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1 Introduction

Significance

Curvature based surface optimization is an important constituent of various geo-
metric modeling and scientific computing tasks. Smooth surfaces are often mod-
elled in a variational setting, where the objective function is used to express the
beauty of the shape. Optimization is also used for fitting a smooth, virtual surface
to samples of a real, scanned object. Energy minimizing surfaces are also found in
the simulation of real-world phenomena such as soap films, cell membranes, liq-
uid interfaces and solder-microchip interfaces. Overall, curvature based surface
optimization is a useful technology with a variety of applications.

Functionals

The objective functional most commonly used in surface optimization is the bend-
ing energy, also known as theWillmoreenergy. The bending energy measures the
total curvature of a surface. Intuitively, this corresponds to the work required to
deform a surface from a homogenous flat sheet (which has zero bending energy)
to its current shape. The Willmore functional is used to model naturally occurring
surfaces such as cell membranes and soap films.
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Another functional useful for artistic design is the energy that measuresvariation
of curvature. The surfaces that minimize this kind of energy are known asMin-
imum Variation Surfaces (MVS)and the functional is called the MVS functional.
One form of the MVS functional was introduced by Moreton and Sequin[15],
and is used to model cyclides and cyclide-like smooth shapes. We introduce an
enhancement to original MVS functional and compare the new functional to the
original.

Difficulties with Surface Optimization

In spite of being an important and useful field, surface optimization has remained
a difficult and slow problem. Numerous solutions to specific problems have been
introduced, but one has yet to develop a general, efficient and robust tool to opti-
mize an arbitrary input surface into the local minimizer of a variety of functionals.
This is understandable, given the difficulties inherent to surface optimization:

• Ill-Conditioning: Optimizing surfaces requires the solution of a non-linear
system of equations (∇Energy= 0 — analogous to the Euler-Lagrange
equations for the given energy). The commonly used energy functionals
are very ill-conditioned. That is, small changes in the surface can produce
large changes in the surface energy. While this ill-conditioning is useful
for quickly smoothing out high-frequency components such as bumps and
kinks, it slows down the optimization of low frequency features. That is,
once each point on the surface finds itself in a locally optimal neighbor-
hood, the amount of movement it is willing to undergo is very small. As a
result, low frequency features take a long time to smooth out, and the sur-
face moves towards the desired optimum shape at prohibitively slow speeds.

• Surface Representation: For optimization, the ideal surface representation
would be differentiable, invariant to ‘non-shape’ parameters (such as para-
meterization, sampling density, element tesselation quality and aspect ra-
tio), able to denote complex surface topologies (e.g. high genus surfaces
with specific symmetry) with only a few degrees of freedom, and very fast
to interrogate at every point. Creating such a general yet robust surface rep-
resentation is often difficult, and the representation is usually tailored to the
specific application at hand.

• Complex Energy Landscape: The above two difficulties create a third dif-
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ficulty with surface optimization — researchers have a hard time under-
standing the energy landscape, and often wonder if the energy minimizer
they obtained is a local minimum, an inflection point, or the true (and often
desired) global minimum.

The difficulties with surface optimization motivate our research. We wish to bet-
ter understand the energy space of the functionals commonly used in surface op-
timization. In particular, we wish to study and evaluate the aesthetic properties of
different curvature-based energy functionals.

Goal

In this report, we find and analyze the local energy minimizers for a number of
canonical input surfaces of varying genus. The results will be driven by accuracy,
and not by speed. We build a general, robust and efficient surface optimization
system to obtain the energy minimizers. Given these minimizers, we can compare
and contrast the different functionals and the ‘beauty’ of the shapes they produce.
This information will eventually be used in a design tool for constructing smooth
shapes. The system that we produce will also be useful as a performance and
accuracy benchmark for faster optimization systems in future.

2 Related Work

2.1 Willmore Energy

As mentioned above, most of the work in surface optimization centers around
minimizing the Willmore energy[22]. Kusner[14] proposed the so-called ‘Law-
son Surfaces’ as minimizers of the Willmore energy for a given genus. Hsu et
al.[13] tried to find Lawson Surfaces for a given genus. They used a discrete ap-
proximation of Willmore energy (from the Surface Evolver[3]) to produce close-
to-optimal surfaces of genus up to five. Hari et al.[12] present a general, robust,
finite-element based system for Willmore energy optimization of open surfaces
with boundary. Besides the Surface Evolver, various discrete operators for that
could be used for bending energy optimization have been described in [20], [23],
[6], [10], [4], and [1]. The papers above successfully used discrete operators

3



for producing duffision flow (specifically ‘mean curvature flow’), especially for
densely sampled surfaces. Such a diffusion flow is useful for denoising scanned
surface data.

2.2 Approximations of Willmore Energy

Parameterization Dependent Functionals For some tasks, it is sufficient to
use a parameterization dependent quadratic approximation of the Willmore en-
ergy. The resulting linear system can be solved in real-time, which makes this
approximation suitable for interactive smooth surface modelers. Unfortunately,
this high speed is at the cost of dependence on the particular input parameter-
ization, so different parameterizations of the same shape can produce different
optima. These approximations were used in [5], [21], [11]. The parameterization
dependent quadratic approximations have also been used in multiresolution varia-
tional modelling. For instance, Botsch and Kobbelt[2] describe the basis function
for applying the displacement of sparse handles to a dense target surface as the
least energy configuration according to the approximate Willmore functional.

Data Dependent Fairing Greiner [8] introduced the a quadratic approximation
of the Willmore energy that was independent of the user parameterization, but
dependent on a particular surface shape (usually the input shape). This ‘data-
dependent’ energy minimization can be considered a good compromise between
the slow, exact Willmore energy optimization and the fast parameterization-dependent
energy optimization. Friedel et al. [7] successfully applied the data dependent
fairing to subdivision surfaces, using the characteristic map to obtain a smooth
enough parameterization near irregular vertices.

Both the quadratic approximations above were acceptable for their main goal,
which was to form a smooth surface that followed the coarse user-defined shape,
but without unnecessary kinks and bumps. That is, they wanted to smooth out the
high frequency features and maintain the low frequency features. On the other
hand, we are interested in the gross, global (i.e. low frequency) shape changes
to minimize energy. We need independence from any particular user-defined pa-
rameterization or even the particular starting shape (other than for defining the
symmetry of the desired shape). As a result, we cannot use either of the above
quadratic approximations in our system.
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2.3 Other Energy Functionals

Moreton and Sequin [15] optimized the variation of curvature (as opposed to the
total curvature in the Willmore functional) and introduced the concept of the MVS
energy. Higher order functionals (with discrete operators) are used by Xu et al.
[23] for producing different types of surface diffusion flow. Parameterization de-
pendent approximations of the MVS energy have also been used in multiresolution
variational modeling (e.g. [2]). Greiner also constructed data dependent versions
of the MVS energy in [8].

3 System

For clarity and completeness, we describe our choices for optimization routines
and surface representation and justify making these choices over others. We re-
mind the reader that the details of these choices are not very important, as our
goal is to find the energy minimizing shapes and not the particular path taken to
get there.

3.1 Surface Representation

We had three main requirements of the surface representation:(1) fast energy and
gradient computation,(2) conducive to creating smooth shapes with(3) efficient
storage and few degrees of freedom. We found Catmull-Clark subdivision sur-
faces to be a good match as a smooth surface representation. We interrogate the
limit surface using exact evaluation ([19]): this allows us to treat our surface like
any other parametric spline representation, but without the headaches of matching
control polygon connectivity. Since curvature of the limit surface issquare inte-
grableeverywhere (even over the irregular vertices — [17]), we can use the limit
surface as is for the Willmore energy optimization.

3.1.1 Surface Representation For MVS Optimization

The MVS optimization requires derivatives of curvature, which cannot be reliably
computed on subdivision surfaces near irregular vertices. We fix this problem
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Figure 1: The Catmull-Clark limit surface (left) compared with the fixed limit
surface near an irregular vertex (right). Despite the initial ‘flat spot’, we use the
fixed surface representation for MVS optimization.

by modifying the surface representation slightly near the irregular vertices (see
Fig. 1). First, we compute the projection of the limit surface near an irregular
vertex on that vertex’ limit tangent plane. The new surface is then defined as a
smooth blendbetween the subdivision limit surface and its projection on the limit
tangent plane of the irregular vertex. We use the infinitely smooth (C∞) blend
function ([24]); the blend weight approaches 1.0 (the limit as t approaches zero)
at the irregular vertex and zero (the limit as t approaches 1) at all other vertices of
adjacent faces:

blend(t) =
e

2e
−1
t

t−1

e
2e

−1
t

t−1 +e
2e

−1
t

t−1

(1)

While this fix doesn’t give a perfect hierarchical surface representation (the same
limit surface at different resolutions), it gives us a good enough tensor product
parametric surface representation at each subdivision level. This fix was inspired
by the fact that for a smooth, dense control polygon, the limit surface in a vertex’
local neighborhood is nearly flat. Therefore, the projection of the local limit sur-
face onto the vertex’ tangent plane should have negligeble effect, yet allow us to
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Figure 2: The ‘flat spots’ near irregular vertices become smaller and unnotice-
able with higher resolution (Catmull-Clark subdivision) of the control polygons.
On the right is a closeup of the limit surface corresponding to the finer control
polygon.

integrate over the entire surface reliably.

We should mention existing work on constructing infinitely smooth surfaces us-
ing manifolds ([9], [24]); Ying and Zorin [24] had an elegant construction ofC∞

surfaces using Catmull-Clark surfaces to define the base geometry. The geometry
fitting step in [24] requires the calculation of a polynomial surface patch per ver-
tex by a least-squares fit of the limit surface around that vertex. After this step,
the connection between the control polygon and the exact surface is broken. Our
implementation required an exact relationship between the control polygon and
limit surface. Therefore, we did not use the manifolds-based implementation as
our smooth surface representation.

The reader will notice that we are creating ‘flat spots’ near irregular vertices to
produce surfaces of sufficient smoothness. At first, this appears counter-intuitive:
we are worsening the shape of the surface to get the desired differentiability. How-
ever, the shape of the surface improves with the optimization, and as we move to-
wards a finer control polygon, the size of the flat spots also goes down, as shown
in Fig. 2.

The reader may also wonder why we used an infinitely smooth blend function as
opposed to a simple quartic spline basis function that has necessary parametric
smoothness (C4). As shown in Fig. 3, the quartic spline produces a bigger flat
spot than the infinitely smooth function. This fact was further corroborated by
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Figure 3: Comparison ofC∞ analytic blend function (solid) with theC4 spline
basis (dotted) — notice how the spline basis forms a bigger ‘platform’ at the top,
which results in a larger, undesirable flat spot than theC∞ analytic function.

empirical evidence: the energy of the surface obtained using the infinitely smooth
blend function was lower than that obtained using a quartic spline blend function.
Therefore, we used theC∞ analytic function as a blend function.

It is important to note that the choice of surface representation does not greatly
affect the minimizers produced. Any other smooth surface representation (man-
ifolds, implicit surfaces, points, etc.) could have been used as well. All that our
method requires is the ability to compute exact derivatives (that is, with arc-length
parameterization) at any surface location. We chose subdivision surfaces because
they have a strong research base in general purpose surface modeling tools, and
also because of the guarantee ofC2 continuity across all regular patches.

3.2 Hierarchy

We subdivide the control polygon (using Catmull-Clark averaging rules) to intro-
duce more degrees of freedom in the the optimization system. We repeat iterations
of optimization (to convergence) followed by subdivision. We perform each such
iteration four times — there is no appreciable change in shape between the last
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two iterations.

3.3 Optimization

We use the well-known and robust unconstrained non-linear optimization routines
in the Toolkit for Advanced Optimization (TAO). In particular, we use the uncon-
strained quasi-Newton Limited Memory Variable Metric (LMVM) routine as a
first pass optimization routine to find a solution. We found LMVM to be faster
than non-linear conjugate gradient descent because the number of function eval-
uations required per iteration was lower on average. We verify the minimum by
running a Newton method (with a finite difference Hessian) on the previously ob-
tained solution. We do not compute the exact Hessian for coding convenience;
one could also use the simplified, linearized Hessian as in [1].

4 Functionals

Willmore Energy

We use the following expression for the Willmore or thin plate bending energy:

Willmore Energy=
∫ (

k1
2 +k2

2)dA (2)

wherek1 andk2 are the principal curvatures, computed as the eigenvalues of the
curvature tensor at the sample location.

There are several variations of this energy. That is, one can define the energy as

Energy =
∫ (

k1
2 +k2

2)dA (3)

=
∫ (

4

(
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2
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)
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whereH is the mean curvature, andC2 is a topological constant. The Gauss-
Bonnet theorem states that the integral of the Gaussian curvature (

∫
k1k2dA) is

constant for a given genus. Since we are not changing the surface topology during
optimization, the use of the constantC2 is justified. Therefore, Willmore energy
minimization reduces to minimizing the square of mean curvature over the sur-
face. For open surfaces with constrained boundaries (i.e. soap films), minimizing
surface area is analogous to minimizing the square of mean curvature; this al-
lows one to pose Willmore energy optimization problems as area minimization
problems for open, boundary-constrained surfaces ([13]).

MVS Energy

The original MVS functional ([15]) measures the derivative of principal curvatures
along their respective principal directions. This is expressed as:

MVS Energy=
∫ (

dk1

de1

2

+
dk2

de2

2)
dA·

∫
dA (6)

with the additional
∫

dAproviding scale invariance during optimization [16]. Spheres,
tori and other surfaces classified as cyclides have zero change of curvature in the
respective principal directions; therefore, they have zero MVS energy. Optimiz-
ing the MVS energy results in transforming the input shape towards its closest
cyclide-like surface. This is desirable as we obtain rounder shapes with thicker,
toroidal arms.

However, this can also be a shortcoming of the original MVS formulation:all
cyclides have zero MVS energy, and the functional cannot distinguish between
them. While this fact was known ([18]), the lack of an efficient test bed made
evaluating variations of MVS prohibitively slow. Our current faster yet reliable
system allows us to aesthetically evaluate different functionals based on variation
of curvature. We are particularly interested in an MVS-like functional that is able
to distinguish between different cyclides and favors ones that are more symmetri-
cal and have a better balance of positive and negative curvatures. We do this by
taking into account the change in principal curvature in the other principal direc-

tion. That is, we add the contribution of thedk1
de2

2
+ dk2

de1

2
cross terms to the original

MVS functional to get:

MVScrossEnergy=
∫ (
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+
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2)
dA·

∫
dA (7)
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We can use this functional to differentiate between different tori, and obtain a
new ‘optimum’ torus which has the minor radius about half the major radius (see
Table. 1).

It is worth mentioning that our current surface representation (subdivision, i.e.
piecewise polynomial surfaces) cannot represent true cyclides: this is because one
cannot represent perfect shapes like spheres or tori using B-Splines. However,
our system gives us the best B-Spline approximation of cyclides; with additional
subdivision, we can add more degrees of freedom for optimization, and the quality
of this approximation improves.

5 Results

5.1 Torus Experiments

Please refer to Table 1.

5.1.1 Willmore Energy Optimization

We found that for most torus configurations, the Willmore optimization produced
the Clifford Torus as expected (see [13]). However, for a thin torus, we obtained
a ‘double sphere’ configuration: a sphere inside another sphere. The energy value
was twice the Willmore energy of a sphere, confirming this finding. We are still
investigating exactly what range of torus configurations minimize to the Clifford
torus, and what range minimizes to this ‘double sphere’.

5.1.2 MVS Energy Optimization

The MVS energy initially approached the Clifford torus (the torus of minimum
energy) and then settled on a torus shape close to the Clifford torus. This is under-
standable: initially, we do not have a perfect torus, so there is a non-zero change
of curvature, and therefore MVS Energy. The MVS energy is greater for a coarse
mesh and approaches zero with finer torus control polygons. The MVScross en-
ergy produced a torus with the ratio of minor to major radii being about 0.5; we
are currently exploring the exact expected configuration of the MVScrosstorus.
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Table 1: Results for various torus configurations: comparison of (left to right)
input shape, minimizers of Willmore, MVS and MVScrossenergies

5.2 Gallery of Canonical, Symmetrical High-Genus Optimal
Surfaces

Please refer to Table 2.

5.2.1 Willmore Energy Optimization

We found that given a shape with proper rotational symmetry, we obtained the
expected ‘Lawson Surfaces’ for any arbitrary genus[14]. However, input surfaces
with other types of symmetry (e.g. the genus 3 surface with tetrahedral symmetry,
the genus 5 surface with cube symmetry) produced optimal surfaces that main-
tained the same symmetry.

5.2.2 Willmore Energy Optimization

Like in the case of the torus, the MVS energy optimization first produced shapes
close to their corresponding Willmore energy minimizer, and then settled on a
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nearby cyclide-like surface. We found a significant difference in shape due to the
MVScrossoptimization: in particular, we found that the overall shape was rounder,
and the toroidal arms were thinner.

6 Conclusion

We are confident we have produced a robust, reliable system for performing curvature-
based optimization. We now have a test bed for finding minimizers of various
input shapes. Our immediate next goal to use this system to investigate some of
the questions raised in the previous section.

While our system is reasonably fast (about 30 minutes per optimization), it is
nowhere close to being interactive. In future, we plan on speeding up our opti-
mization by building existing multi-resolution preconditioners (for arbitrary, dense
input surfaces) and possibly using robust versions of discrete operators.
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