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1 Introduction

These are notes on differential geometry of surfaces based on read-
ing [Greiner et al. n. d.].

2 Differential Geometry of Surfaces

Differential geometry of a 2D manifold or surface embedded in 3D
is the study of the intrinsic properties of the surface as well as the ef-
fects of a given parameterization on the surface. For the discussion
below, we will consider the local behavior of a surface S at a single
point p with a given local parameterization (u, v), see Figure 1. We
would like to calculate the principle curvature values (κ1, κ2), the
maximum and minimum curvature values at p, as well as the local
orthogonal arc length parameterization (s, t) which is aligned with
the directions of maximum and minimum curvature.
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Figure 1: Tangent plane of S

3 The First Fundamental Form

With the given parameterization, we can compute a pair of tangent
vectors

[

Su Sv

]

=
[

∂S
∂u

∂S
∂v

]

assuming the u and v direc-
tions are distinct. These two vectors locally parameterize the tan-
gent plane to S at p. A general tangent vector T can be constructed
as a linear combination of

[

Su Sv

]

scaled by infinitesimal co-

efficients U =
[

∂u ∂v
]t

.

T = ∂uSu + ∂vSv =
[

Su Sv

]

[

∂u
∂v

]

(1)

Consider rotating the direction of the tangent T around p by set-
ting

[

∂u ∂v
]

=
[

cos θ sin θ
]

. In general, the magnitude
and direction of T will vary based on the skew and scale of the
basis vectors

[

Su Sv

]

, see Figure 3(a). The distortion of the
local parameterization is described by the metric tensor or the first
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fundamental form IS . This measures the length of a tangent vector
on a given parametric basis by examining the quantity T · T .

T · T = (Su · Su) ∂u
2 + 2 (Su · Sv) ∂u∂v + (Sv · Sv) ∂v

2 (2)

= E∂u
2 + 2F∂u∂v + G∂v

2 (3)

=
[

∂u ∂v
]

[

Su

Sv

]

·
[

Su Sv

]

[

∂u
∂v

]

(4)

=
[

∂u ∂v
]

[

Su · Su Su · Sv

Su · Sv Sv · Sv

][

∂u
∂v

]

(5)

=
[

∂u ∂v
]

[

E F
F G

] [

∂u
∂v

]

(6)

= U
t
ISU (7)

Equation 7 defines IS .

IS = gij =

[

Su

Sv

]

·
[

Su Sv

]

(8)

=

[

Su · Su Su · Sv

Su · Sv Sv · Sv

]

(9)

=

[

E F
F G

]

(10)

If an orthonormal arc length parameterization (s, t) is chosen
then there will be no local metric distortion and IS will reduce to
the identity matrix.

4 The Second Fundamental Form

The unit normal N of a surface S at p is the vector perpendicular
to S, i.e. the tangent plane of S, at p. N can be calculated given a
general nondegenerate parametrization (u, v).

N =
Su × Sv

‖Su × Sv‖
(11)

The curvature of a surface S at a point p is defined by the rate
that N rotates in response to a unit tangential displacement as in
Figure 2. A normal section curve at p is constructed by intersecting
S with a plane normal to it, i.e a plane that contains N and a tan-
gent direction T . The curvature of this curve is the curvature of S in
the direction T . The curvature κ of a curve is the reciprocal of the
radius ρ of the best fitting osculating circle, i.e. κ = 1

ρ
. The direc-

tional derivative NT of N in the direction T is a linear combination
of the partial derivative vectors

[

Nu Nv

]

=
[

∂N
∂u

∂N
∂v

]

and is parallel to the tangent plane.



Nu =
(Suu × Sv) + (Su × Svu)

‖Su × Sv‖
+ (Su × Sv)

∂‖Su × Sv‖−1

∂u
(12)

Nv =
(Suv × Sv) + (Su × Svv)

‖Su × Sv‖
+ (Su × Sv)

∂‖Su × Sv‖−1

∂u
(13)

NT = ∂uNu + ∂vNv =
[

Nu Nv

]

[

∂u
∂v

]

(14)

T
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Figure 2: Normal section of S

As with the tangent vector T , NT is subject to scaling by the
metric of the parameter space. In an arc length parameter direc-
tion s, −Ss · Ns is the curvature of the normal section. Given a
general parameterization (u, v), we can compute −T · NT . This
quantity defines the second fundamental form IIS which describes
curvature information distorted by the local metric.

−T · NT = − (Su · Nu) ∂u
2 − (Su · Nv + Sv · Nu)∂u∂v

− (Sv · Nv)∂v
2 (15)

=
[

∂u ∂v
]

[

−Su

−Sv

]

·
[

Nu Nv

]

[

∂u
∂v

]

(16)

=
[

∂u ∂v
]

[

−Su · Nu −Su · Nv

−Sv · Nu −Sv · Nv

][

∂u
∂v

]

(17)

= U
t
IISU (18)

Equation 18 defines IIS. IIS can be simplified to a set of
quanties which are easier to compute by substituting the expres-
sions in Equations [12,13] for Nu and Nv respectively. Two of the
terms of in of the entries of the matrix in Equation 21 vanish due to
the dot product of orthogonal vectors. Further simplification using
properties of the box product of vectors yields Equation 22. Equa-
tion 23 is derived by subsituting N from Equation 11 and shows
that IIS can be computed simply by the dot product of the second
partial derivatives of S with N . Equation 23 also demonstrates that
IIS is a symmetric matrix.

IIS = hij =

[

Su

Sv

]

·
[

−Nu −Nv

]

(19)

=

[

−Su · Nu −Su · Nv

−Sv · Nu −Sv · Nv

]

(20)

=

[

−Su·(Suu×Sv)
‖Su×Sv‖

−Su·(Suv×Sv)
‖Su×Sv‖

−Sv·(Su×Svu)
‖Su×Sv‖

−Sv·(Su×Svv)
‖Su×Sv‖

]

(21)

=

[

Suu·(Su×Sv)
‖Su×Sv‖

Suv ·(Su×Sv)
‖Su×Sv‖

Svu·(Su×Sv)
‖Su×Sv‖

Svv ·(Su×Sv)
‖Su×Sv‖

]

(22)

=

[

Suu · N Suv · N
Suv · N Svv · N

]

(23)

=

[

L M
M N

]

(24)

Equations [23,24] can be substituted for IIS to yield alternate
formulas for −T · NT .

−T · NT = (Suu · N) ∂u
2 + 2 (Suv · N) ∂u∂v + (Svv · N) ∂v

2

(25)

= L∂u
2 + 2M∂u∂v + N∂v

2 (26)

=
[

∂u ∂v
]

[

Suu · N Suv · N
Svu · N Svv · N

][

∂u
∂v

]

(27)

=
[

∂u ∂v
]

[

L M
M N

][

∂u
∂v

]

(28)

IIS contains information about the curvature of S, but it will
be distorted by the metric if the given parameterization is not an
arc length parameterization. It is still necessary to counter act this
distortion in order to compute the curvature of the S.

5 Coordinate Transformations

Our purpose in studying differential geometry and the fundamental
forms has been to compute the principle curvature values (κ1, κ2)
and directions (Sk1, Sk2) of a parametric surface S at a point p.
Thus far we have derived IIS which contains curvature informa-
tion but can be distorted by the metric of the parameterization. IS

describes this metric information. We must combine IIS and IS to
find the arc length curvature values.

The given parameterization (u, v) defines a set of basis tan-
gent vectors

[

Su Sv

]

. We can construct an orthonormal basis
[

Ss St

]

due to an arc length parameterization (s, t) where Ss

and Su are aligned, see Figure 3(a). A point T can be expressed in
either coordinate system, see Figure 3(b).

T =
[

∂u ∂v
]

[

Su

Sv

]

=
[

∂s ∂t
]

[

Ss

St

]

(29)

The coordinates
[

∂s ∂t
]

measure the length of T as op-
posed to the coordinates

[

∂u ∂v
]

.

T · T = ∂s
2 + ∂t

2 6= ∂u
2 + ∂v

2 (30)

We would like to work in the
[

Ss St

]

, so we must find the
transformations to and from

[

Su Sv

]

. The quantities a, b, and
θ in Figure 3(a) are defined by

[

Su Sv

]

.
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(a) Constructing an or-
thonormal basis on top of
the given parametric basis
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(b) A point T in (u, v) and
(s, t) coordinates

Figure 3: Effects of the metric

[

Su

Sv

]

=

[

a 0
b cos θ b sin θ

] [

Ss

St

]

(31)

= A

[

Ss

St

]

(32)

[

Ss

St

]

=
1

ab sin θ

[

b sin θ 0
−b cos θ a

][

Su

Sv

]

(33)

= A
−1

[

Su

Sv

]

(34)

The first fundamental form IS can be represented by these coor-
dinate transformations.

IS =

[

Su

Sv

]

·
[

Su Sv

]

(35)

= A

[

Ss

St

]

·
[

Ss St

]

A
t (36)

= A

[

1 0
0 1

]

A
t (37)

= AA
t (38)

=

[

a2 ab cos θ

ab cos θ b2

]

(39)

We can also derive transformations between coordinates of the
different sets of basis vectors by substituting Equations [32,34] re-
spectively into Equation 29.

[

∂s ∂t
]

=
[

∂u ∂v
]

A (40)
[

∂u ∂v
]

=
[

∂s ∂t
]

A
−1 (41)

To verify that this makes sense, consider T · T again and trans-
form the coordinates using Equations [40,41].

T · T =
[

∂u ∂v
]

[

Su

Sv

]

·
[

Su Sv

]

[

∂u
∂v

]

(42)

=
[

∂u ∂v
]

IS

[

∂u
∂v

]

(43)

=
[

∂s ∂t
]

A
−1

IS

(

A
−1

)t

[

∂s
∂t

]

(44)

=
[

∂s ∂t
]

A
−1 (

AA
t
) (

A
−1)t

[

∂s
∂t

]

(45)

=
[

∂s ∂t
]

[

∂s
∂t

]

(46)

= ∂s
2 + ∂t

2 (47)

It is now possible to transform our given parameters to coordi-
nates on an orthonormal basis where we can measure lengths. We
can also transform coordinates on the orthonormal basis back to
coordinates on our given parameterization.

6 Curvature

The curvature at a point p on the surface S in any tangential direc-
tion T is −T · NT .

−T · NT =
[

∂u ∂v
]

[

Su

Sv

]

·
[

−Nu −Nv

]

[

∂u
∂v

]

(48)

=
[

∂u ∂v
]

IIS

[

∂u
∂v

]

(49)

This function is parameterized by the given parameterization.
We would like to study the function that sweeps a unit length tan-
gent around p, so it is more convenient to use arc length coordinates.
We must transform coordinates so that setting the arc length coordi-
nates

[

∂s ∂t
]

=
[

cos φ sin φ
]

sweeps out the curvature
values.

−T · NT =
[

∂s ∂t
]

A
−1

IIS

(

A
−1)t

[

∂s
∂t

]

(50)

=
[

∂s ∂t
]

IIŜ

[

∂s
∂t

]

(51)

φ

b

a

θ

E2

E1

Sv

uS

tS

sS

Figure 4: The relationship between the principle parameter direc-
tions (E1, E2), the given general parameter directions (Su, Sv),
and the constructed orthonormal basis (Ss, St)in the tangent
plane to S at p

The curvature function will have maximum and minimum val-
ues that occur at directions that are orthogonal to each other. The
eigenvalues of IIŜ are the principle curvature values (κ1, κ2). The



eigenvectors of IIŜ are the coordinates of the principle curvature
directions in the arc length coordinates. These coordinates will not
be directly useful because we only know the

[

Su Sv

]

vectors,
so we would actually prefer the eigenvectors in coordinates on this
basis.

IIŜ = A
−1

IIS

(

A
−1)t

(52)

=
1

a2b2 sin2 θ
[

b sin θ 0
−b cos θ a

][

L M
M N

][

b sin θ −b cos θ
0 a

]

(53)

=
1

a2b2 sin2 θ
·

[

b2 sin2 θ b sin θ (−b cos θL + aM)
b sin θ (−b cos θL + aM) b2 cos2 θL − 2ab cos θM + a2N

]

(54)

Solving for the eigenvalues, we find the characteristic equation.
The principle curvature values are the eigenvalues.

0 =
(

a
2
b
2 − (ab cos θ)2

)

λ
2 −

(

b
2
L − 2ab cos θM + a

2
N

)

λ

+
(

LN − M
2
)

(55)

0 =
(

EG − F
2)

λ
2 − (GL − 2FM + EN) λ +

(

LN − M
2)

(56)

7 The Weingarten Operator

An alternate way of computing the principle curvature values and
directions is by using the Weingarten Operator W , also known as
the shape operator. W is the inverse of the first fundamental form
multiplied by the second fundamental form.

W = I
−1
S IIS (57)

I−1
S is the inverse of the first fundamental form.

I
−1
S =

(

AA
t
)−1

=
(

A
−1

)t
A

−1 (58)

=
1

EG − F 2

[

G −F
−F E

]

(59)

We will prove that W has the same eigenvalues as IIŜ , i.e. the
same principle curvature values. We will also prove that the eigen-
vectors of W are transformed versions of the eigenvectors of IIŜ

to coordinates on the given basis
[

Su Su

]

.

IIŜ = V ΛV
−1 (60)

IIS = AIIŜA
t (61)

W = I
−1
S IIS (62)

=
(

A
−1

)t
A

−1
IIS (63)

=
(

A
−1)t

A
−1

AIIŜA
t (64)

=
(

A
−1

)t
IIŜA

t (65)

W =
(

A
−1)t

V ΛV
−1

A
t (66)

Equation 66 is the eigendecomposition of W . The diagonal ma-
trix Λ has the eigenvalues of W on its diagonal. It is the same

eigenvalue matrix as for IIŜ, so the eigenvalues of W are the prin-

ciple curvature values.
(

A−1
)t

V =
(

V −1At
)−

1, so the columns

of
(

A−1
)t

V are the eigenvectors of W . This is a transformed ver-
sion of V , the eigenvectors of IIŜ over the arc length basis. The
transformation A−1 transforms the arc length coordinates to coor-
dinates over the given basis, see Equation 41.

V =

[

s1 s2

t1 t2

]

(67)

(

A
−1)t

V =
(

A
−1)t

[

s1 s2

t1 t2

]

(68)

=

[

u1 u2

v1 v2

]

(69)

To solve for the principle curvature values and directions using
the given parameterization, we substitute Equations [24,59] into
Equation 57 and simplify to derive W written as the coefficients
of the first and second fundamental forms.

W = I
−1
S IIS (70)

=
1

EG − F 2

[

G −F
−F E

][

L M
M N

]

(71)

=
1

EG − F 2

[

GL − FM GM − FN
EM − FL EN − FM

]

(72)

Then we use the representation of W in Equation 72 and com-
pute the eigendecomposition. The eigenvalues are the principle cur-
vatures, and the eigenvectors are the coordinate coefficients over the
given parametric basis vectors.

κ1,2 = λ1,2 =
GL − 2FM + EN

2 (EG − F 2)

∓

√

(GL − 2FM + EN)2 − 4 (EG − F 2) (LN − M2)

2 (EG − F 2)
(73)

κM =
κ1 + κ2

2
=

GL − 2FM + EN

2 (EG − F 2)
=

Trace (W )

2
(74)

κG = κ1κ2 =
LN − M2

EG − F 2
= Det (W ) (75)
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A Square Matrices: A Quick Reference

A.1 General 2× 2 Matrices

We will be manipulating the 2× 2 matrices IS and IIS, so it is im-
portant to review some fundamental properties. Matrix B in Equa-
tion A-1 is a general 2 × 2 matrix. The inverse, B−1, can be com-
puted in closed form as shown in Equation A-2, if the determinant
of B, Det (B) = (ad−bc)

α
, does not equal to zero.

B =
1

α

[

a b
c d

]

(A-1)

B
−1 =

α

ad − bc

[

d −b
−c a

]

(A-2)

A.2 Eigenvalues

For a general n×n square matrix A, the eigenvalues of A are n spe-
cial scalar values λi (i : 1, n) such that for special corresponding
eigenvectors vi (i : 1, n), multiplication of A with vi is the same
as scaling vi by λi, Equation A-3. By substituting vi with itself
multiplied by the identity matrix I in Equation A-4, we can then
combine terms in Equation A-5.

λivi = Avi (A-3)

λi (Ivi) = Avi (A-4)

λiIvi = Avi

0 = (A − λiI) vi (A-5)

vi is in the nullspace of the matrix (A − λiI), but the vector
vi = 0 always satisfies Equation A-5. We are interested in nonzero
eigenvectors vi only, so (A − λiI) must be singular so that its
nullspace will be nonempty. (A − λiI) is singular if its determi-
nant is zero. Equation A-6 is the characteristic equation of A, and
the n roots of this equation define the eigenvalues λi (i : 1, n).

0 = Det (A − λiI) (A-6)

For the case of the general 2 × 2 matrix B, the characteristic
equation, Equation A-7 can be expanded analytically to yield an
equation that is quadratic in λi, Equation A-11.

0 = Det (B − λiI) (A-7)

0 = Det

(

1

α

[

a b
c d

]

−
[

λi 0
0 λi

])

(A-8)

0 =
1

α
Det

([

a b
c d

]

−
[

αλi 0
0 αλi

])

(A-9)

0 =
1

α

∣

∣

∣

∣

a − αλi b
c d − αλi

∣

∣

∣

∣

(A-10)

0 =
1

α

(

α
2
λ

2
i − α (a + d)λi − (ad − bc)

)

(A-11)

Equation A-11 can be solved analytically using the quadratic
equation to yield the 2 eigenvalues λ1 and λ2 in Equation A-12.

λ1,2 =
a + d ±

√

(a − d)2 + 4bc

2α
(A-12)

A.3 Eigenvectors

For a general n × n square matrix A, once the eigenvalues
λi (i : 1, n) have been computed, the corresponding eigenvectors
vi (i : 1, n) are computed by finding the nullspace of the matrix
(A − λiI). The null space is computed for each λi by substituting
its value into the matrix (A − λiI) and then performing Gaussian
elimination. The matrix will be singular, so at least one row will
become all zeroes. It is then possible to solve for the components
of vi as parametric equations of a subset of free components.

The parametric nature of the vi’s show that the eigenvectors are
not unique. In Equation A-3, vi can be replaced with itself multi-
plied by an abitrary scalar. This arbitrary scaling of the eigenvectors
is the only degree of freedom if the eigenvalues are unique, i.e. their
algebraic multiplicities are all one. In this case, the nullspaces are
all 1-dimensional subspaces, lines through the origin.

If there are multiple roots to the characteristic equation, then the
algebraic multiplicity m of some of the eigenvalues will be greater
than one. The m eigenvectors corresponding to such an eigen-
value will be a set of linearly independent vectors that span the
m-dimensional subspace. The choice of these vectors has more
degrees of freedom than the scaling in the 1-dimension case. If
m = 2, then the subspace is a plane through the origin, and there
is a rotational degree of freedom for choosing the eigenvectors as
well as the scaling degree of freedom.

In general, there are some matrices with eigenvalues of algebraic
multiplicity m > 1 that do not have a complete set of m associated
eigenvectors, i.e. the geometric multiplicity is less than the alge-
braic multiplicity. These matrices are defective. For our purposes
for the case of 2 × 2 matrices, we will assume that the matrices are
non-defective.

For the case of a non-defective 2 × 2 matrix B, we will try to
solve for the eigenvectors analytically by substituting the eigenval-
ues from Equation A-12 into the matrix in Equation A-10 and then
performing Gaussian elimination.

0 =
1

α

[

a − αλi b
c d − αλi

]

vi (A-13)

0 =

[

a − αλi b
c d − αλi

][

vi,x

vi,y

]

(A-14)

0 =





a − a+d±
√

(a−d)2+4bc

2
b

c d − a+d±
√

(a−d)2+4bc

2





[

vi,x

vi,y

]

(A-15)

0 =





(a−d)∓
√

(a−d)2+4bc

2
b

c
−(a−d)∓

√
(a−d)2+4bc

2





[

vi,x

vi,y

]

(A-16)

0 =

[

0 0

1
−(a−d)∓

√
(a−d)2+4bc

2c

]

[

vi,x

vi,y

]

(A-17)

Equation A-17 shows that the matrix (A − λiI) is singular. We
will let vi,y = 1 then we can solve for vi,y , Equation A-18.

v1,2 =

[

(a−d)±
√

(a−d)2+4bc

2c

1

]

(A-18)

In Equation A-18, if c = 0, then the eigenvector is not well
defined. We must handle the case where c = 0 or b = 0 separately.
In this case the eigenvalues simplify to λ1 = a

α
and λ2 = d

α
,

and gaussian elimination will produce a matrix with a single non-
zero element. Hence, v1 =

[

1 0
]t

and v2 =
[

0 1
]t

,
respectively.



A.4 Eigen Decomposition

For a non-defective n × n square matrix A, the geometric multi-
plicity equals the algebraic multiplicity for all of the eigenvalues
λi (i : 1, n), so there is a corresponding set of n linearly indepen-
dent eigenvectors vi (i : 1, n). It is then possible to diagonalize A
by transforming A by the eigenvectors and their inverse. Remem-
bering Equation A-19 that defines each eigenvector, we can write
all n equations as columns next to each other in Equation A-20.

Avi = viλi (A-19)

A

[

v1 v2 ... vn

↓ ↓ ↓

]

=

[

v1λ1 v2λ2 ... vnλn

↓ ↓ ↓

]

(A-20)

We will define V as the matrix of column eigenvectors. We can
rewrite the right side of Equation A-20 as the eigenvector matrix
V multiplied by a diagonal matrix Λ that has the n eigenvalues
along its diagonal, Equation A-21. After right multiplying V −1,
we derive the eigen decomposition of A, Equation A-24.

AV =

[

v1 v2 ... vn

↓ ↓ ↓

]







λ1 0 ... 0
0 λ2 ...
... ...
0 ... λn







(A-21)

AV = V Λ (A-22)

AV V
−1 = V ΛV

−1 (A-23)

A = V ΛV
−1 (A-24)

The eigen decomposition of A, Equation A-24, makes it very
efficient to raise A to an integer exponent e. Consider first squaring
A, Equation A-25.

A
2 = AA

= V ΛV
−1

V ΛV
−1

= V ΛΛV
−1

= V Λ2
V

−1 (A-25)

Equation A-26 for A to an integer exponent e is then derived by
induction. This is very efficient to compute because raising Λ to
the exponent e can be computed by simply raising the n diagonal
elements to e.

A
e = V Λe

V
−1 (A-26)

For the 2×2 matrix B, the eigen decomposition is the following:

B = V2Λ2V
−1
2 (A-27)

V2 =

[

a−d−
√

(a−d)2+4bc

2c

a−d+
√

(a−d)2+4bc

2c

1 1

]

(A-28)

Λ2 =





a+d−
√

(a−d)2+4bc

2α
0

0
a+d+

√
(a−d)2+4bc

2α



 (A-29)

V
−1
2 =

−c
√

(a − d)2 + 4bc





1 −a−d+
√

(a−d)2+4bc

2c

−1
a−d−

√
(a−d)2+4bc

2c





(A-30)

λ1 + λ2

2
=

a + d

2α
=

Trace (A)

2
(A-31)

λ1λ2 =
ad − bc

α
= Det (A) (A-32)

We remember that the determinant of the multiplication of two
matrices is the product of their determinants.

Det (AB) = Det (A) Det (B) (A-33)

We can then prove that the determinant of a matrix is equal to
the product of its eigenvalues.

A = V ΛV
−1 (A-34)

Det (A) = Det
(

V ΛV
−1) (A-35)

= Det (V ) Det (Λ) Det
(

V
−1

)

(A-36)

= Det
(

V
−1

V Λ
)

(A-37)

= Det (Λ) (A-38)

=
∏

λi (A-39)


