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Figure 1: Example outputs of our algorithm (left and middle) and a close-up of the resulting weave texture 
(right). More examples are shown on the last page. 
 

Abstract 
We present a tool for the automatic procedural 
generation of a single-string Chinese-style knot that 
resembles any arbitrary input 3D model. We call this 
tool Knotty. 

1 Introduction 
Chinese knotting is a decorative folk art form that 
creates interesting shapes and patterns by knotting 
together cord. Most examples of Chinese knots are 
abstract and symbolic. However, there are few 
examples of knots that are designed to resemble actual 
objects like animals. The only examples we could find 
were of dragonflies, fish, and turtles. 

We wish to procedurally generate a knotted 
representation of an arbitrary object, and fabricate a 
model using a Fused Deposition Modeling (FDM) 
machine. 

2 Workflow 
To create our knot, we take in an arbitrary object as an 
OBJ file. The OBJ is then voxelized into axis-aligned 
voxels, with a user-specified resolution. We then find 
the outer faces of the voxelized object, and find the 
faces connected to each face. From this network of 

interconnected faces, we find an Eulerian cycle to 
determine a path for a single string. The resulting path 
across each face is matched to one of three cases of 
weaving, from which we derive control points for a 
spline. We create a physical object by creating a sweep 
along the spline, converting this sweep into polygons, 
and exporting the resulting b-rep into STL or OBJ. 

2.1 Voxelization 
Our first step is to voxelize the object, into axis-aligned 
cubes.  This is done to create more uniform face sizes, 
so that in a later stage, each weave will have 
approximately the same amount of space. 

This is done for b-reps in one of three ways. We found 
positives and negatives of each approach attempted. 

Our first attempt was to use a 3D winding number. We 
create a 2D x,y plane outside the object, and trace rays 
in the z direction. For each triangle intersection, we 
maintain a count of the winding number, increasing 
the counter if the dot product of the normal of the 
triangle with our ray is positive, and decreasing 
otherwise. The interior of the object is defined to be 
regions with a positive winding number counter. 

Our second attempt was essentially the same idea as 
our first. Instead of using a winding number test, we 
used the common in-out “exclusive or” boundaries. 
That is, every intersection changes our orientation 



from inside to outside, or vice versa. This is useful for 
objects with incorrect normal information. 

Although our first two methods outline voxelization 
methods for closed objects with no overlapping 
polygons, we found that the objects we encountered 
are not always as “well-behaved” as we would like 
them to be. For example, we would frequently 
encounter objects with overlapping polygons. Thus, 
for naughty objects, we trace rays from three 
orthogonal axis-aligned planes, and mark every 
intersection as a voxel. Though this only gives us 
boundary voxels, we only need the boundary voxels 
for our algorithm. However, this method is three times 
slower than our first two methods, so we reserve this 
option only for naughty objects. The winding number 
test is chosen by default for our voxelization, but the 
user may manually specify which of the three tests to 
take. 

Furthermore, we supersample the object to remove 
aliasing artifacts.  

 

Figure 2: Supersampled voxelization to remove aliasing 
(left) and a single sample voxelization (right) 

2.2 Graph 
With the voxels, we can extract a surface composed of 
quadrilaterals. Namely, the outside-facing square faces 
of the voxels. 

To find this surface, we first determine the set of all 
square faces of the voxels that touch exactly one voxel. 
If the voxels form a hollow shape, this set would 
include faces that are not visible, so we cannot stop 
here. Next, we trace a ray from the outside inward to 
find a face that is certainly touching the outside. From 
that starting face, we crawl the surface by finding the 
faces that share an edge with the faces we have 
already determined to be surface faces. 

There is a tricky case where one edge is shared by 
exactly two voxels. In this situation, where all four 

faces contain that edge, we pick the face that would 
yield a concave bend. 

From this surface, we derive a graph simply by making 
each face a vertex, and connecting the vertices the 
same way each face is connected to the other faces. In 
other words, the edges in the graph correspond to the 
edges that the surface faces share as figure 3 
illustrates. 

2.3 Eulerian Path 
We want to generate a knot that is made from a single 
length of string, which is the case for most Chinese 
knots. To do that, we find an Eulerian path on the 
graph we had just generated. Every vertex on this 
graph has exactly 4 edges, so it is always possible to 
find an Eulerian path at this point. We used 
Hierholzer’s algorithm to find such a path, outlined 
here: 

start with a vertex V on graph G 
find cycle C by traversing G until arrive at V 
while G has unused edges: 
 traverse C until arrive at V’ with unused edges 
 find subcycle C’ starting and ending with V’ 
 splice C’ into C at V’ 

This algorithm has a linear running time with respect 
to the number of edges in the graph, so it is pretty fast. 
We made one addition to the algorithm: At a vertex 
where we have multiple unused edges, which gives us 
a choice in which direction to take next, we choose the 
edge that would correspond to going in the current 
direction. This will correspond to a more aesthetically 
pleasing knot. 

2.4 Weaving 
Now, we must consider weaving. In order to have a 
good knot, the string should weave over and under 
itself in a consistent manner. 

As illustrated in Figure 4, when we consider a surface 
face, the Eulerian path on that face can be one of three 
cases. For each case, we define how the two string 
segments interweave and the sequence of controls 
points that would yield these patterns (not shown). 

Upon closer inspection, we noticed an important 
phenomenon. If we imagine cutting each string 
segment in half, and then labelling each piece either 
“over” or “under” (shown as green and purple, 
respectively), it turns out that each case follows the 
same pattern. Namely, the pieces starting at opposite 
edges are both “over” and the other two opposite 
edges are both “under”.



 

Figure 3: The voxel surface (left), the graph derived from the surface faces (middle), and the graph colored to represent 
which segments should be “over” and “under”.

 

Figure 4: The weaving cases to consider. 
(top) The portion of the graph on a surface face 
(1st  row) The three cases that the Eulerian path yields 
(2nd row) The manner in which each case is realized 
(3rd row) Recoloring the segments to highlight which 
portions are “over” and which are “under” 
(bottom) No matter the case, we can assign each piece 
to be “over” and “under” the same way 

This property lets us “texture” each face of the surface 
as shown in the right of Figure 3, labeling which 
segments go over and under. Notice that when we 
follow a segment from one face to the next, it always 
switches between “over” and “under”. It can be shown 
that any surface composed of quadrilaterals can be 
textured in this way, where the label of a segment 
switches across an edge of the surface. 

Therefore, when we traverse the Eulerian path, the 
segments will consistently alternate between “over” 
and “under”, leading to a good weave. 

At this point, we can generate a sequence of control 
points for the B-spline that becomes the knot. To do 
this, we simply traverse the Eulerian path, and at each 
vertex, we determine which of the cases in Figure 4 is 
satisfied. We then append to our sequence the control 
points that correspond to that case. 

2.5 B-Spline Generation 
Given a B-spline’s control points, we sample the 
function at a rate of                   . We found this 
to be a good approximation, given the large number of 
control points we deal with. More samples would 
greatly increase the output file size, and less samples 
produce artifacts in the final object. 

We use De Casteljau’s algorithm to sample our b-
spline. De Casteljau’s algorithm is a recursive function 
to evaluate B-spline curves in Bernstein form. The 
Bernstein form of a given segment of our B-spline is 
defined as a function of its control points. For Knotty, 
we use cubic B-splines: 
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Given this Bernstein polynomial, De Casteljau’s 
algorithm first creates line segments between 
sequential control points (i.e. 0,1 and 1,2). For our 
cubic case, this creates three lines. Each of these three 
lines is subdivided with a ratio of   (   ), and the 
points are connected. This subdivision step is repeated 
for the resulting line segments, until we have a single 
line segment, where the subdivision point is our 
sample result. 

Given sampled coordinates of the B-spline,  we create 
a physical 3D object by sweeping a 2D cross section 
along the polyline. The orientation of the 2D cross 
section is defined by a rotation minimizing frame 
(RMF). Three vectors in 3D space: normal, tangent, 
and bitangent vectors, define our RMF. The RMF is 
used to minimize the rotation of our frame across the 
entire spline. 

We used a double reflection method [1] to compute 
the RMF. The double reflection method can be thought 
of as projecting the spline onto a sphere, and 
maintaining the RMF of the spline by using the normal 
of the sphere, tangent of the spline function by using 
the next sample, and the bitangent as a cross product 
of the previous two vectors. We also checked if our 
normal vector would flip abruptly, and subsequently 
negate the normal vector. We find that the double 
reflection method generates very smooth sweeps from 
our given polylines. 

The resulting vertices of each cross section are 
connected to their corresponding vertex on the 
previous cross section.  

2.6 Exporting 
Using the connected objects, we can render our shape 
to a screen using OpenGL, creating a strip of 
quadrilaterals formed by two vertices of a cross 
section to the corresponding two vertices on the 
previous slice, for all sequential vertices. 

To export our shape to STL or OBJ, we trivially split 
each quadrilateral into two triangles, and write the 
vertex information in the respective format. 

2.7 Caching 
The generation of each step requires a significant 
amount of computation. We cached both the voxelized 
representation of the object, as well as a complete 
representation of our sweep’s vertices to allow us to 
complete the program and test it in a reasonable 
amount of time. 

For the generated high-resolution Stanford dragon in 
Figure 5, our entire process took about 51 minutes, 
whereas the winged dragon in Figure 5 took about 3 
minutes. 

3 Results  
A video illustrating the Knotty workflow can be seen 
at: 

http://www.youtube.com/watch?v=cKD7Vz54RK4 

A video illustrating the Eulerian cycle our algorithm 
finds can be seen at: 

http://www.youtube.com/watch?v=vYV00L6PanE 

3.1 GitHub 

Our project is open source and can be seen on GitHub 
at: 

https://github.com/bmwang/knotty 

4 Future Work 
Because we were busy undergraduates in the midst of 
other projects and finals during the development of 
Knotty, we were not able to implement various 
features that we believe are natural extensions to our 
existing code. 

4.1 Big Loops 
Traditional Chinese knots often include big loops that 
flare out. In existing animal Chinese knots, these loops 
have been used to model the head and fins of a turtle 
and the wings of a dragonfly. Additional features these 
loops may model are feathers, horns, ears, and tails. 

In our workflow, this extension is conceptually simple: 
Take a face, grab the section of string on that face, and 
pull out that length of string into a loop. 

4.2 Path Finding 
To find an Eulerian path for the knot, we simply took 
an existing algorithm that was simple and efficient. 
However, the path we get is often infeasible to 
physically realize with actual string. We believe that 
further research into actual Chinese knotting patterns 
will allow us to design an Eulerian path finding 
algorithm that obeys the traditions of the folk art. 

http://www.youtube.com/watch?v=cKD7Vz54RK4
http://www.youtube.com/watch?v=vYV00L6PanE
https://github.com/bmwang/knotty


Fortunately, as we have seen, the graph that this step 
uses is very simple; every vertex has valence 4, so this 
fact could possibly be exploited in such an algorithm. 

4.3 Surface Generation 
In Knotty, the way we generated a surface that 
approximates the original model was by fitting voxels 
to the model and then extracting the surface from the 
voxels. While this yields a simple surface to work with, 
it ultimately yields a bit of a boxy look. Additionally, 
the axis-aligned voxels may not obey the “grain” of the 
input model. For example, on the Stanford dragon, it 
would be very aesthetically pleasing if the knot’s grain 
follows along the path of the dragon’s body, instead of 
along the 3D lattice we impose by the voxels. 

In our workflow, the steps starting with the graph only 
require a surface composed of quadrilaterals. 
Therefore, the voxelization and surface finding steps 
can be replaced by any algorithm that produces a 
surface composed entirely of quadrilaterals that 
approximates the shape of the input model. For a good 
knot, these quadrilaterals should be roughly the same 
size; quadrilaterals with wildly differing sizes would 
lead to an uneven knot. 

4.4 User Interaction 
Currently, Knotty has no user interaction. Adding user 
interaction could make it a powerful tool for artists. 
For example, the ability to adjust the surface could be 
useful if the automatically generated quadrilateral 
surface has issues. Also, to make the big loops 
extension, the artist should have the ability to select 
which faces to make big loops out of. 

5 Conclusion 
We have presented an algorithm for generating 
knotted representations of arbitrary objects. Our 
algorithm creates valid STL files for fabrication, as 
stated in our original project proposal. We utilize an 
Eulerian path algorithm to enforce a weave of an outer 
surface using a single string. 

We believe our project to be a success, as we deliver 
on the main promises made in our project proposal. 
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Figure 5: High resolution Stanford dragon (above), knotted winged dragon (below) 


