
CS294 Partition Functions Fall 2023

Lecture Note 10
Instructor: Alistair Sinclair

Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They
may be distributed outside this class only with the permission of the Instructor.

10.1 Functional analysis for Markov chains

Continuing our study of MCMC as a method for designing approximate counting algorithms, we turn now
to a completely different approach to mixing times based on functional analysis, i.e., viewing the Markov
chain as an operator on real-valued functions on its state space. Our starting point is the so-called Poincaré
constant that quantifies the rate of convergence in terms of the decrease in the variance of any function in
one step of the Markov chain; this will turn out to be a generalization of the classical spectral theory for
reversible chains. We will then go on to develop combinatorial tools based on multicommodity flows to bound
the Poincaré constant, and hence the mixing time. These tools will lead to several significant applications,
notably approximation algorithms for the permanent (bipartite perfect matchings) and the ferromagnetic
Ising model. We’ll finish up with a discussion of log-Sobolev inequalities, in which convergence is measured
using relative entropy rather than variance. These tools are harder to apply but sometimes give stronger
results; we will see a recent important application to counting matroid bases.

10.2 A Poincaré inequality

We begin with some definitions. Let P be the transition matrix of an ergodic Markov chain with finite state
space Ω, and π its stationary distribution.

Definition 10.1. For any real-valued function ϕ : Ω → R, define the expectation Eπ[ϕ] :=
∑

x∈Ω π(x)ϕ(x)
and the variance Varπ[ϕ] :=

∑
x∈Ω π(x) · (ϕ(x)− Eπ[ϕ])2.

We will view the transition matrix P as an operator on functions ϕ : Ω → R, viz.

Pϕ(x) :=
∑
y∈Ω

P (x, y)ϕ(y).

Note that Pϕ(x) is the expectation of ϕ under the one-step distribution of the chain starting at x (the
“one-step averaging” of ϕ). Similarly, P tϕ(x) =

∑
y P

t(x, y)ϕ(y) is the t-step averaging of ϕ. Since π is
stationary, Eπ[P tϕ] = Eπ[ϕ] for all t. Moreover, by ergodicity of P , as t→∞, P tϕ converges to the constant
function Eπ[ϕ]. Thus Varπ[P tϕ] → 0 as t→∞.

We will measure the rate of convergence of the Markov chain by quantifying the rate of convergence of
Varπ[P tϕ] to zero. The key quantity that will arise in our bound is the so-called “Dirichlet form” EP (ϕ,ϕ).
We introduce the following more general definition:

Definition 10.2. For functions ϕ,ψ : Ω → R, the Dirichlet form of P is

EP (ϕ,ψ) := 〈ϕ,Lψ〉π, (10.1)
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where L := I−P is the Laplacian of P and the inner product 〈·, ·〉π is defined as 〈f, g〉π :=
∑

x π(x)f(x)g(x).
(Note that 〈f, g〉π can also be written as Eπ[fg].)

Of particular importance to us is the symmetric Dirichlet form EP (ϕ,ϕ), which can be rewritten as follows:

EP (ϕ,ϕ) = 〈ϕ,Lϕ〉π
=

∑
xy

π(x)ϕ(x)(I(x, y)− P (x, y))ϕ(y)

=
∑

x

π(x)ϕ(x)2 −
∑
xy

π(x)P (x, y)ϕ(x)ϕ(y)

=
1
2

∑
xy

π(x)P (x, y)(ϕ(x)2 + ϕ(y)2)−
∑
xy

π(x)P (x, y)ϕ(x)ϕ(y)

=
1
2

∑
xy

π(x)P (x, y)(ϕ(x)− ϕ(y))2. (10.2)

To compare this to the variance itself, note that

Varπ[ϕ] :=
∑

x

π(x) · (ϕ(x)− Eπ[ϕ])2

=
∑

x

π(x)ϕ(x)2 − Eπ[ϕ]2

=
1
2

∑
xy

π(x)π(y)(ϕ(x)2 + ϕ(y)2)−
∑

x

π(x)ϕ(x)
∑

y

π(y)ϕ(y)

=
1
2

∑
xy

π(x)π(y) (ϕ(x)− ϕ(y))2 . (10.3)

Now we can see that expressions (10.2) and (10.3) take the same form, except that in (10.2) the sum is taken
only over neighbors in the Markov chain. Thus we can think of EP as a “local variance” along the transitions
of the chain.

In our context, a Poincaré inequality bounds the ratio of the local to the global variance for any non-constant
function ϕ. This leads to the following definition.

Definition 10.3. The Poincaré constant of P is defined by

α := inf
ϕ non-constant

EP (ϕ,ϕ)
Varπ[ϕ]

.

The following theorem says that the Poincaré constant provides an upper bound on the mixing time; the
intuition for this is that the ratio of local to global variance measures the rate at which the function ϕ is
“averaged” at each step of the Markov chain. Recall that we call P lazy if it has a self-loop probability of at
least 1/2 at every state.

Theorem 10.4. For any lazy ergodic P and any initial state x ∈ Ω,

τx(ε) ≤ 1
α

(
2 ln ε−1 + ln(4π(x))−1

)
.

Proof. This is a version of a classical result; we follow the proofs of Jerrum [Jer03] and Mihail [Mih89].

The following lemma is the main content of the proof.
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Lemma 10.5. For any ϕ : Ω → R

Varπ[Pϕ] ≤ Varπ[ϕ]− EP (ϕ,ϕ) .

We defer the proof of the lemma for a moment. For now, we state an immediate corollary that establishes
a contraction 1− α for the variance in each step of the chain.

Corollary 10.6. For any non-constant ϕ : Ω → R, we have Varπ[P tϕ] ≤ (1− α)t Varπ[ϕ].

Proceeding with the proof of Theorem 10.4, we need to relate Varπ[P tϕ] to the variation distance. A standard
application of Cauchy-Schwarz [exercise] yields

‖p(t)
x − π‖2

TV ≤ 1
4
Varπ

[p(t)
x

π

]
. (10.4)

Now define ϕ := p(0)
x

π , where p(0)
x is the initial distribution concentrated at state x. Unfortunately P tϕ is

not equal to the quantity p(t)
x

π on the rhs of (10.4). However, we can relate them by introducing the time
reversal P ∗ of P , defined by P ∗(x, y) = π(y)

π(x)P (y, x).

Exercise: Verify the following simple properties: (i) P ∗ is also ergodic with the same stationary distribu-
tion π; (ii) (P ∗)∗ = P ; (iii) P ∗ = P iff P is reversible; (iv) EP∗(ψ,ψ) = EP (ψ,ψ) for any ψ, so the Poincaré
constants of P and P ∗ are the same.

Now note that P ∗tϕ = P ∗t
p(0)

x

π = p(0)
x P t

π = p(t)
x

π . [Exercise: verify this!] Hence

4‖p(t)
x − π‖2

TV ≤ Varπ

[p(t)
x

π

]
= Varπ[P ∗tϕ] ≤ (1− α)t Varπ[ϕ],

where in the last step we used Corollary 10.6 and the fact that the Poincaré constant of P ∗ is also α. Finally,
noting that Varπ[ϕ] = 1

π(x) − 1 ≤ 1
π(x) , we see that setting t = 1

α (ln ε−1 + 1
2 ln(4π(x))−1) ensures that

‖p(t)
x − π‖TV ≤ ε, as required.

Proof of Lemma 10.5. Because P is lazy we have P = 1
2 (I + P̂ ), where P̂ is stochastic and has the same

stationary distribution π as P . Now we may write

[Pϕ](x) =
∑

y

P (x, y)ϕ(y)

=
1
2
ϕ(x) +

1
2

∑
y

P̂ (x, y)ϕ(y)

=
1
2

∑
y

P̂ (x, y) (ϕ(x) + ϕ(y)) .

Assume w. l. o. g. that Eπ[ϕ] = 0 (shifting ϕ by a constant value does not affect any of the quantities we are
interested in, all of which are variances). Then

Varπ[Pϕ] =
∑

x

π(x) ([Pϕ](x))2

=
1
4

∑
x

π(x)

(∑
y

P̂ (x, y) (ϕ(x) + ϕ(y))

)2

≤ 1
4

∑
xy

π(x)P̂ (x, y) (ϕ(x) + ϕ(y))2 ,
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where the last inequality follows from the Cauchy-Schwarz inequality (or the fact that the square of an
expectation is bounded by the expectation of the square). Note that this is the only inequality in this proof.
Moreover, we can rewrite the variance yet again as

Varπ[ϕ] =
1
2

∑
x

π(x)ϕ(x)2 +
1
2

∑
y

π(y)ϕ(y)2

=
1
2

∑
xy

π(x)ϕ(x)2P̂ (x, y) +
1
2

∑
xy

π(x)P̂ (x, y)ϕ(y)2

=
1
2

∑
xy

π(x)P̂ (x, y)
(
ϕ(x)2 + ϕ(y)2

)
.

Taking differences,

Varπ[ϕ]−Varπ[Pϕ] ≥ 1
4

∑
xy

π(x)P̂ (x, y) (ϕ(x)− ϕ(y))2 .

Observe that all entries in P̂ are twice as large as the entries in its lazy version P , except for the diagonal
elements. Diagonal elements can be ignored, however, as they contribute a value of 0 to the above sum.
Hence, the right-hand side is equal to

1
2

∑
xy

π(x)P (x, y) (ϕ(x)− ϕ(y))2 = EP (ϕ,ϕ) .

This completes the proof of Lemma 10.5 and the proof of Theorem 10.4.

Remark: The above proof assumes that the Markov chain is lazy, which as we have seen is not in practice
a restriction in algorithmic applications as we can always insert a self-loop probability. The role of this
assumption is to ensure that there are no periodicity issues. As we shall see later, it can be avoided by
passing to a continuous time version of the chain, in which periodicity can never arise.

10.3 Connection to eigenvalues

If the Markov chain P is reversible (as is often the case in applications), then we can take an alternative
approach to proving Theorem 10.4 based on classical spectral graph theory. Recall that P is reversible iff it
satisfies the detailed balance condition

π(x)P (x, y) = π(y)P (y, x) ∀x, y ∈ Ω,

and in that case π is also the unique stationary distribution of the chain.

First, recall from a previous lecture that if P is reversible w.r.t. π then the matrix S = DPD−1, where
D = diag(

√
π(x)), is non-negative and symmetric (but not necessarily stochastic). This implies that the

eigenvalues of P are the same as those of S and hence are all real, and that the eigenvectors of P form a
basis for RN , where N = |Ω|.

Thus by the Perron-Frobenius theorem the spectrum of P takes the form

1 = λ1 > λ2 ≥ · · · ≥ λN > −1.

Now as we observed in our sketch proof of the Fundamental Theorem for reversible chains in an earlier lecture,
we may express the initial distribution p(0) at time t as a linear combination of eigenvectors e1, e2, . . . , eN
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of P , namely: p(0) =
∑

i αiei, where e1 = π and α1 = 1. But then p(t) = p(0)P t =
∑

i αiλ
t
iei. Since |λi| < 1

for all i > 1, this implies that p(t) → α1e1 = π, and the slowest rate of decay of the other components is
determined by maxi≥2 |1− λi|. If in addition P is lazy, then all eigenvectors are non-negative (i.e., λN ≥ 0),
so maxi≥2 |1−λi| = 1−λ2. Thus the rate at which x(t) approaches π can be bounded in terms of the spectral
gap 1− λ2. In fact one can prove via standard linear algebra:

Claim 10.7. For any ergodic, reversible, lazy Markov chain P , and any initial state x,

∆x(t) ≤ λt
2

2
√
π(x)

,

and hence
τx(ε) ≤ 1

1− λ2

(
ln ε−1 + 1

2 ln(4π(x))−1
)
. (10.5)

Proof. Left as a (slighly involved) exercise. [Hint: Do the proof first for the case that P is symmetric, then
generalize to reversible P .]

Note that the overhead in approximating the overall rate of decay in variation distance just by the second
eigenvalue is captured by the factor lnπ(x)−1, as in Theorem 10.4.

Now to complete the connection, we observe that in the reversible case the spectral gap coincides exactly
with the Poincaré constant (see Definition 10.3)!

Claim 10.8. For P ergodic and reversible, the spectral gap is given by

1− λ2 = inf
ϕ non-constant

EP (ϕ,ϕ)
Varπ[ϕ]

.

Proof. Note that the Laplacian L := I − P has eigenvalues µi = 1− λi, with 0 = µ1 < µ2 ≤ · · · ≤ µN < 2,
and the same eigenvectors as P . So the spectral gap of P is just µ2.

Suppose first that P is symmetric (so that it is reversible w.r.t. the uniform distribution π = 1); then of
course L is also symmetric. By the classical variational characterization of eigenvalues of symmetric matrices,
the principal eigenvalue of L minimizes the Rayleigh quotient, i.e.,

µ1 = inf
ϕ 6=0

〈ϕ,Lϕ〉
〈ϕ,ϕ〉

,

where 〈ϕ,ψ〉 :=
∑

x∈Ω ϕ(x)ψ(x). A function ϕ that achieves the infimum is the principal eigenvector 1. This
can be extended to higher eigenvalues in the obvious way. In particular,

µ2 = inf
ϕ⊥1

〈ϕ,Lϕ〉
〈ϕ,ϕ〉

= inf
ϕ 6‖1

〈ϕ,Lϕ〉
〈ϕ,ϕ〉 − 〈ϕ,1〉2

. (10.6)

To extend this to the case where P is reversible, we apply (10.6) to the symmetric matrix I − DPD−1 as
above and obtain, after some algebra [exercise!],

µ2 = inf
ϕ⊥1

〈ϕ,Lϕ〉π
〈ϕ,ϕ〉π

= inf
ϕ 6‖1

〈ϕ,Lϕ〉π
〈ϕ,ϕ〉π − 〈ϕ,1〉2π

, (10.7)

where as before 〈ϕ,ψ〉π :=
∑

x∈Ω ϕ(x)ψ(x)π(x). Now notice that the numerator in (10.7) is just EP (ϕ,ϕ),
while the denominator is Varπ[ϕ]. This completes the proof.

Plugging Claim 10.8 into equation (10.5), we recover (up to a factor of 2) exactly the same bound on the
mixing time as in Theorem 10.4.

Remark: For an extension of the spectral approach to non-reversible chains, see [Fil91].
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