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1 Introduction

This paper describes the �nal course project in Professor Carlo Sequin's Digital
Solid Modeling and Fabrication course at Berkeley. The idea for the project
originated years ago in Toby Mitchell's idle investigations into shell structures
during Fall 2007 winter break. The unbeatable material e�ciency of shell struc-
tures, which behave like an arch in 3D, eventually inspired this work.

The pressure to house and sustain the world population has fostered haphaz-
ard expansion and sprawl. Especially in America, the surburban ideal has lead
to an enormously wasteful use of resources. Large numbers of people claiming
individual �efdoms of lawn, garage, and yard have erased wild areas, polluted
groundwater, and fostered a car-centric economy that requires a constant supply
of fossil fuels. But in better-planned urban areas, where density is used to min-
imize environmental impact, the existing template is the high-rise tower, where
inhabitants are sectioned into stacked boxes with little public space between
them and minimal interaction with the street below. This standard pattern of
high-rise development has been as extensively critiqued as the pattern of subur-
ban sprawl, most famously by Jane Jacobs, but more signi�cantly by the great
numbers of people who still prefer the sprawl to the city.

We think that the most vital aspect of urban life is the street, and especially
the streetside space between the roadway and the buildings. This is where the
life of a city happens - in parks and squares and cafes and shops, where people
meet their neighbors and their friends in a series of unplanned encounters that
builds up the sense of connection that we need to feel part of a larger whole.
Both the mandatory automobility of sprawl and the stacked boxes of the high-
rise tower slice this artery of public life, eliminating the most essential space
that cities require to feel like a place and not merely a location.

So how do we mesh streets and streetsides with the high-rise towers needed
to make urban density possible? As structural engineers, the answer seems fairly
clear: wind a street around a tower. Acheiving this new type of urban density,
where public streets and their attendant sidewalks, parks, shops and apartments
extend vertically into the towers of the city, is the main idea of this project.
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Figure 1: Extension of neighborhood space in the vertical direction. Apartments
are stacked up tower with park space ringed around them.

2 Previous Work

In spring of 2008, Toby Mitchell along with Will Godfrey, Noel Vivar, and Lily
Rong won a sustainable design competition sponsored by Autodesk with a design
for a tower that pre�gures the current work. In this tower, the conventional
�oor-by-�oor format of the tower was used (as opposed to the continuous street),
but with large local park spaces around the residences (Figure 1).

The tower was made physically possible by a structural system that acts like
an arch bridge, enabling large column-free spans for the parks and apartments
to �ll. Like an arch bride, the system is composed of a �at deck supported
by vertical members by an arched surface that channels the loads on the deck
down to the supports. Unlike an arch bridge, there is only one support at the
center column, so the horizontal thrust required at the outer edge of the arched
surface must be provided by a series of tensioned cables stretching straight at
deck level between the outer edge and the large concrete central core support.
These half-arch sections are then revolved around the center column to create
a series of �oors (Figure 2).

The material e�ciency of this structure, which, like an arch bridges, channels
loads in the plane of the structure and therefore largely avoids the out-of-plane
bending that would lead to impossibly oversized members, allows it to be con-
structed at large scales. At the time, we anticipated that this type of structure
could e�ectively stack city blocks vertically, getting closer to the ideal of the
public-private intersection of the street (Figure 3).

Will Godfrey, who also did the renders presented here, remarked that it
would be even more interesting to do the same sort of structure along a con-
tinuous spiral path. At the time, Mitchell lacked the mathematical ability to
describe the spiral version of this structure. But the idea stuck, and was picked
up again years later for this class project.
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Figure 2: Structure consists of �oors where the concrete �oor deck is supported
on a curved concrete shell. The shell is revolved around a center column, with
services in external structures at the outer rim.

3 Derivation of the Spiral Shell Surface

The key ingredient to making the vertical street work in practice is the selection
of the right shape for the curved support shell that channels the weight of the
buildings and other features of the street down into the central supporting core.
The correct shape can be derived by looking at the equations of equilibrium of
a shell surface in polar coordinates:

r-direction force balance, for forces projected to the r-θ plane:
∂
∂r (rN̄r) + ∂N̄θr

∂θ − N̄θ = 0
θ-direction projected force balance:
∂N̄θ
∂θ + r ∂N̄rθ∂r + 2N̄rθ = 0
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where forces in a (non-orthogonal) frame in the tangent space of the shell are
given by
r-projection:
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shear projection:
N̄rθ = N̂rθ.

where

, subscripts denote di�erentiation with respect to the subscript variable follow-
ing the comma.

Similar equations in Cartesian coordinates are discussed in Timoshenko's
classic �The Theory of Plates and Shells�.

In the classical examples, one is given a shell shape and solves for the stresses
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Figure 3: The limit on the scale of the structure is determined mostly by eco-
nomics, not physics. Quite large projects could be constructed that open up
large vertical neighborhood spaces.
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in the shell. However, in �Equilibrium of Shell Structures�, Heymann points out
that, in the absence of bending, one can also assume a desired stress distribution
�rst, and then solve �backwards� to determine the shape of the shell. That is, in
the case of pure in-plane (membrane) loads, the shell is statically determinate.
This is the approach we take.

3.1 Derivation of Pro�le Curve

Assume a radially symmetric pro�le curve
z = f(r) with inner edge at radius ri and outer edge at radius ro.
under constant uniform loading w.
This corresponds to a circular slab supported by a shell whose weight is

negligible in comparison to the applied loads, as we'd roughly expect to see for
the loads from a street.

In this case, it is reasonable to assume N̄θ = N̄rθ = 0 will give a solution.
We impose symmetry conditions:
∂N̄θ
∂θ = ∂N̄rθ

∂θ = ∂N̄r
∂r = 0⇒θ-balance is trivially satis�ed.

The r-direction balance then becomes:
∂
∂r (rN̄r) = 0 ⇒ N̄r = −Ar , where A is a constant (assumed positive). The

- sign follows from the fact that forces in the shell must be compressive if we
wish to �nd a solution that can be supported by a column. Note that the above
implies that a reaction force A/ro must be provided at the outer edge and a
corresponding force A/ri at the inner edge. This can be done either by a cable
encircling the outer edge or a series of radial tie-backs anchoring the outer edge
to the inner column.

The shape of the pro�le curve z = f(r) can be deduced from the z-balance
equation:

∂2z
∂r2 N̄r = w, N̄r = −Ar ⇒

∂2f
∂r2 = −wrA ⇒

∂f
∂r = −wr

2

2A +B ⇒
f(r) = −wr

3

6A +Br + C.
Thus the pro�le of the support shell that will bear the applied loads in in-

plane compression (i.e., a membrane state of stress) is a cubic curve. It remains
for us to determine the constants that specify this curve.

3.2 Boundary Conditions

Since a concrete slab is assumed to sit atop the shell and attach to the shell at
ro, it is natural to set the zero-level of f(r) at ro. This allows us to eliminate
the constant C:

f(ro) = 0⇒ C =
wr3o
6A −Bro ⇒

f(r) = − w
6A (r3 − r3

o) +B(r − ro).
Since we'd like to provide the needed outer edge reaction with a circular

cable or set of radial tie-backs, we need the edge of the pro�le curve to lie �at
on the r-θ plane so that the cable is in line with the �oor slab. This will eliminate
the constant B:
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∂f
∂r (ro) = 0⇒ B =
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2A ⇒
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6A

[
(r3
o − r3) + 3r2
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]
.

Finally, we'd like to be able to set the total depth d of the pro�le curve
between the inner and outer radii. Since f(ro) = 0, we have

f(ri) = −d⇒ A = − w
6d

[
(r3
o − r3

i ) + 3r2
o(ri − ro)

]
= w

6d
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]
.

Note that in order for A to be positive as de�ned, we must have
3r2
o(ro − ri) ≥ r3

o − r3
i

which indicates that we must have ro ≥ ri.
Thus the shape of the pro�le curve in terms of inner radius ri, outer radius

ro, and pro�le depth d is

f(r) = d
[

(r3o−r
3)+3r2o(r−ro)

(r3
i
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]
,

and the horizontal force in the supporting shell is
N̄r = −Ar = − w

6dr

[
(r3
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]
.

Writing
∂f
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3d(r2o−r
2)

(r3
i
−r3o)+3r2o(ro−ri) ,

recalling the de�nition of the r-projection, and noting the fact that z,θ = 0
in the current case gives

N̂r = −Ar
√

1 + f2
,r = − w

6d

√
[(r3i−r3o)+3r2o(ro−ri)]

2

r2 + 9d
2

r2 (r2
o − r2)2,

and since this is already in an orthogonal frame (since the fan �oor shell is
a surface of revolution) we can write Nr = N̂r. Note that Nr → ∞ as r → 0,
so we must keep ri > 0 for the solution to have physical meaning.

We note that though this pro�le curve was derived for a �at slab, the curve
is exactly the same for a helicoidal (spiral) slab. Proof of this fact is outside the
scope of this report.

We also note that the real load conditions present on a tower, e.g., wind, will
require additional consideration and will lead to additional reinforcement of the
structural members in order to resist the bending forces inevitably introduced by
these loads. However, it makes sense to start the design from the above gravity-
loaded case, which the structure must always resist. One then has money in
the bank, structurally speaking, that can then be invested in resisting the loads
from wind, earthquake and other less predictable forces.

4 Design Decisions

The focus of CS 285 was the fabrication of parts using 3D printing and other
digital fabrication techniques. Since the shape of the support structure is key
to its performance, it makes a great deal of sense to control this geometry
as precisely as possible by 3D-printing the joints of the structure, since they
e�ectively control its geometry. This lead to our project proposal: build a scale
model of the vertical street by 3D-printing the joints of the structure, and then
mapping a grid of straight lines onto the structure that frame between these
joints and approximate the ideal continuous shape of the shell.
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Figure 4: Spiral stair with cross-bracing. The structural principle could be
extended to full-sized buildings, leading to a tower with a street winding its
height.

Physically, diagonal cross-bracing was required to allow the structure to
resist any twisting (torsional) loads that might be applied to it, for example by
wind forces. The cross-bracing pattern was arrived at by tracing two counter-
rotating logarithmic spirals onto the surface of the shell. Since this pattern of
braces is the ideal form for resisting torsional loads in the 2D plane (as discovered
by Michell in �The Limits of Economy of Material in Frame-Structures�), it
should provide the most e�cient scheme for resisting torsion in the plane of the
shell. The exact continuum shell shape and the spiral bracing were generated
in MATLAB (Figure 4).

The points of intersection of these cross-bracing spirals also determine the
grid of points on the surface of the shell that we interpolate with straight lines
to get a structure we can easily construct from steel rods. With this scheme,
one has to choose the number of spirals, as well as the number of radial ribs
that are the main load-bearing members. This was done by a process of trial
and error, where the amount of points needed to accurately and aesthetically
map the surface (the more points, the better) was balanced against the practical
need for a building model that could be constructed in a reasonable time frame
by two people (the fewer parts, the better).

In order to best approximate the Michell spiral structure of the cross-bracing,
where the spirals cross at right angles, we adjusted the interpolation points so
that the straight cross-bracing elements cross each other at right angles. The
�nal design balanced the concerns of accuracy and constructability as best as
possible within the constraints of the project (Figure 5).

One detail that was somewhat subtle was that the choice of interpolation
point locations could strongly a�ect the quality of the interpolated shape. For
instance, we noticed that, for the �ve-ringed design we settled on, extending
fully cross-braced squares to the outer edge led to a radial rib geometry that was
noticeably kinked near the edge (Figure 6). This happened because the shell
pro�le is nearly straight at the center column (the linear term of the pro�le
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Figure 5: The �nal design is created by linearly interpolating the continuous
shell surface at a set of points. The points were chosen so that the diagonal
braces cross at right angles.
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Figure 6: Original interpolation led to a sharp kink (red circle). Interpolating
with a half-length made the rib curve more smoothly.

equation dominates), becoming progressively more curved at the outer edge.
Since the cross-braced squares become larger near the outer edge, one has fewer
points to map a more strongly curved surface, leading to a noticeable inaccuracy.

By contrast, using a half-square at the outer edge looked somewhat less
symmetric overall, but lead to a more gracefully curved rib shape. We decided
to use this as our �nal design.

Design-wise, the most labor-intensive part of the model was the design of
the joints that were to be 3D-printed. Starting with the MATLAB model of the
interpolated structure, the locations of the joints were exported as a .stp �le from
MATLAB into Rhino, connected with solid pipes, surrounded by solid spheres,
and then the pipes were Boolean-subtracted from the spheres to generate sockets
in the spheres into which the steel rods could �t. Care was taken to ensure
that rods did not physically interfere with one another. In order to keep the
cost of the joints down, the spheres were carved away through further Boolean
operations into complicated socketed objects that just surrounded the inserted
rods.
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Figure 7: Drill hole locations were printed directly from MATLAB onto a sheet
of paper. Paper was then wrapped around the center column pipe. This resulted
in well-aligned drill holes for the tie-back inlets and outlets.

Care was also taken to ensure that the CAD �les for each joint were perfectly
seamless and non-self-intersecting, since this is necessary to ensure that the
3D-printing of the joints is accurate. Once done, the joints were exported to
.stl �les, and the .stl �les were checked over for consistency and then sent to
Shapeways.com for fabrication out of laser-sintered nylon powder. There was
a two-week lead time for this process, so very early on we printed some simple
test joints to ensure that our rods would �t correctly before we placed our main
order.

5 Building the Model

While waiting for the joints to arrive from Shapeways, we fabricated all the
other parts of the model.

A 24 in steel pipe section with outer-diameter of 2.5 in and thickness of 0.25
in was used as the central shaft. The central shaft supported the helical rings
and cable tie backs. Depending on the orientations two sets of holes were drilled
in the central shaft: horizontal holes for cable tie backs and inclined holes to
support the rib rids of the inner most helical ring.

Location of holes on the central shaft was an important step, as wrong
locations could lead to inaccurate geometry and an unstable model. The holes
locations were carefully measured from the MATLAB model and printed on a
sheet of paper, scaled appropriately to �t the actual dimensions of the model.
This sheet was wrapped around the circumference of the central shaft and taped
tightly (Figure 7).

The steel pipe section was clamped tightly to a horizontal platform of the
drill machine, and locations of holes were tapped using a tap bit. After than
maintaining the same position, horizontal holes for cable tie back were drilled.
The platform was then tilted to orient it at an angle of 32 degrees with respect
to the vertical. The clamp was positioned and its angle was checked again.
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Figure 8: Drill press was set up at an angle of 32 degrees to drill and tap holes.
Fit was tested with 1/4� bolts. Alignment of bolts was accurate. Bolts were
then cut to length to produce the innermost ring of rib rods.

Figure 9: Rods were cut, leaving metal �ash. This was ground down, and the
ends were beveled. Final rod length was checked with digital calipers. Rods
deviated upwards a maximum of 20 mils from the target length, and downward
a minimum of -5 mils.

The central shaft was then clamped with two �at wooden blocks on either side
(Figure 7). The �at wooden blocks assured proper clamping and resisted the
rotation of the central shaft about axis perpendicular to its circular section.
Inclined holes for the rib rods were then drilled at the tapped locations.

The helical part of the model comprised of following:
1. Rib Rods: Rib rods connect the helical rings. They were oriented in the

radial direction. All rib rods were 0.25 in diameter. The rib rods connecting
the innermost helical ring with the central shaft were threaded. The rest of the
rib rods had plain surface.

2. Helix Rods: Helix rods were oriented along the circumference of the
helical rings. Plain rods with 0.1875 in. diameter were used as Helix rods.

3. Cross Braces: Bracing system of the model comprised of cross braces.
Plain steel rods of diameter 0.125 in were used for making the cross bracing
system of the structure.

4. Vertical Tie Rods: 0.125 in threaded rods were used for the vertical tie
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Figure 10: Joints contained leftover nylon powder that had to be removed with
a paperclip. The assortment of �nished parts was laid out prior to assembly.

system. The main function of these rods was to support the cable ties and the
horizontal deck.

All the rods explained above were cut out to required length using bar cutting
lathe machine (Figure 9). These rods were than sanded to chip of the sharp
edges on a sand machine. The lengths were adjusted to be within an error of +
20 and -5 mils, based on the measurements made using a digital caliper.

5. Joints: Based on their locations joints were labeled as primary and sec-
ondary. Primary joints were ones connecting the rib rods, helix rods, cross
braces and vertical tie rods. They were distributed all long the helical assembly.
Secondary joints connected helical rods and cross braces. They were positioned
only at the outer most helical ring. Inside surfaces of all the joints were cleaned
to remove residual material from construction of the joints (Figure 10).

6. Cable Ties: To get the proper force transfer due to the self weight or
imposed weight on the deck, cable ties were run through each rib arch. Brake
cables of diameter 0.01325 in were used as cable ties. These cables were screwed
with each vertical tie rod, passed through one face of the central shaft and tied
back at the other diametrically opposite end. A hollow screw was used to let
the cable loop pass and clamp the ends �rmly. However, our biggest mistake
was that we ordered slightly less than the necessary amount of cable since we
didn't account for the slack needed to adjust the cable length properly. Pending
further cable, these are left out of the �nal assembly.

7. Plexi-glass Decks: Plexi-glass decks were supported by the vertical tie
rods from two adjacent rib rods on each side. The shapes were cut as shown
and the holes were carefully drilled at required locations. These decks were held
in place using nuts.

After all the parts were ready the central shaft was cleaned and properly
placed in the wooden foundation blocks. The innermost helical ring was installed
�rst. After that the assembly was hammered lightly using a rubber mallet to
ensure a rigid connection between the joints and the connecting rods (Figure
11). After that rest of the structure was assembled one ring at a time (Rib
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Figure 11: Joints were hammered to a tight �t. Each ring of joints was assembled
as a unit. The �nal fabrication step was the cutting and drilling of the plexiglass
steps of the staircase.

rods, helix rods and cross braces) followed by light hammering to ensure �rm
connection. Once the arch assembly was ready the vertical threaded tie rods
were screwed into the joints. After that the plexi-glass deck was screwed using
nuts and positioned horizontal on the vertical threaded rods of adjacent ribs.

The �nal result hewed very closely (as expected!) to the CAD model of the
design. Though coarse, it acheived some hint of the elegance and strength that
shell structures can embody (Figure 12).

6 Conclusions and Future Work

The �nal model proved that the complex geometry of shell structures can be
accurately constructed through careful design of component parts and 3D digital
fabrication of joints. This approach is particularly useful because it allows
all the parts besides the joints, e.g., the structural members themselves, to
be fabricated with conventional machine shop techniques, meaning that the
relatively expensive 3D fabrication of parts can be limited to the joints where
the added accuracy of 3D fabrication is most needed.

In order to test the structure under the design loads (uniform gravity load-
ing of the plexiglass steps), we need to order a new run of cable and reframe
the structure with the cable in place and tightened to the appropriate tension.
Even prior to doing this, however, it is clear from working with the model dur-
ing assembly that the small eccentricities (that is, failures of the connecting
rods or cable ties to line up directly with the center point of the joints) that
were designed in to the model to facilitate construction of the tie-backs and to
avoid clashes between the rods inside the joints may have a signi�cant e�ect on
structural behavior.

In particular, the tie-back was designed somewhat o�-center from the edge
joint in order to facilitate easy joining of the cable to the joint. However, this will
introduce some bending into the joint, limiting the performance of the structure.
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Figure 12: The �nal product.
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It is worth noting that these issues would not be present if the structure were
built at larger scales, since the design of the joints was limited by the ability of
the authors to manipulate them manually. At larger scales, this is easily avoided
by careful joint design.

Ideally, this report will be updated soon with measurements of the displace-
ment of the structure under load, once the cable tie-backs are completed.
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