
CS285 Final Project: A-Mazing Cube

Ayden Ye∗

aydenye@berkeley.edu
Jonathan Ko∗

jonathan.ko@berkeley.edu

Dec 15, 2011

1 Introduction and Motivation

Our CS285 final course project is called the ’A-
Mazing Cube.’ As its name indicates, the idea is
to procedurally design and model a cube with mazes
covering its six faces.

Our motivation for this project is to implement
several important concepts that we learned from
this course, including image-based mazes, procedu-
ral modeling in 3D, and creation of geometry from
images. We aim to design an end product that is
aesthetically pleasing and enjoyable and challenging
to solve.

Figure 1: Final model of the A-Mazing Cube

∗University of California, Berkeley

2 Design

Our inspiration for the A-Mazing Cube originates
from several concepts. The first is the image-based
maze, which can be programmatically generated from
digital images, or manually generated in cornfields
and gardens and viewed from a bird’s-eye view. The
second idea is based on the concept of the worm-
hole, a hypothesized topological feature of space-time
fundamentally equivalent to a shortcut between two
points that is popularized in science fiction. The
third inspiration is to create a fun toy with which
people can directly interact. We chose to incorporate
the concept of the ball-in-labyrinth puzzle, a two-
dimensional game you may have seen in toy stores
or as a mobile application.

2.1 Image-Based Mazes

Constructing paths based on the patterns in a given
image allow greater aesthetic control over the large-
scale appearance of a maze. Figure 2 shows examples
of this approach taken in real life in cornfields and
gardens, and in the digital world via previously de-
veloped algorithms that procedurally generate mazes
from an input image, such as the work of Xu, et al.
and Wan, et al. [4, 6]. These mazes bear unique
artistic features and their routes can also be excit-
ingly tricky to navigate. Since we want our final work
to have both aesthetic and entertainment value, we
begin with already-designed image-based mazes and
extend with more complicated structures.

1

Figure 2: Left: Image-based maze of the Jia Yu Guan
pass of the Great Wall of China[6]. Right: Bird’s-eye
view of a cornfield maze in Fender’s Farm, Tennessee.

2.2 Wormholes, Tunnels, and the
2.5D Maze

Our second idea is inspired by the concept of the
wormhole, common in science fiction and proposed
in theoretical physics. Wormholes act as a connec-
tion between two points in space, and enable an
object to move directly through a shorter path to
reach another seemingly further target (Figure 3).
Adding wormhole-like structures to our maze pro-
vides us with two distinct advantages.

First, we do not have to worry about how the
player’s ball will cross from one cube face to an-
other. Wormholes will originate at arbitrary loca-
tions within each face, and jump between such loca-
tions on pairs of faces, creating a graph-like structure
of face-nodes and wormhole-edges. Then each face
may, like its source maze image, be self-contained
with a closed border, and placed independently on
any cube face; without such a mechanism, we would
need to carefully construct and align wall openings
across cube edges, and stick to a single face lay-
out. The final product will be a connected graph,
with each face a 2.5D maze (two-dimensional with
entrance/exit locations).

Second, this approach adds to the entertainment
value of the final product. Where conventional mazes
require traversal of the entire face at once, our con-
struction requires the player to make the jump after
only partial navigation of a face.

Figure 3: Conceptual structure of a wormhole be-
tween two distant galaxies

2.3 Fabrication

In addition to constructing a CAD file of our maze,
one of our chief goals is to produce a tangible toy
for people to physically manipulate. As previously
discussed, our design is to localize six different two-
dimensional mazes onto the faces of a cube, and in-
stall a number of inner tunnels through the cube
body connecting various pairs of faces. We plan to
print the maze floor and walls on the FDM machine
in Etcheverry Hall, connect them via plastic tub-
ing from a local hardware shop, and encase them in
acrylic from Tap Plastics. By doing this we have a
ceiling and floor constraining a small metal ball to the
surface of the cube, and players may orient the cube
to try to lead it through a designated opening in one
acrylic outer face of the cube. Our design results in
a playable toy with which people can compete or set
self-challenges, and will be a piece of artwork with
both attractive image-based qualities and a certain
degree of trickiness and complexity. The parts, quan-
tities, and prices needed to produce our final product
are listed in Table 1, and a preliminary design sketch
is shown in Figure 4.

2

Part Quantity Price

Acrylic Squares 6 sheets $25
Plastic Tubing 8 feet $1.52
Maze Fabrication 6 faces —

Table 1: Parts and costs for the A-Mazing Cube

Figure 4: Design sketch for the A-Mazing Cube

3 Implementation

We use several existing software tools and one in-
house program to generate our CAD files. The pro-
cess is summarized as follows:

• Select and obtain six maze patterns, and re-
fine them for suitable navigation by the puzzle’s
metal ball.

• Convert the maze image into a polygon descrip-
tion to be imported into a CAD tool.

• Extrude walls into 3D, refine geometry to create
watertight closed two-manifold b-rep.

• Process and prepare model for production in
fused deposition modelling (FDM) machine.

3.1 Design of 2.5D Maze Topology

Before designing the actual maze, we take time to
design the topology of the final maze, consisting of

six interconnected 2D mazes (face mazes). We want
to equip the resulting 2.5D maze (cube maze) with
enough complexity that the player must travel back
and forth from each surface multiple times before
reaching the exit. To achieve this, we divide each face
maze into four regions, where each region has one en-
trance and one exit. The first opening of a region
is connected via wormhole to another same-colored
region on a different face, and the second opening is
connected to an adjacent region on the same face.
We then iteratively design a route that performs a
tour of all 24 regions, where the initial entrance and
final exit will be not across regions, but through the
acrylic outer surface (Figure 5).

Figure 5: Design of 2.5D maze topology

3.2 2D Maze Generation

We can either generate the 2D mazes we need us-
ing algorithms described in previous works [4, 6], or
directly start from existing image-based maze pat-
terns and modify them to suit our needs. Since
we want to focus more on the procedural generation
and image-to-product process, we choose the latter
source. Thanks to the Yonatan Frimer1, we were

1Yonatan is the artist of the original mazes we chose for our
cube. We would like to thank Yonatan for his great work, and
for his express permission to use his images in our project

3

able to review hundreds of well-designed image-based
mazes incorporating many different styles and topics,
of which we have selected the six we consider to be
most suitable for this project (Figure 6).

Figure 6: Six chosen maze patterns, originally de-
signed by Yonatan Frimer.

Since these mazes were designed to have a single
entrance and exit, and do not necessarily optimize
for maximal path coverage, we need to hand-modify,
using Adobe Photoshop, the six mazes to suit our
particular puzzle design.

The first step is to divide each maze into four dis-
tinct regions. Every pathway (white areas, in all sub-
sequent figures) should be covered by one and only
one region, and every region should be completely en-
closed by walls (black areas). We can easily test re-
gions for such criteria by using the Paint Bucket Tool
in Photoshop, and add additional enclosing walls us-
ing the Pencil tool.

The second step is to refine the maze path within
each region. We designate one wormhole entry point
and one wall segment as an inter-face connection, and
refine the intermediate path, preferring constant and
maximal path-coverage-to-space density and adding
new or carving existing walls as necessary to achieve
this effect. We also prefer a labyrinth structure (sin-
gle path) over a maze (branching path), though oc-
casionally it is aesthetically necessary to branch from
the main path, so we still refer to the path as a maze;
in such branching scenarios, the alternate pathways

Figure 7: Four-step process to prepare arbitrary
source maze for input to our pipeline.

usually regroup shortly after diverting from the main
branch, or quickly meet a dead-end. After modifi-
cation, we have six well-designed mazes with marked
interconnections for the topology described in Section
3.1.

The third step is to take the physical dimensions
into account. We rescale all images to the same pixel
dimensions (1000px square), and calculate the nec-
essary path width for the puzzle ball to comfortably
navigate (which translated to about 15px in our par-
ticular construction).

The final step is to translate the designed image
back to grayscale, for input into the next stage of
our pipeline. The actual image format is not impor-
tant, as the program will automatically convert an
RGB image into grayscale, but because of the differ-
ing luminance values of the four region colors used,
we decide to simply remove the colors from each re-
gion to produce the final maze image. It may also
be useful to apply a Threshold operation to the im-
age at this point, to mitigate the effects of any Brush
operations that may mismatch in softness or opacity
with the original maze.

The entire four-step process is detailed in Figure
7.

3.3 Pixels to Polygons

When converting our image files into 3D geometry,
we came across a challenging but interesting prob-
lem: When the image is used directly as a displace-
ment map on a regularly tesselated plane, the result-
ing mesh exhibits topological discontinuities with an
effect that resembles jagged mountain ranges (Figure
8). This occurs only along non-axis-aligned curves,
where the topology of the underlying mesh does not

4

match the topology of the source image.

Figure 8: Topological discontinuities and the ’jagged
mountain’ effect.

To alleviate this disparity, we turn to the march-
ing squares algorithm, which is the two-dimensional
version of the well-known marching cubes algorithm
[5]. By binarizing and examining the local layouts of
pixel neighborhoods, we can construct polygons with
a topology that matches the contours of the image.

Figure 9: Overview of the marching squares algo-
rithm. [5]

We implement the standard algorithm, as de-
scribed in its Wikipedia article [5], with the addi-
tional features of linear interpolation and STL out-
put [1]. This basic program takes an image as input,
allows the user to view the generated polygons with
or without linear interpolation, and export to STL.
Refer to the source code for additional details.

In order to achieve smooth, aesthetically pleasing
results, we apply a standard linear interpolation be-
tween endpoints for each processed pixel. Along a
contour line, determined via the pixel value thresh-

old T , the algorithm slices cells in two, where we
designate the first endpoint of the slicing line as v1
and the second as v2. Vertex vi is a vertex along the
cell edge between vertices Ai and Bi, which are de-
rived from pixels whose semantic values are αi and
βi, respectively2. We then calculate the interpolation
parameter x and resulting vertex position vi as:

x =
α1 − T

β1 − α1
(1)

vi = xAi + (1 − x)Bi (2)

This interpolation process produces polygon contour
lines that better fit the isocurve at the desired thresh-
old T .

Figure 10: From left to right: Original image, poly-
gon output without interpolation, with interpolation.

Figure 11: Left: Blur = 0. Right: Blur = 1.5.

Additionally, the user may specify a blur value ap-
plied as a prefilter before running the algorithm. This
has the effect of smoothing sharp ‘stairstep’ edges in
the output geometry, at the expense of losing some

2We calculate the value of a pixel to be its luminance in the
source image, determined by l = 0.30r + 0.59b + 0.11g.

5

corner integrity, as is expected from blurring an im-
age (Figure 11). The specific filter used is imple-
mented in the CImg library, which at the time of
writing is an anisotropic Canny-Deriche filter[2]. In
practice, we found a blur value of 0.5 – 1.5 to be
acceptable for 1000px-square images.

3.4 Wall Generation

After obtaining our planar mesh output from the
marching squares program, we import into Autodesk
3ds Max 2011 for the remainder of the design process.
The built-in STL import plugin provides options to
Quick Weld the vertices, as well as unify normals;
both of these options should be selected3. We apply
the following series of modifiers, in order, to the mesh
in order to obtain the extruded wall segment of each
plate. For brevity, we will not elaborate on details,
as a basic knowledge of 3ds Max should suffice to
construct the model.

1. Optimize

2. ProOptimizer

3. Normal (flip)

4. Edit Mesh (manually adjust vertices)

5. Face Extrude

6. Cap Holes

7. Optimize

8. STL Check

This process can be divided into three phases. First,
we optimize the input mesh to reduce its polygon
count to a reasonable and workable level. Second, we
make any necessary adjustments, including altering
vertices, expanding walls, bridging gaps, and remov-
ing spurious small-area faces, before applying the ex-
trusion. Last, we ensure that the mesh is closed and
watertight, and verify the validity of an STL using
the built-in STL Check modifier.

3We used a weld tolerance of 0, so as not to lose any detail.
It appears to work correctly, with no visible adverse effects of
roundoff error.

After obtaining the walls, we then construct a floor
underneath the walls, and attach borders to the edges
of the walls. The floor should be designed at a 45 deg
angle to accommodate adjacent plates on all four
sides, as shown in Figure 12. The twelve edge walls
(one per cube edge) should form a uniform-width bor-
der around all faces, with identical thickness to the
maze, and can be distributed among the six faces in
any appropriate manner.

Figure 12: Left: Creation of pyramidal floor with
slice plane. Right: Juxtaposition of adjacent plates.

The wormhole openings were implemented using
a Tube primitive with a slight Taper effect. In-
stances of this opening can be applied to the plate
using a Boolean or ProBoolean subtract operation,
or by inverting the normals when exporting the STL
to QuickSlice (which will perform its own pseudo-
boolean operations on slices).

Care must be taken to ensure that the exported ge-
ometry properly conveys the designer’s intentions to
QuickSlice. We noted that a union effect between
the maze walls and cube walls could be produced
in QuickSlice by simply intersecting the two meshes,
with an overlap of at least one QuickSlice road width.
Additionally, wormhole openings must not intersect
with any maze walls, or they will be incorrectly filled
with support material.

3.5 Processing Model in QuickSlice

This stage targets the StrataSys 1650 FDM machine
for actual production of the six designed plates. Once
we are satisfied with the 3ds Max design of a plate, we
export to STL and import into QuickSlice, following
standard procedures to scale the model and generate
slices, supports, base, and roads. Before finalizing,
we should carefully inspect the roads to ensure that
there are no missing walls (due to very thin walls

6

in the STL). In such cases, it is necessary to fix the
problematic areas in the Edit Mesh modifier, from
Section 3.4, and redo the process until a satisfying
QuickSlice file is produced.

The most important concern at this stage is to tar-
get a reasonable build time per plate. Our first at-
tempt to build a plate with a wall thickness of 1/8”
and floor thickness of 1/8” estimated an average build
time of 22.7 hours, which is not acceptable for our
project. To reduce build times, we decided to experi-
ment with thinner wall and floor dimensions, eventu-
ally settling on a wall thickness of 5/96” (5 slices) and
floor thickness of 3/96” (3 slices). With eight slices
per plate, our average build time per plate is reduced
to approximately nine hours.

The FDM allows us to change filament colors mid-
way through the build process, so we construct our
plates with different colors for the floor and walls,
purely for visual effect.

Figure 13: Liberty maze plate with roads in Quick-
Slice.

3.6 Cube Construction

After producing individual plates, we are able to con-
struct the final cube. Each plate is glued to an
outer acrylic plate, plastic tubing is connected be-
tween pairs of plates, and the six assemblies are glued

Figure 14: Left: Changing filaments during build.
Right: Completed Liberty plate.

together to form a cube. We obtained six colored
acrylic sheets from Tap Plastics in El Cerrito and
plastic tubing from Berkeley Ace Hardware for this
purpose [3].

Figure 15: Left: Extra wall deposited by FDM ma-
chine. Middle: Gluing wormhole. Right: Assembling
cube.

Before affixing the printed plates to the acrylic
shell, it is advisable to perform a test traversal of the
maze to ensure the ball has a clear and correct path.
One problem we encountered was spurious wall de-
position, shown in Figure 15, which required manual
work with a small blade.

Construction of the complete cube is fairly intu-
itive; maze plates are glued to the outer acrylic sheets
using all-purpose plastic solvent, then wormholes are
inserted and glued into appropriate openings in the
maze plates, and the outer acrylic sheets are sealed
in place with acrylic cement.

4 Concluding Remarks

This project provided us with plenty of opportuni-
ties and insights into the manufacturing process, from
conceptual design to CAD to iterative refinement to

7

Figure 16: Final cube.

fabrication, that we feel fall in line with the educa-
tional goals of CS285. First, we have developed a
smooth pipeline for processing and integrating two-
dimensional images into a three-dimensional cube,
and enjoyed the challenge of creating a tricky and
attractive product. Second, we have gained prac-
tical experience in dealing with graphics problems
such as image-to-geometry conversion, and explored
methods of improving on the basic marching squares
algorithm. Third, we exercised modularity in our de-
sign of the A-Mazing cube, identifying the basic com-
ponents needed to manufacture each face, and the
minimal pathways by which to make efficient adjust-
ments. Last, we encountered and overcame several
manufacturing challenges, including balancing qual-
ity and cost, shortening turnaround and build time
by optimizing the iteration and manufacturing pro-
cess, and scaling product parameters to a reasonable
extent.

We would like to thank Professor Séquin and the
class of CS285 Fall 2011 for a great semester.

References

[1] Jonathan Ko, Marching squares imple-
mentation for CS285 final project, 2011,
https://bitbucket.org/jonathank/cs285-final.

[2] The CImg Library, The CImg Library - C++
Template Image Processing Toolkit.

[3] TAP Plastics, http://tapplastics.com/.

[4] Liang Wan, Xiaopei Liu, Tien-Tsin Wong, and
Chi-Sing Leung, Evolving mazes from images, Vi-

sualization and Computer Graphics, IEEE Trans-
actions on 16 (2010), no. 2, 287 –297.

[5] Wikipedia, Marching squares — Wikipedia, the
free encyclopedia, 2011, [Online; accessed 13-Dec-
2011].

[6] Jie Xu and Craig S. Kaplan, Image-guided maze
construction, ACM Trans. Graph. 26 (2007).

8

