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Learning Category-Specific Deformable 3D
Models for Object Reconstruction
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Abstract—We address the problem of fully automatic object localization and reconstruction from a single image. This is both a very
challenging and very important problem which has, until recently, received limited attention due to difficulties in segmenting objects and
predicting their poses. Here we leverage recent advances in learning convolutional networks for object detection and segmentation and
introduce a complementary network for the task of camera viewpoint prediction. These predictors are very powerful, but still not perfect
given the stringent requirements of shape reconstruction. Our main contribution is a new class of deformable 3D models that can be
robustly fitted to images based on noisy pose and silhouette estimates computed upstream and that can be learned directly from 2D
annotations available in object detection datasets. Our models capture top-down information about the main global modes of shape
variation within a class providing a “low-frequency” shape. In order to capture fine instance-specific shape details, we fuse it with a
high-frequency component recovered from shading cues. A comprehensive quantitative analysis and ablation study on the PASCAL
3D+ dataset validates the approach as we show fully automatic reconstructions on PASCAL VOC as well as large improvements on the
task of viewpoint prediction.

Index Terms—Object Reconstruction, 3D Shape Modeling, Viewpoint Estimation, Scene Understanding
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1 INTRODUCTION

CONSIDER the chairs in Figure 1. As humans, not only
can we infer at a glance that the image contains three

chairs, we also construct a rich internal representation of
each of them such as their locations and 3D poses. Moreover,
we have a guess of their 3D shapes, even though we might
never have seen these particular chairs. We can do this
because we do not experience this image tabula rasa, but in
the context of our “remembrance of things past”. Previously
seen chairs enable us to develop a notion of the 3D shape
of chairs, which we can project to the instances in this par-
ticular image. We also specialize our representation to these
particular instances (e.g. any custom decorations they might
have), signalling that both top-down and bottom-up cues
influence our percept [1]. In this work, we incorporate these
principles in a computational approach for reconstructing
objects given a single image.

The task of reconstructing objects from a single image is a
challenging one – a typical image depicts many objects, each
possibly belonging to a different object category; an object
category, in turn, comprises instances of varying shapes,
textures, size etc. and any particular instance may be viewed
from a different viewpoint. Previous approaches to this
problem can be broadly grouped into two paradigms. The
paradigm of model-based object reconstruction has reflected
varying preferences on model representations. Generalized
cylinders [2] resulted in very compact descriptions for cer-
tain classes of shapes, and can be used for category level
descriptions, but the fitting problem for general shapes is
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Fig. 1: Example outputs of our system, given a single image
of a scene having chairs, a class that the system was exposed
to during training. The coloring on the right image signals
object-centric depth (we do not aim for globally consistent
depths across multiple objects). Blue means close to the
camera, red means far from the camera.

challenging. Polyhedral models [3], [4], which trace back
to the early work of Roberts [5], and CAD models [6],
[7], [8], cannot perfectly deform into shapes even slightly
different from those in training data, but given a set of
point correspondences can be quite effective for determin-
ing approximate instance viewpoints. Some recent methods
have proposed using similar instances from a collection of
CAD models [9], [10] for non-parametric reconstruction but
their applications have been restricted to pre-segmented
online product images or recovering 3D from 2.5D object
scans [11]. Here we pursue more expressive basis shape
models [12], [13], [14] which establish a balance between
the two extremes as they can deform but only along class-
specific modes of variation.

The alternate paradigm comprises of approaches that
target the problem of object reconstruction in a class or
object agnostic manner, either implicitly or explicitly using
generic learned 3D shape cues [15], [16], or bottom-up cues
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Fig. 2: Overview of our full reconstruction method. We
leverage estimated instance segmentations and predicted
viewpoints to generate a full 3D mesh and a high frequency
2.5D depth map for each object in the image.

and the physics of image formation [17], [18] building upon
the long tradition of shape-from-X, which traces back to
seminal work by Horn [19]. These methods, while quite
general, have not yet been demonstrated for 3D reconstruc-
tion – as opposed to 2.5D – and typically assume known
object segmentation [18]. Some recent approaches have
demonstrated the use of supervised learning techniques to
implcitly learn generic cues to predict depth maps [20] and
surface normals [21], [22] but these have primarily focused
on inferring scene-level information which differs from our
goal of perceiving the shape of objects.

In this work, we combine both these reconstruction
paradigms - we obtain top-down shape information from
our model-based reconstruction approach and complement
it with bottom-up shape information obtained via an in-
trinsic image decomposition method. Crucially, in contrast
to previous work (e.g. [18], [23], [24]), we do not require
perfect knowledge of object localization and pose as our
reconstruction is driven by automatic figure-ground object
segmentations and viewpoint estimations.

The framework we propose to reconstruct the objects
present in an image is outlined in Figure 2. As a first step,
we leverage the recent progress made by the computer
vision community in object detection [25] and instance
segmentation [26], [27] to identify and localize objects in
the image. For each object, we also predict a viewpoint in
the form of three euler angles. We then use our learned
deformable 3D shape models in conjunction with the view-
point and localization information to produce a “top-down”
3D reconstruction for the object guided primarily by cate-
gory level cues. Finally, we infuse our 3D shape with high
frequency local shape cues to obtain our end result - a rich
3D reconstruction of the object. We briefly outline each of the
components required for the above proposed framework.

Learning Deformable 3D Models. As noted earlier, previ-
ously seen objects allow us to develop a notion of 3D shape
which informs inference for new instances. We present an
algorithm that can build category-specific deformable shape
models from just images with 2D annotations (segmentation
masks and a small set of keypoints) present in modern

computer vision datasets (e.g. PASCAL VOC [28]). These
learnt shape models and deformations allow us to robustly
infer shape while capturing intra-class shape variation.

Learning to Estimate Viewpoint. The first step towards
being able to represent objects in 3D is to predict their
viewpoint. This intermediate representation provides coarse
information about the shape and its inference is a well
studied problem in computer vision [29], [30], [31], [32],
[33], [34], [35]. We train a Convolutional Neural Network
(CNN) [36], [37] based architecture which can implicitly
capture and aggregate local evidence to obtain a viewpoint
estimate and demonstrate improvements over the state-of-
the-art for this task.

Object Shape Recovery. Given an object’s category, approxi-
mate localization and viewpoint, we obtain a 3D reconstruc-
tion for the corresponding object using the learned category-
specific deformable shape model. We complement the top-
down shape inferred via this inference with a bottom-up
module that further refines our shape estimate for a particu-
lar instance. This framework allows us to capture the coarse
as well as fine level shape details for objects from a single
image.

Our paper is organized as follows: in Section 2 we de-
scribe our model learning pipeline where we estimate cam-
era parameters for all training objects (Section 2.1) followed
by our shape model formulation (Section 2.2) to learn 3D
models. We then present our viewpoint estimation method
in Section 3 and Section 4 describes our testing pipeline
where we leverage our learnt models to reconstruct novel
instances without assuming any annotations. We evaluate
the various components of our approach in Section 5 and
provide sample reconstructions in the wild.

This journal paper extends our earlier work [38] by
providing a detailed exposition of our viewpoint prediction
system and its systematic evaluation previously presented
in [39]. We also report updated experiments with a slightly
modified mesh metric and using improved versions of our
pose prediction [39] and instance segmentation [27] sys-
tems.

2 LEARNING DEFORMABLE 3D MODELS

We are interested in learning 3D shape models that can be
robustly aligned to noisy object segmentations by incorpo-
rating top-down class-specific knowledge of how shapes
from the class typically project onto the image. We want
to learn such models from just 2D training images, aided
by ground truth segmentations and a few keypoints, similar
to [23]. Our approach operates by first estimating the pro-
jection parameters (camera) for all objects in a class using
a structure-from-motion approach, followed by optimizing
over a deformation basis of representative 3D shapes that
best explain all silhouettes, conditioned on the estimated
cameras. We describe these two stages of model learning in
the following subsections. Figure 3 illustrates this training
pipeline of ours.

2.1 Camera Estimation
We use the framework of NRSfM [40] to jointly estimate
the projection parameters (rotation, translation and scale)
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Fig. 3: Overview of our training pipeline. We use an annotated image collection to estimate camera projection parameters
which we then use along with object silhouettes to learn 3D shape models. Our learnt shape models, as illustrated in the
rightmost figure are capable of deforming to capture intra-class shape variation.

for all training instances in each class. Originally proposed
for recovering shape and deformations from video [40], [41],
[42], [43], NRSfM is a natural choice for camera estimation
from sparse correspondences as intra-class variation may
become a confounding factor if not modeled explicitly.
However, the performance of such algorithms has only been
explored on simple categories, such as SUV’s [44] or flower
petal and clown fish [45]. Closer to our work, Hejrati and
Ramanan [46] used NRSfM on a larger class (cars) but
need a predictive detector to fill-in missing data (occluded
keypoints) which we do not assume to have here.

We closely follow the EM-PPCA formulation of Torresani
et al. [42] and propose a simple extension to the algo-
rithm that incorporates silhouette information in addition to
keypoint correspondences to robustly recover cameras and
shape bases. Energies similar to ours have been proposed
in the shape-from-silhouette [47] and rigid structure-from-
motion [23] literature but, to the best of our knowledge, not
in conjunction with NRSfM.

NRSfM Model Formulation. We are provided with an
annotated training set T : {(On, Pn)}Nn=1, where On is
the instance silhouette and Pn ∈ R2×K denotes the anno-
tated keypoint coordinates, possibly with missing entries
(occluded/truncated keypoints). The annotated keypoints
Pn are projections of the underlying 3D points Wn ∈ R3×K

via the projection function πn. In the NRSfM model, the
space of 3D keypoint locations Wn is parametrized linearly
and the projection function is assumed to be weakly ortho-
graphic i.e. πn ≡ (cn, Rn, Tn), where cn represents scale,
Rn ∈ R2×3 denotes rotation and Tn ∈ R1×2 corresponds to
2D translation. Our goal is to infer the camera parameters
(cn, Rn, Tn) as well as 3D keypoint locations Wn for all
instances in the annotated training set.

Formally, our adaptation of the NRSfM algorithm in [42]
corresponds to maximizing the likelihood of the following
model:

Pn = cnRnWn + 1TTn +Nn

Wn = W̄ +
B∑
k=1

Ubznb

zn ∼ N (0, I), Nk
n ∼ N (0, σ2I)

(1)

subject to: RnR
T
n = I2

K∑
k=1

Cmaskn (pk,n) = 0, ∀n ∈ {1, · · · , N} (2)

Here, the (partially) observed keypoint locations Pn are
assumed to be the projection under πn ≡ (cn, Rn, Tn) of
the 3D shape Wn with white noise Nn. The shape is param-
eterized as a factored Gaussian with a mean shape W̄ , B
basis vectors [U1, U2, · · · , UB ] = U and latent deformation
parameters zn. Our key modification is constraint in Eq. 2
where Cmaskn denotes the Chamfer distance field of the nth

instance’s binary mask and says that all keypoints pk,n of
instance n should lie inside its binary mask. We observed
that this results in more accurate cameras as well as more
meaningful shape bases learnt from the data.

Learning. The likelihood of the above model is maxi-
mized using the EM algorithm. Missing data (occluded
keypoints) is dealt with by “filling-in” the values using
the forward equations after the E-step. The algorithm com-
putes shape parameters {W̄ , U}, rigid body transformations
{cn, Rn, Tn} as well as the deformation parameters {zn}
for each training instance n. In practice, we augment the
data using horizontally mirrored images to exploit bilateral
symmetry in the object classes considered. We also precom-
pute the Chamfer distance fields for the whole set to speed
up computation. As shown in Figure 4, NRSfM allows us
to reliably predict cameras while being robust to intraclass
variations.

2.2 3D Basis Shape Model Learning

Equipped with camera projection parameters and keypoint
correspondences (lifted to 3D by NRSfM) on the whole
training set, we proceed to build deformable 3D shape
models from object silhouettes within the same class. 3D
shape reconstruction from multiple silhouettes projected
from a single object in calibrated settings has been widely
studied. Two prominent approaches are visual hulls [48]
and variational methods derived from snakes e.g [49], [50]
which deform a surface mesh iteratively until convergence.
Some interesting recent papers have extended variational
approaches to handle categories [24], [51] but typically
require some form of 3D annotations to bootstrap models. A
recently proposed visual-hull based approach [23] requires
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Fig. 4: NRSfM camera estimation: Estimated cameras visu-
alized using a 3D car wireframe.

only 2D annotations as we do for class-based reconstruction
and it was successfully demonstrated on PASCAL VOC but
does not serve our purpose as it makes strong assumptions
about the accuracy of the segmentation and will in fact fill
entirely any segmentation with a voxel layer. In contrast, we
build parametric shape models for categories that compactly
capture intra class shape variations. The benefits of having
a model of 3D shape are manifold: 1) we are more robust
to noisy inputs (silhouettes and pose) allowing us to pursue
reconstruction in a fully automatic setting and 2) we can
potentially sample novel shapes from an object category.

Shape Model Formulation. We model our category shapes
as a deformable point cloud1. As in the NRSfM model,
we use a linear combination of basis vectors to model
these deformations. Note that we learn such models from
silhouettes and this is what enables us to learn deformable
models without relying on point correspondences between
scanned 3D exemplars [52].

The annotated training set T : {(On, Pn)}Nn=1, where
On is the instance silhouette and Pn ∈ R2×K denotes the
annotated keypoint coordinates, is augmented after NRSfM
to contain πn (the projection function from world to image
coordinates) and Wn (3D coordinates for a small set of
keypoints). Our shape model M = (S, V ) comprises of a
mean shape S and deformation bases V = {V1, ., VK} learnt
from the augmented training set T : {(On, πn,Wn)}Nn=1.
Note that the πi we obtain using NRSfM corresponds to
orthographic projection but our algorithm could handle
perspective projection as well.

In addition to the above, we use the following notations
– π(S) corresponds to the 2D projection of shape S, Cmask

refers to the Chamfer distance field of the binary mask of
silhouette O and ∆k(p;Q) is defined as the squared average
distance of point p to its k nearest neighbors in set Q.

Energy Formulation. We formulate our objective function
primarily based on image silhouettes. For example, the
shape for an instance should always project within its sil-
houette and should agree with the keypoints (lifted to 3D

1. Differently from our earlier work [38] which learned a deformable
model for each manually annotated subcategory, we simply learn one
deformable shape model per object class.

by NRSfM ). We capture these by defining corresponding
energy terms as follows:

Silhouette Consistency. Silhouette consistency simply en-
forces the predicted shape for an instance to project inside
its silhouette. This can be achieved by penalizing the points
projected outside the instance mask by their distance from
the silhouette (i.e. squared distance to the closest silhouette
point). In our ∆ notation it can be written as follows:

Es(S,O, π) =
∑

Cmask(p)>0

∆1(p;O) (3)

Silhouette Coverage. Using silhouette consistency alone
would just drive points projected outside in towards the
silhouette. This wouldn’t ensure though that the object
silhouette is “filled” - i.e. there might be overcarving. We
deal with it by having an energy term that encourages points
on the silhouette to pull nearby projected points towards
them. Formally, this can be expressed as:

Ec(S,O, π) =
∑
p∈O

∆m(p;π(S)) (4)

Keypoint Consistency. Our NRSfM algorithm provides us
with sparse 3D keypoints along with camera projection
parameters. We use these sparse correspondences on the
training set to deform the shape to explain these 3D points.
The corresponding energy term penalizes deviation of the
shape from the 3D keypoints W for each instance. Specifi-
cally, this can be written as:

Ekp(S,W ) =
∑
κ∈W

∆m(κ;S) (5)

Local Consistency. In addition to the above data terms,
we use a simple shape regularizer to restrict arbitrary de-
formations by imposing a quadratic deformation penalty
between every point and its neighbors. We also impose a
similar penalty on deformations to ensure local smoothness.
The δ parameter represents the mean squared displacement
between neighboring points and it encourages all faces to
have similar size. Here Vki is the ith point in the kth basis.

El(S̄, V ) =
∑
i

∑
j∈N(i)

((‖S̄i − S̄j‖ − δ)2+

∑
k

‖Vki − Vkj‖2) (6)

Normal Smoothness. Shapes occurring in the natural world
tend to be locally smooth. We capture this prior on shapes
by placing a cost on the variation of normal directions in
a local neighborhood in the shape. Our normal smoothness
energy is formulated as

En(S) =
∑
i

∑
j∈N(i)

(1− ~Ni · ~Nj) (7)

Here, ~Ni represents the normal for the ith point in shape
S which is computed by fitting planes to local point neigh-
borhoods. Our prior essentially states that local point neigh-
borhoods should be flat. Note that this, in conjunction with
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our previous energies automatically enforces the commonly
used prior that normals should be perpendicular to the
viewing direction at the occluding contour [53].

Our total energy is given in equation Eq. 8. In addition to
the above smoothness priors we also penalize the L2 norm
of the deformation parameters αi to prevent unnaturally
large deformations.

Etot(S̄, V, α) = El(S̄, V )+∑
i

(Eis + Eikp + Eic + Ein +
∑
k

(‖αikVk‖2F )) (8)

Learning. We solve the optimization problem in equa-
tion Eq. 9 to obtain our shape model M = (S̄, V ). The
mean shape and deformation basis are inferred via block-
coordinate descent on (S̄, V ) and α using sub-gradient
computations over the training set. We restrict ‖Vk‖F to be
a constant to address the scale ambiguity between V and α
in our formulation. In order to deal with imperfect segmen-
tations and wrongly estimated keypoints, we use truncated
versions of the above energies that reduce the impact of
outliers. The mean shapes learnt using our algorithm for
9 rigid categories in PASCAL VOC are shown in Figure
5. Note that in addition to representing the coarse shape
details of a category, the model also learns finer structures
like chair legs and bicycle handles, which become more
prominent with deformations.

min
S̄,V,α

Etot(S̄, V, α)

subject to: Si = S̄ +
∑
k

αikVk
(9)

Our training objective is highly non-convex and non-
smooth and is susceptible to initialization. We follow the
suggestion of [49] and initialize our mean shape with a
soft visual hull computed using all training instances. The
deformation bases and deformation weights are initialized
randomly.

Implementation Details. The gradients involved in our
optimization for shape and projection parameters are ex-
tremely efficient to compute. We use approximate nearest
neighbors computed using k-d tree to implement the ‘Sil-
houette Coverage’, ‘Keypoint Consistency’ gradients and
leverage Chamfer distance fields for obtaining ‘Silhouette
Consistency’ gradients. Our overall computation takes only
about 15 min to learn a deformable shape model for an
object category with about 500 annotated examples.

3 LEARNING TO PREDICT VIEWPOINT

In our proposed framework, viewpoint prediction is an
important component towards reconstructing the objects
present in an image. We are interested in a system that
is accurate across all instances of a category as well as
robust to localization errors in object detection. We present
a CNN based system for the viewpoint prediction task and
demonstrate that it leads to significant improvements over
previous approaches.

Related Work. Recently, CNNs have been shown to out-
perform Deformable Part Model (DPM) [54] based methods

Fig. 5: Mean shapes learnt for rigid classes in PASCAL VOC
obtained using our basis shape formulation. Color encodes
depth when viewed frontally.

for recognition tasks [25], [55]. Whereas DPMs explicitly
model part appearances and their deformations, the CNN
architecture allows such relations to be captured implicitly
using a hierarchical convolutional structure. Girshick et al.
[56] argued that DPMs could also be thought as a specific
instantiation of CNNs and therefore training an end-to-
end CNN for the corresponding task should outperform a
method which instead explicitly models part appearances
and relations.

This result is particularly applicable to viewpoint esti-
mation where the prominent approaches, from the initial
instance based methods [29] to current state-of-the-art [57],
[58] explicitly model local appearances and aggregate evi-
dence to infer viewpoint. Pepik et al. [58] extend DPMs to
3D to model part appearances and rely on these to infer pose
and Xiang et al. [57] introduce a separate DPM component
corresponding to each viewpoint. Ghodrati et al. [59] differ
from the explicit part-based methodology, using a fixed
global descriptor to estimate viewpoint. We build on both
these approaches by using a method which, while using a
global descriptor, can implicitly capture part appearances.

Formulation. We formulate the global pose estimation for
rigid categories as predicting the viewpoint wrt to a canon-
ical pose. This is equivalent to determining the three eu-
ler angles corresponding to azimuth (φ), elevation(ϕ) and
cyclo-rotation(ψ). We frame the task of predicting the eu-
ler angles as a classification problem where the classes
{1, . . . Nθ} correspond to Nθ disjoint angular bins. We note
that the euler angles, and therefore every viewpoint, can
be equivalently described by a rotation matrix. We will use
the notion of viewpoints, euler angles and rotation matrices
interchangeably.

Learning. Viewpoint is manifested in a 2D image by the
spatial relationships among the different features of the
object. CNN based methods which can implicitly capture
and hierarchically build on such relations are therefore
suitable candidates for viewpoint prediction. Let Nc be the
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number of object classes, Na be number of angles to be
predicted per instance. The number of output units per class
is Na × Nθ resulting in a total of Nc × Na × Nθ outputs.
We adopt an approach similar to Girshick et al. [25] and
finetune a CNN model whose weights are initialized from
a model pretrained on the Imagenet [60] classification task.
We experimented with the architectures from Krizhevsky et
al. [55] (denoted as TNet) and Simonyan et al. [61] (denoted
as ONet). The architecture of our network is the same as
the corresponding pre-trained network with an additional
fully-connected layer having Nc ×Na ×Nθ output units.

Instead of training a separate CNN for each class, we
implement a loss layer that selectively considers theNa×Nθ
outputs corresponding the class of the training instance and
computes a logistic loss for each of the angle predictions.
This allows us to train a CNN which can jointly predict
viewpoint for all classes, thus enabling learning a shared
feature representation across all categories. We use the Caffe
framework [62] to train and extract features from the CNN
described above. We also use data-augmentation by jittering
ground-truth bounding boxes and generating additional
training examples by using boxes that overlap with the
annotated bounding box with IoU > 0.7.

4 RECONSTRUCTION IN THE WILD

Given an image, our goal is to reconstruct the depicted
objects. As the initial step, we use existing state-of-the-art
systems [26] to detect and segment the objects present
in the image. We then proceed to individually reconstruct
each of the detected objects. We approach the problem of
reconstructing these objects from the big picture downward
- like a sculptor first hammering out the big chunks and then
chiseling out the details. We infer their coarse 3D poses and
use these along with the predicted instance segmentations to
fit our top-down shape models to obtain a coarse top-down
shape (Section 4.1). Finally, we recover high frequency shape
details from shading cues present in the image (Section 4.2).

4.1 Category Specific Shape Inference
We have at our disposal category-level deformable shape
models which can be driven by data-specific and shape-
prior based energy terms to infer an object’s shape. Recall
that the proposed energy terms (Section 2.2), in particular
‘Silhouette Consistency’ (Es(S,O, π)) and ‘Silhouette Cov-
erage’ (Ec(S,O, π)) depend on a known object silhouette O
and camera projection π. We first describe how we estimate
O, π and then formulate an optimization problem to infer
object shape S.

Initialization. Given an object detection along with its pre-
dicted instance segmentation, we use the largest connected
component in the predicted segmentation to obtain the
object silhouette O. We use the viewpoint prediction system
described in Section 3 to predict the viewpoint for the
detected object, thereby obtaining the camera rotation R.
Our learnt models are at a canonical bounding box scale - all
objects are first resized to a particular width during training.
Given the predicted bounding box, we scale the learnt mean
shape accordingly and obtain camera scale c. The translation
T is initialized to be the center of the predicted bounding

box. These provide us an initial estimate of the camera
parameters π0 ≡ (c,R, T ).

Formulation. We want to infer a shape that best explains
the observed object silhouette, respects generic shape priors
(smoothness, continuity) and lies on the linear manifold
of category-level shapes. Note that, unlike model learning
phase, we do not have access to annotated keypoint loca-
tions and thus do not enforce the reconstruction to explain
any keypoint locations. These observations are incorporated
by the reconstruction energy defined in (using Es, Ec, En
defined in Section 2.2).

Er = Es + Ec + En (10)

In addition to inferring the instance shape, we also ob-
serve that the initial camera estimate π0 is only approximate
as the R is predicted upto a dicretization and c, T are
initialized coarsely. To alleviate this, we treat the camera
parameters π as optimization variables. We further add
regularizers to enforce the prior that shape deformation
should be small and the the estimated camera should not
deviate significantly from the initial camera estimate π0 .
Our final optimization for inferring the object reconstruction
is given in Eq. 11.

min
α,π

Er(S, π) + δ(π, π0) +
∑
k

(‖αkVk‖2F ))

subject to: S = S̄ +
∑
k

αkVk
(11)

Inference. In the above optimization, we first set the opti-
mization variables α, π to 0, π0 respectively. We then solve
the above minimization for the deformation weights α
as well as all the camera projection parameters π (scale,
translation and rotation) by optimizing Eq. 9 using block-
coordinate descent ( alternately optimizing π and α). The
resulting output from the minimization provides us the
projection parameters π as well as the inferred 3D shape
S = S̄ +

∑
k
αkVk. We use the efficient implementations of

energy gradients described earlier and consequently, our
overall computation takes only about 2 sec to reconstruct
a novel instance using a single CPU core.

4.2 Bottom-up Shape Refinement
The above optimization results in a top-down 3D recon-
struction based on the category-level models, inferred object
silhouette, viewpoint and our shape priors. We propose an
additional processing step to recover high frequency shape
information by adapting the intrinsic images algorithm of
Barron and Malik [18], [53], SIRFS, which exploits statistical
regularities between shapes, reflectance and illumination
Formally, SIRFS is formulated as the following optimization
problem:

minimize
Z,L

g(I − S(Z,L)) + f(Z) + h(L)

where R = I − S(Z,L) is a log-reflectance image, Z
is a depth map and L is a spherical-harmonic model of
illumination. S(Z,L) is a rendering engine which produces
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aero bike boat bus car chair mbike sofa train tv mean

Mesh
Ours 1.72 1.78 3.01 1.90 1.77 2.18 1.88 2.13 2.39 3.28 2.20

Carvi [23] 1.87 1.87 2.51 2.36 1.41 2.42 1.82 2.31 3.10 3.39 2.31

Puff [63] 3.30 2.52 2.90 3.32 2.82 3.09 2.58 2.53 3.92 3.31 3.03

Depth
Ours 9.51 9.27 17.20 12.71 9.94 7.78 9.61 13.70 31.58 8.78 13.01

Carvi [23] 10.05 9.28 15.06 18.51 8.14 7.98 9.38 13.71 31.25 8.33 13.17

SIRFS [18] 13.52 13.79 20.78 29.93 22.48 18.59 16.80 18.28 40.56 20.18 21.49

TABLE 1: Studying the quality of our learnt 3D models: comparison between our method and [23], [63] using ground truth
keypoints and masks on PASCAL VOC.

a log shading image with the illumination L. g, f and h are
the loss functions corresponding to reflectance, shape and
illumination respectively.

We incorporate our current coarse estimate of shape into
SIRFS through an additional loss term:

fo(Z,Z
′) =

∑
i

((Zi − Z ′i)2 + ε2)γo

where Z ′ is the initial coarse shape and ε a parameter added
to make the loss differentiable everywhere. We obtain Z ′

for an object by rendering a depth map of our fitted 3D
shape model which guides the optimization of this highly
non-convex cost function. The outputs from this bottom-up
refinement are reflectance, shape and illumination maps of
which we retain the shape.

5 EXPERIMENTS

We have presented several contributions towards the goal
of object reconstruction from a single image – Section 2
proposed a method to learn deformable 3D models from
an annotated image set, Section 3 introduced a CNN based
system to predict viewpoints and Section 4 put forward a
framework for reconstructing objects from a single image.
Our goal in the experiments was to empirically evaluate
and qualitatively demonstrate the efficacy of each of these
contributions.

We first examine the quality and expressiveness of our
learned 3D models by evaluating how well they matched
the underlying 3D shapes of the training data (Section 5.1).
We also evaluate the accuracy of our viewpoint prediction
system (Section 5.2). We then study their sensitivity of
obtained reconstructions when fit to images using noisy
automatic segmentations and pose predictions (Section 5.3)
and finally present qualitative results for reconstructions
from a single image (Section 5.4).

5.1 Quality of Learned 3D Models

The first question we address is whether the category-
specific shape models we learn for each object class (Sec-
tion 2) using an annotated image collection correctly ex-
plain the underlying 3D object shape for these annotated
instances. Note that while it is not our final goal, this is
itself a very challenging task - we have to obtain a dense 3D
reconstruction for annotated images using just silhouettes

and sparse keypoint correspondences. Recent work by Vi-
cente et al. [23] addressed this task of ‘lifting’ an annotated
image collection to 3D and we compare the performance
of our model learning stage against their approach. We
also incorporate category-agnostic shape inflation [63] and
intrinsic image [53] methods as baselines. The evaluation
metrics, dataset and results are described below.

Dataset. We consider images from the challenging PASCAL
VOC 2012 dataset [28] which contain objects from the 10
rigid object categories (as listed in Table 1). We use the pub-
licly available ground truth class-specific keypoints [64] and
object segmentations [65] to learn category-specific shape
models for each class. We learn and fit our 3D models on
the whole dataset (no train/test split), following the setup
of Vicente et al. [23].

Since ground truth 3D shapes are unavailable for PAS-
CAL VOC and most other detection datasets, we evaluated
the quality of our learned 3D models on the next best thing
we managed to obtain: the PASCAL3D+ dataset [57] which
has up to 10 3D CAD models for the rigid categories in
PASCAL VOC. PASCAL3D+ provides between 4 different
models for “tvmonitor” and “train” and 10 for “car” and
“chair”. The subset of PASCAL we considered after filtering
occluded instances, which we do not tackle in this paper,
had between 70 images for “sofa” and 500 images for classes
“aeroplanes” and “cars”.

Metrics. We quantify the quality of our 3D models by
comparing against the PASCAL 3D+ models using two
metrics - 1) a mesh error metric computed as the Hausdorff
distance between the ground truth and predicted mesh
after translating both to the origin and normalizing by the
diagonal of the tighest 3D bounding box of the ground truth
mesh [66] and 2) a depth map error to evaluate the quality
of the reconstructed visible object surface, measured as the
mean absolute distance between reconstructed and ground
truth depth:

Z-MAE(Ẑ, Z∗) =
1

n · γ
min
β

∑
x,y

|Ẑx,y − Z∗x,y − β| (12)

where Ẑ and Z∗ represent predicted and ground truth
depth maps respectively. Analytically, β can be computed
as the median of Ẑ − Z∗ and γ is a normalization factor
to account for absolute object size for which we use the
bounding box diagonal. Note that our depth map error is
translation and scale invariant.
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Fig. 6: Viewpoint predictions for unoccluded groundtruth instances using our algorithm. The columns show 15th, 30th,
45th, 60th, 75th and 90th percentile instances respectively in terms of the error. We visualize the predictions by rendering a
3D model using our predicted viewpoint.

Results. We report the performance of our model learning
approach in Table 1. Here, ‘SIRFS’ denotes a state-of-the
art intrinsic image decomposition method and ‘Puffball’l
[63] denotes a shape-inflation method for reconstruction.
‘Carvi’ denotes the recent method by Vicente et al. [23]
which is specifically designed for the task of reconstructing
an annotated image collection as their visual hull based re-
construction technique makes strong assumptions regarding
the accuracy of the object mask and predicted viewpoint.

We observe that category-agnostic methods – Puffball
[63] and SIRFS [18], [53] – consistently perform worse on
the benchmark by themselves as they use generic priors to
reconstruct each image individually and cannot reason over
the image collection jointly. Our model learning performs
comparably to the specialized approach of Vicente et al.– we
demonstrate competitive, if not better, performance on both
benchmarks with our models showing greater robustnes to
perspective foreshortening effects on “trains” and “buses”.
Certain classes like “boat” and “sofa” are especially hard
because of large intra-class variance and data sparsity re-
spectively.

5.2 Accuracy of Viewpoint Estimation

An important component of the proposed reconstruction
framework is the viewpoint estimation system Section 3
which allows us to fit learned models to objects in new
images. We evaluate this component under two settings –
viewpoint prediction accuracy when the object localization
is known and a detection setting with unkown localization.
We observe that our proposed approach significantly im-
proves the state-of-the-art for viewpoint estimation in both
these settings.

Dataset. Xiang et al. [57] provide annotations for (φ, ϕ, ψ)
corresponding to all the instances in the PASCAL VOC

2012 detection train, validation set as well as for ImageNet
images. We use the PASCAL train set and the ImageNet
annotations to train the CNN described in Section 3 and
use the PASCAL VOC 2012 validation set annotations to
evaluate our performance.

Viewpoint Estimation with Ground Truth box. To analyze
the performance of our viewpoint estimation method inde-
pendent of factors like mis-localization, we first tackle the
task of estimating the viewpoint of an object with known
bounds. Let ∆(R1, R2) =

‖log(RT1 R2)‖F√
2

denote the geodesic
distance function over the manifold of rotation matrices.
∆(Rgt, Rpred) captures the difference between ground truth
viewpoint Rgt and predicted viewpoint Rpred. We use two
complementary metrics for evaluation -

• Median Error : The common confusions for the task
of viewpoint estimation often are predictions which
are far apart (eg. left facing vs right facing car) and
the median error (MedErr) is a widely use metric
that is robust to these if a significant fraction of the
estimates are accurate.

• Accuracy at θ : A small median error does not nec-
essarily imply accurate estimates for all instances, a
complementary performance measure is the fraction
of instances whose predicted viewpoint is within a
fixed threshold of the target viewpoint. We denote
this metric by Accθ where θ is the threshold. We use
θ = π

6 .

Recently, Ghodrati et al. [59] achieved results comparable
to state-of-the art by using a linear classifier over layer 5
features of TNet. We denote this method as ’Pool5-TNet’ and
implement it as a baseline. To study the effect of end-to-end
training of the CNN architecture, we use a linear classifier
on top of the fc7 layer of TNet as another baseline (denoted
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aero bike boat bottle bus car chair table mbike sofa train tv mean

Accπ
6

(Pool5-TNet) 0.27 0.18 0.36 0.81 0.71 0.36 0.52 0.52 0.38 0.67 0.70 0.71 0.52

Accπ
6

(fc7-TNet) 0.50 0.44 0.39 0.88 0.81 0.70 0.39 0.38 0.48 0.44 0.78 0.65 0.57

Accπ
6

(ours-TNet) 0.78 0.74 0.49 0.93 0.94 0.90 0.65 0.67 0.83 0.67 0.79 0.76 0.76

Accπ
6

(ours-ONet) 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.81

MedErr (Pool5-TNet) 42.6 52.3 46.3 18.5 17.5 45.6 28.6 27.7 37.0 25.9 20.6 21.5 32.0

MedErr(fc7-TNet) 29.8 40.3 49.5 13.5 7.6 13.6 45.5 38.7 31.4 38.5 9.9 22.6 28.4

MedErr(ours-TNet) 14.7 18.6 31.2 13.5 6.3 8.8 17.7 17.4 17.6 15.1 8.9 17.8 15.6

MedErr(ours-ONet) 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6

TABLE 2: Viewpoint Estimation with Ground Truth box

as ’fc7-TNet’ ). With the aim of analyzing viewpoint esti-
mation independently, the evaluations were restricted only
to objects marked as non-occluded and non-truncated. The
performance of our method and comparisons to the baseline
are shown in Table 2. The results clearly demonstrate that
end-to-end training improves results and that our method
with the TNet architecture performs significantly better than
the ’Pool5-TNet’ method used in [59]. We also observe a
significant improvement by using the ONet architecture and
only use this architecture for further experiments/analysis.
In Figure 6, we show our predictions sorted in terms of
the error and it can be seen that the predictions for most
categories are reliable even at the 90th percentile.

AV P AV Pπ
6

ARPπ
6

Number of bins 4 8 16 24 - -

Xiang et al. [57] 19.5 18.7 15.6 12.1 - -

Pepik et al. [58] 23.8 21.5 17.3 13.6 - -

Ghodrati et al. [59] 24.1 22.3 17.3 13.7 - -

ours 49.1 44.5 36.0 31.1 50.7 46.5

TABLE 3: Mean performance of our approach for various
metrics. The detailed results for individual classes can be
found at the PASCAL3D leaderboard (http://cvgl.stanford.
edu/projects/pascal3d.html).

Viewpoint Estimation with Detection. Xiang et al. [57] in-
troduced theAV P metric to measure advances in the task of
viewpoint estimation in the setting where localizations are
not known a priori. The metric is similar to the AP criterion
used for PASCAL VOC detection except that each detection
candidate has an associated viewpoint and the detection is
labeled correct if it has a correct predicted viewpoint bin
as well as a correct localization (bounding box IoU > 0.5).
Xiang et al. [57] also compared to Pepik et al. [58] on the
AVP metric using various viewpoint bin sizes and Ghodrati
et al. [59] also showed comparable results on the metric.
To evaluate our method, we obtain detections from RCNN
[25] using MCG [67] object proposals and augment them
with a pose predicted using the corresponding detection’s
bounding box.

We note that there are two issues with the AV P metric
- it only evaluates the prediction for the azimuth (φ) angle

and discretizes viewpoint instead of treating it continuously.
Therefore, we also introduce two additional evaluation met-
rics which follow the IoU > 0.5 criteria for localization but
modify the criteria for assigning a viewpoint prediction to
be correct as follows -

• AV Pθ : δ(φgt, φpred) < θ
• ARPθ : ∆(Rgt, Rpred) < θ

Note that ARPθ requires the prediction of all euler angles
instead of just φ and therefore, is a stricter metric.

The performance of our CNN based approach for view-
point prediction in the detection setting is shown in Table
3 and it can be seen that we significantly outperform the
state-of-the-art methods across all categories. While it is not
possible to compare our pose estimation performance in-
dependent of detection with DPM based methods like [57],
[58], an indirect comparison results from the analysis using
ground truth boxes where we demonstrate that our pose
estimation approach is an improvement over [59] which
in turn performs similar to [57], [58] while using similar
detectors.

5.3 Sensitivity Analysis for Recognition based Recon-
struction
Our primary goal is to reconstruct objects in an image
automatically. Towards this goal, we study the performance
of our system when relaxing the availability of various
expensive annotations of the form of keypoint correspon-
dences or instance segmentations.

Dataset and Metrics. The reconstruction error metrics for
measuring mesh and depth error are the same as described
previously (Section 5.1). The segmentation, keypoint anno-
tations for learning and the mesh annotations for evaluation
are also similarly obtained. However, for the sensitivity
analysis, we introduce a train/test split since the recognition
components used for instance segmentation and viewpoint
estimation are trained on the PASCAL VOC train set. We
therefore train our category-shape models on only the sub-
set of the data corresponding to PASCAL VOC train set.
We then reconstruct the held out objects in the PASCAL
validation set and report performance for these test objects.

Results. In order to analyze sensitivity of our mod-
els to noisy inputs we reconstructed held-out test in-

http://cvgl.stanford.edu/projects/pascal3d.html
http://cvgl.stanford.edu/projects/pascal3d.html
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Fig. 7: Fully automatic reconstructions on detected instances (0.5 IoU with ground truth) using our models on rigid
categories in PASCAL VOC. We show our instance segmentation input, the inferred shape overlaid on the image, a 2.5D
depth map (after the bottom-up refinement stage), the mesh in the image viewpoint and two other views. It can be seen
that our method produces plausible reconstructions which is a remarkable achievement given just a single image and noisy
instance segmentations. Color encodes depth in the image coordinate frame (blue is closer). More results can be found at
https://goo.gl/MgVQzZ.

https://goo.gl/MgVQzZ
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aero bike boat bus car chair mbike sofa train tv mean

Mesh
KP+Mask 1.77 1.85 3.68 1.90 1.80 2.26 1.83 6.86 2.69 3.40 2.80

KP+SDS 1.75 1.89 3.71 1.87 1.75 2.27 1.84 6.56 2.76 3.39 2.78

PP+SDS 1.84 2.02 4.59 1.86 1.88 2.41 2.01 7.30 2.74 3.27 2.99

Puff [63] 3.31 2.49 2.95 3.40 2.87 3.09 2.65 2.73 3.91 3.33 3.07

Depth
KP+Mask 9.83 9.95 21.07 12.80 10.07 9.10 9.98 29.39 25.70 9.85 14.77

KP+SDS 9.95 10.35 20.11 13.06 10.49 9.24 10.61 27.94 26.13 10.10 14.80

PP+SDS 11.42 11.25 21.93 22.04 13.69 10.27 11.71 26.76 34.92 9.88 17.39

SIRFS [18] 13.58 14.48 19.64 30.14 22.60 20.12 16.81 21.54 41.40 23.67 22.40

TABLE 4: Ablation study for our method assuming/relaxing various annotations at test time on objects in PASCAL VOC.
As can be seen, our method degrades gracefully with relaxed annotations. Note that these experiments are in a train/test
setting and numbers will differ from Table 1. Please see text for more details.

stances using our models given just ground truth bound-
ing boxes. We compare various versions of our method
using ground truth(Mask)/imperfect segmentations(SDS)
and keypoints(KP)/our pose predictor(PP) for viewpoint
estimation respectively. For pose prediction, we use the
CNN-based system described in Section 3. To obtain an
approximate segmentation from the bounding box, we use
the refinement stage of the state-of-the-art joint detection
and segmentation system proposed in [26].

Table 4 shows that our results degrade gracefully from
the fully annotated to the fully automatic setting. Our
method is robust to some mis-segmentation owing to our
shape model that prevents shapes from bending unnaturally
to explain noisy silhouettes. Our reconstructions degrade
slightly with imperfect pose initializations even though our
projection parameter optimization deals with it to some
extent. With predicted poses, we observe that sometimes
even when our reconstructions look plausible, the errors
can be high as the metrics are sensitive to bad alignment.
The data sparsity issue is especially visible in the case of
sofas where in a train/test setting in Table 4 the numbers
drop significantly with less training data (only 34 instances).
Note we do not evaluate our bottom-up component as the
PASCAL 3D+ meshes provided do not share the same high
frequency shape details as the instance.

5.4 Fully Automatic Reconstruction
We qualitatively demonstrate reconstructions on automati-
cally detected and segmented instances with 0.5 IoU overlap
with the ground truth in whole images in PASCAL VOC
using [26] in Figure 7. We can see that our method is able
to deal with some degree of mis-segmentation. Some of our
major failure modes include not being able to capture the
correct scale and pose of the object and thus badly fitting to
the silhouette in some cases.

6 CONCLUSION

We have proposed what may be the first approach to
perform fully automatic object reconstruction from a single
image on a large and realistic dataset. Critically, our de-
formable 3D shape model can be bootstrapped from easily
acquired ground-truth 2D annotations thereby bypassing

the need for a-priori manual mesh design or 3D scanning
and making it possible for convenient use of these types
of models on large real-world datasets (e.g. PASCAL VOC).
Another important component of our framework is a convo-
lutional neural network based viewpoint prediction system
which we have shown to be considerably more accurate
than previous approaches – in context of objects with known
localization as well as automatically detected objects. We
report an extensive evaluation of the quality of the learned
3D models on a recent 3D benchmarking dataset for PAS-
CAL VOC [57] showing competitive results with models
that specialize in shape reconstruction using ground truth
annotations as inputs while demonstrating that our method
is equally capable in the wild, on top of automatic object
detectors.

Much research lies ahead, both in terms of improving
the quality and the robustness of reconstruction at test time
(both bottom-up and top-down components), developing
benchmarks for joint recognition and reconstruction and
relaxing the need for annotations during training: all of
these constitute interesting and important directions for
future work. More expressive non-linear shape models [68]
may prove helpful, as well as a tighter integration between
segmentation and reconstruction.
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