajectory is shown in Fig. 3 and
the actual mode switches occur at time =45 seconds
(CV to CT) and at time = 56 seconds (CT to CV). In
this scenario, the aircraft behaviour in the two modes is
similar (i.e. the aircraft’s yaw rate is small) to better
demonstrate the performance of MMAE and IMM. Using
Proposition 4.2 for IMM we find that the mode-estimation
delay in switching from CV to CT is 6,=1, and
from CT to CV is 8., = 2. We therefore expect the mode
switching from mode CV to CT to be more detectable
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Fig. 3 Aircraft trajectory

than the mode switching from mode CT to CV. Similarly,
we obtain o, =7 and &, = 12 for MMAE. Figure 4
shows that the simulations validate these predictions
well: IMM performs better than MMAE; and the
mode-estimation delays for both IMM (1 for CV to CT;
2 for CT to CV) and MMAE (6 for CV to CT; 10 for
CT to CV) are close to those predicted, and within the
bounds.

False mode estimation could cause poor aircraft tracking
and thus inaccurate trajectory prediction. This is undesir-
able for air traffic surveillance and control since conflict
detection and resolution are based on the aircraft’s current
state estimate and the future trajectory prediction. This
observation motivates the development of a hybrid esti-
mation algorithm which could provide more accurate
mode estimates than existing algorithms.

5 Residual-mean interacting multiple model
algorithm

Based on the performance analysis results in the previous
Section, we propose a modified IMM algorithm called the
residual-mean interacting multiple model (RMIMM) algor-
ithm, which has a likelihood function that uses the proper-
ties of the mean of the residual produced by each Kalman
filter.

As can be seen from the IMM algorithm in Section 3 and
the performance analysis of hybrid estimation algorithms in
Sections 4, the mode probability in (11) strongly depends on
the likelihood function A;. Thus if the likelihoods of the
modes are close to each other the mode estimate may be
inaccurate. Inaccurate mode estimates could produce poor
state estimates. Therefore we propose a method which
reduces false mode estimation by increasing the difference
between the likelihood of the correct mode and the likeli-
hoods of the other modes, using the fact that if the
Kalman filter corresponding to mode j is the correct one,
then the residual in (10) should be a white Gaussian
process with a zero mean. Otherwise, its mean should not
be zero. Without loss of generality we consider an auton-
omous discrete-time stochastic linear hybrid system (1)
and (2), i.e. a system without control input (u(k) = 0).
Then the mean of the residual is

Fik) = CrAre;(k — 1)
+ (CrAd; + ACidr — ACAA)R,(k — 1) (26)
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Fig. 4 Aircraft mode estimates

a IMM
b MMAE
100 trial Monte Carlo simulation results (mode CV = 0, mode CT = 1)

and the mean of estimation error is

ej(k) = (I — Ki(k)Cr)Are;(k — 1)
+ (I = K{(k)Cr)A4; — Ki(k)AGA)(k — 1) (27)

where Kj(k) is the Kalman filter gain for Kalman filter ;.
This is a recursive equation with respect to the state esti-
mation error. Thus the mean of the residual is computed
from (26) and (27).

To the best of our knowledge, all multiple-model-based
estimation and learning algorithms including various IMM
algorithms use a likelihood function whose mean is zero
to determine the current mode in which the system lies [7,
22, 23]. We propose RMIMM, which uses the mean of
the residual to increase the difference between the like-
lihood of the correct mode and those of the other modes,
thereby decreasing the number of false mode estimates. In
the IMM framework, we know only the mode probabilities,
i.e. we do not exactly know which model is the true model
at any given time. Thus we propose a new definition of the
mean of the residual: a weighted sum of the mean of the
residual computed by each Kalman filter with the mode
probability estimate in (11) as the weight. Similarly, a
new definition of the mean of the state estimation error is
proposed as a weighted sum of the mean of the state esti-
mation error corresponding to Kalman filter j with the
same weight

N
Ij'j(k) = Z%{CTATéj(k — 1) + (CTAAJ‘
j=

+ AGAr — AGAA4)x;(k — Dpy (k)
_ N _ (28)
ej(k) == X%{(I — Kj(k)Cr)Arej(k — 1)

J=
+ (I = K;(k)Cr)A4; — K;(k)ACi4))
x Xk = Dp; (k)

If the mode probability of mode j is large, the mean of the
residual becomes small (i.e. close to zero) because the other
mode probabilities w;(k) for Vi # j are small (the residual has
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a zero mean if the Kalman filter is the correct one). Since
the proposed mean of the residual is small if the mode prob-
ability of the corresponding Kalman filter is small, and large
if the mode probability of the corresponding Kalman filter is
large, we can use the mean of the residual in (28) to make
the likelihood of the correct mode more distinct from
those of the other modes. Therefore using the mean of the
residual provided by each Kalman filter, we propose a
new likelihood function

CNWAR
A = 5 nwam (29)
Aj(k) otherwise

where

v IEGNT if (k) # 0
Nitk) = { 1 otherwise

Proposition 5.1: The difference between the new likeli-
hood function (29) for the correct mode and those for the
incorrect mode, is greater than the corresponding difference
using the previous likelihood function from (10).

Proof: If the model in Kalman filter j is incorrect, the mean
of the residual is not zero and the likelihood of mode j from
the new likelihood function in (29) is less than that of the
standard likelihood function in (10). If the model in
Kalman filter j is correct, the likelihood of mode j from
the new likelihood function is the same as that of the
standard likelihood function in (10). Thus the differences
between the likelihood of the correct mode and those of
incorrect modes are greater and the result follows.

We demonstrate the performance of the proposed RMIMM
algorithm through an aircraft tracking example in which the
aircraft trjectory is shown in Fig. 1. We consider the accel-
eration model as the aircraft model for accurate aircraft
tracking. Let the state of an aircraft defined as x =
[x; X X1, X2 X5 %,]7 where where x; and x, are the position
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coordinates. The aircraft model for the CV mode is
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For the CT mode, the aircraft model (Wiener-sequence
acceleration model) is

1
~
[\S]

]

1T 200 0
01 T 00 0
|0 01 00;)2 o)
00 0 1T
00 001 T
00 0 00 1]

o
2
T 0
ARG
0_
2
0 T
L0 1.
G [0 0000
TW=10 001 0 oY

where wey, wer, vey, and ver are zero-mean, uncorrelated,
white Gaussian process noise and measurement noise for CV
mode and CT mode, respectively. The following Markov
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discrete state (mode) transition matrix defined in (2) is used:

0.95 0.05
1= [0.05 0.95}

(30)
Here the first column and the first row correspond to CV
mode and the second column and the second row corre-
spond to CT mode. For example, 7, represents the mode
transition probability from CT mode to CV mode. The
mode-transition matrix is a system parameter which rep-
resents the discrete dynamics of the system and the mode
transition probability matrix in (30) has been chosen after
many simulations.

We design a test flight trajectory with constant aircraft
speed v = 480 knots, composed of seven segments shown
in Fig. 1: straight flight from 0 to 30 s, a co-ordinated turn
with @ = —3°/s from 31 to 50 s, straight flight from 51
to 70 s, a co-ordinated turn with w = 1.5°/s from 71 to
90 s, straight flight from 91 to 110s, a coordinated turn
with @ = —4.5°/s from 111 to 130s, and straight flight
from 131 to 150s. A 100 trial Monte Carlo simulation
results in Fig. 5 show that RMIMM gives more distinct like-
lihoods of modes than those of the standard IMM algorithm.
The RMS estimation errors of position and velocity using
RMIMM are 15m and 2.1 m/s. The RMS estimation
errors of position and velocity using IMM are 18 m and
2.3m/s. The RMS estimation errors of RMIMM are
slightly better than those of IMM, yet both algorithms
give smaller RMS errors than those of the raw measure-
ments. Thus the main advantage of RMIMM, that it gives
better mode estimates than those of IMM, is demonstrated.

6 Conclusions

Several hybrid estimation algorithms have existed for many
years. We have performed a detailed steady-state and tran-
sient analysis of these algorithms and derived necessary
conditions for correct mode detection, bounds on perform-
ance (in terms of the mode detection delay and the
minimum sojourn time), and also proposed a way to
predict a priori which mode transitions are the easiest to
detect. We have validated our results using simulated exper-
iments motivated from aircraft tracking problems. Our
results give a mathematical yet intuitive explanation as to
why the IMM algorithm achieves its high levels of
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performance in the estimation of stochastic linear hybrid
systems, thus inspiring the development of new estimation
algorithms. Based on the performance analysis results, a
new variant of hybrid estimation algorithms, called the
residual-mean interacting multiple model (RMIMM)
algorithm has been proposed and its performance has
been demonstrated through a maneuvreing aircraft tracking
example.
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