
Knotty: Knot Generator

CS285 Final Project

Andrew Lee, Brandon Wang

Figure 1: Example outputs of our algorithm (left and middle) and a close-up of the resulting weave texture
(right). More examples are shown on the last page.

Abstract
We present a tool for the automatic procedural
generation of a single-string Chinese-style knot that
resembles any arbitrary input 3D model. We call this
tool Knotty.

1 Introduction
Chinese knotting is a decorative folk art form that
creates interesting shapes and patterns by knotting
together cord. Most examples of Chinese knots are
abstract and symbolic. However, there are few
examples of knots that are designed to resemble actual
objects like animals. The only examples we could find
were of dragonflies, fish, and turtles.

We wish to procedurally generate a knotted
representation of an arbitrary object, and fabricate a
model using a Fused Deposition Modeling (FDM)
machine.

2 Workflow
To create our knot, we take in an arbitrary object as an
OBJ file. The OBJ is then voxelized into axis-aligned
voxels, with a user-specified resolution. We then find
the outer faces of the voxelized object, and find the
faces connected to each face. From this network of

interconnected faces, we find an Eulerian cycle to
determine a path for a single string. The resulting path
across each face is matched to one of three cases of
weaving, from which we derive control points for a
spline. We create a physical object by creating a sweep
along the spline, converting this sweep into polygons,
and exporting the resulting b-rep into STL or OBJ.

2.1 Voxelization
Our first step is to voxelize the object, into axis-aligned
cubes. This is done to create more uniform face sizes,
so that in a later stage, each weave will have
approximately the same amount of space.

This is done for b-reps in one of three ways. We found
positives and negatives of each approach attempted.

Our first attempt was to use a 3D winding number. We
create a 2D x,y plane outside the object, and trace rays
in the z direction. For each triangle intersection, we
maintain a count of the winding number, increasing
the counter if the dot product of the normal of the
triangle with our ray is positive, and decreasing
otherwise. The interior of the object is defined to be
regions with a positive winding number counter.

Our second attempt was essentially the same idea as
our first. Instead of using a winding number test, we
used the common in-out “exclusive or” boundaries.
That is, every intersection changes our orientation

from inside to outside, or vice versa. This is useful for
objects with incorrect normal information.

Although our first two methods outline voxelization
methods for closed objects with no overlapping
polygons, we found that the objects we encountered
are not always as “well-behaved” as we would like
them to be. For example, we would frequently
encounter objects with overlapping polygons. Thus,
for naughty objects, we trace rays from three
orthogonal axis-aligned planes, and mark every
intersection as a voxel. Though this only gives us
boundary voxels, we only need the boundary voxels
for our algorithm. However, this method is three times
slower than our first two methods, so we reserve this
option only for naughty objects. The winding number
test is chosen by default for our voxelization, but the
user may manually specify which of the three tests to
take.

Furthermore, we supersample the object to remove
aliasing artifacts.

Figure 2: Supersampled voxelization to remove aliasing
(left) and a single sample voxelization (right)

2.2 Graph
With the voxels, we can extract a surface composed of
quadrilaterals. Namely, the outside-facing square faces
of the voxels.

To find this surface, we first determine the set of all
square faces of the voxels that touch exactly one voxel.
If the voxels form a hollow shape, this set would
include faces that are not visible, so we cannot stop
here. Next, we trace a ray from the outside inward to
find a face that is certainly touching the outside. From
that starting face, we crawl the surface by finding the
faces that share an edge with the faces we have
already determined to be surface faces.

There is a tricky case where one edge is shared by
exactly two voxels. In this situation, where all four

faces contain that edge, we pick the face that would
yield a concave bend.

From this surface, we derive a graph simply by making
each face a vertex, and connecting the vertices the
same way each face is connected to the other faces. In
other words, the edges in the graph correspond to the
edges that the surface faces share as figure 3
illustrates.

2.3 Eulerian Path
We want to generate a knot that is made from a single
length of string, which is the case for most Chinese
knots. To do that, we find an Eulerian path on the
graph we had just generated. Every vertex on this
graph has exactly 4 edges, so it is always possible to
find an Eulerian path at this point. We used
Hierholzer’s algorithm to find such a path, outlined
here:

start with a vertex V on graph G
find cycle C by traversing G until arrive at V
while G has unused edges:
 traverse C until arrive at V’ with unused edges
 find subcycle C’ starting and ending with V’
 splice C’ into C at V’

This algorithm has a linear running time with respect
to the number of edges in the graph, so it is pretty fast.
We made one addition to the algorithm: At a vertex
where we have multiple unused edges, which gives us
a choice in which direction to take next, we choose the
edge that would correspond to going in the current
direction. This will correspond to a more aesthetically
pleasing knot.

2.4 Weaving
Now, we must consider weaving. In order to have a
good knot, the string should weave over and under
itself in a consistent manner.

As illustrated in Figure 4, when we consider a surface
face, the Eulerian path on that face can be one of three
cases. For each case, we define how the two string
segments interweave and the sequence of controls
points that would yield these patterns (not shown).

Upon closer inspection, we noticed an important
phenomenon. If we imagine cutting each string
segment in half, and then labelling each piece either
“over” or “under” (shown as green and purple,
respectively), it turns out that each case follows the
same pattern. Namely, the pieces starting at opposite
edges are both “over” and the other two opposite
edges are both “under”.

Figure 3: The voxel surface (left), the graph derived from the surface faces (middle), and the graph colored to represent
which segments should be “over” and “under”.

Figure 4: The weaving cases to consider.
(top) The portion of the graph on a surface face
(1st row) The three cases that the Eulerian path yields
(2nd row) The manner in which each case is realized
(3rd row) Recoloring the segments to highlight which
portions are “over” and which are “under”
(bottom) No matter the case, we can assign each piece
to be “over” and “under” the same way

This property lets us “texture” each face of the surface
as shown in the right of Figure 3, labeling which
segments go over and under. Notice that when we
follow a segment from one face to the next, it always
switches between “over” and “under”. It can be shown
that any surface composed of quadrilaterals can be
textured in this way, where the label of a segment
switches across an edge of the surface.

Therefore, when we traverse the Eulerian path, the
segments will consistently alternate between “over”
and “under”, leading to a good weave.

At this point, we can generate a sequence of control
points for the B-spline that becomes the knot. To do
this, we simply traverse the Eulerian path, and at each
vertex, we determine which of the cases in Figure 4 is
satisfied. We then append to our sequence the control
points that correspond to that case.

2.5 B-Spline Generation
Given a B-spline’s control points, we sample the
function at a rate of . We found this
to be a good approximation, given the large number of
control points we deal with. More samples would
greatly increase the output file size, and less samples
produce artifacts in the final object.

We use De Casteljau’s algorithm to sample our b-
spline. De Casteljau’s algorithm is a recursive function
to evaluate B-spline curves in Bernstein form. The
Bernstein form of a given segment of our B-spline is
defined as a function of its control points. For Knotty,
we use cubic B-splines:

 () ()
 ()

 ()

 []

under

under over

over

Given this Bernstein polynomial, De Casteljau’s
algorithm first creates line segments between
sequential control points (i.e. 0,1 and 1,2). For our
cubic case, this creates three lines. Each of these three
lines is subdivided with a ratio of (), and the
points are connected. This subdivision step is repeated
for the resulting line segments, until we have a single
line segment, where the subdivision point is our
sample result.

Given sampled coordinates of the B-spline, we create
a physical 3D object by sweeping a 2D cross section
along the polyline. The orientation of the 2D cross
section is defined by a rotation minimizing frame
(RMF). Three vectors in 3D space: normal, tangent,
and bitangent vectors, define our RMF. The RMF is
used to minimize the rotation of our frame across the
entire spline.

We used a double reflection method [1] to compute
the RMF. The double reflection method can be thought
of as projecting the spline onto a sphere, and
maintaining the RMF of the spline by using the normal
of the sphere, tangent of the spline function by using
the next sample, and the bitangent as a cross product
of the previous two vectors. We also checked if our
normal vector would flip abruptly, and subsequently
negate the normal vector. We find that the double
reflection method generates very smooth sweeps from
our given polylines.

The resulting vertices of each cross section are
connected to their corresponding vertex on the
previous cross section.

2.6 Exporting
Using the connected objects, we can render our shape
to a screen using OpenGL, creating a strip of
quadrilaterals formed by two vertices of a cross
section to the corresponding two vertices on the
previous slice, for all sequential vertices.

To export our shape to STL or OBJ, we trivially split
each quadrilateral into two triangles, and write the
vertex information in the respective format.

2.7 Caching
The generation of each step requires a significant
amount of computation. We cached both the voxelized
representation of the object, as well as a complete
representation of our sweep’s vertices to allow us to
complete the program and test it in a reasonable
amount of time.

For the generated high-resolution Stanford dragon in
Figure 5, our entire process took about 51 minutes,
whereas the winged dragon in Figure 5 took about 3
minutes.

3 Results
A video illustrating the Knotty workflow can be seen
at:

http://www.youtube.com/watch?v=cKD7Vz54RK4

A video illustrating the Eulerian cycle our algorithm
finds can be seen at:

http://www.youtube.com/watch?v=vYV00L6PanE

3.1 GitHub

Our project is open source and can be seen on GitHub
at:

https://github.com/bmwang/knotty

4 Future Work
Because we were busy undergraduates in the midst of
other projects and finals during the development of
Knotty, we were not able to implement various
features that we believe are natural extensions to our
existing code.

4.1 Big Loops
Traditional Chinese knots often include big loops that
flare out. In existing animal Chinese knots, these loops
have been used to model the head and fins of a turtle
and the wings of a dragonfly. Additional features these
loops may model are feathers, horns, ears, and tails.

In our workflow, this extension is conceptually simple:
Take a face, grab the section of string on that face, and
pull out that length of string into a loop.

4.2 Path Finding
To find an Eulerian path for the knot, we simply took
an existing algorithm that was simple and efficient.
However, the path we get is often infeasible to
physically realize with actual string. We believe that
further research into actual Chinese knotting patterns
will allow us to design an Eulerian path finding
algorithm that obeys the traditions of the folk art.

http://www.youtube.com/watch?v=cKD7Vz54RK4
http://www.youtube.com/watch?v=vYV00L6PanE
https://github.com/bmwang/knotty

Fortunately, as we have seen, the graph that this step
uses is very simple; every vertex has valence 4, so this
fact could possibly be exploited in such an algorithm.

4.3 Surface Generation
In Knotty, the way we generated a surface that
approximates the original model was by fitting voxels
to the model and then extracting the surface from the
voxels. While this yields a simple surface to work with,
it ultimately yields a bit of a boxy look. Additionally,
the axis-aligned voxels may not obey the “grain” of the
input model. For example, on the Stanford dragon, it
would be very aesthetically pleasing if the knot’s grain
follows along the path of the dragon’s body, instead of
along the 3D lattice we impose by the voxels.

In our workflow, the steps starting with the graph only
require a surface composed of quadrilaterals.
Therefore, the voxelization and surface finding steps
can be replaced by any algorithm that produces a
surface composed entirely of quadrilaterals that
approximates the shape of the input model. For a good
knot, these quadrilaterals should be roughly the same
size; quadrilaterals with wildly differing sizes would
lead to an uneven knot.

4.4 User Interaction
Currently, Knotty has no user interaction. Adding user
interaction could make it a powerful tool for artists.
For example, the ability to adjust the surface could be
useful if the automatically generated quadrilateral
surface has issues. Also, to make the big loops
extension, the artist should have the ability to select
which faces to make big loops out of.

5 Conclusion
We have presented an algorithm for generating
knotted representations of arbitrary objects. Our
algorithm creates valid STL files for fabrication, as
stated in our original project proposal. We utilize an
Eulerian path algorithm to enforce a weave of an outer
surface using a single string.

We believe our project to be a success, as we deliver
on the main promises made in our project proposal.

References
[1] Wang, W., J¨uttler, B., Zheng, D., and Liu, Y. 2008.
Computation of rotation minimizing frame. ACM
Trans. Graph. 27, 1, Article 2 (March 2008), 18 pages.

Figure 5: High resolution Stanford dragon (above), knotted winged dragon (below)

