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Abstract

Doo-Sabin and Catmull-Clark subdivision surfaces are

based on the notion of repeated knot insertion of uni-

form tensor product B-spline surfaces. This paper devel-

ops rules for non-uniform Doo-Sabin and Catmull-Clark

surfaces that generalize non-uniform tensor product B-

spline surfaces to arbitrary topologies. This added 
ex-

ibility allows, among other things, the natural introduc-

tion of features such as cusps, creases, and darts, while

elsewhere maintaining the same order of continuity as

their uniform counterparts.

Categories and Subject Descriptors: I.3.5 [Com-

puter Graphics]: Computational Geometry and Object

Modeling{surfaces and object representations.

AdditionalKey Words and Phrases: B-splines, Doo-

Sabin surfaces, Catmull-Clark surfaces.

1 INTRODUCTION

Tensor product non-uniform rational B-spline surfaces have
become an industry standard in computer graphics, as well
as in CAD/CAM systems. Because surfaces of arbitrary
topological genus cannot be represented using a single B-
spline surface, there has been considerable interest in the
generalization, based on knot insertion, called `recursive sub-
division,' which removes this limitation.

However, despite being based on knot insertion, the re-
cursive subdivision techniques published so far are the ana-
logues of equal interval, uniform B-splines rather than of
non-uniform B-splines.

This paper explores the possibility of achieving the extra

exibility of unequal knot intervals in a recursive subdivi-
sion scheme including, for example, the ability to express
features such as creases and darts by simply setting some
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of the knot intervals to zero. Schemes are presented for
achieving non-uniform Doo-Sabin and Catmull-Clark sur-
faces. We will refer to these collectively as Non-Uniform
Recursive Subdivision Surfaces (NURSSes).

Figure 1 (left) shows a Doo-Sabin surface, and Figure 1
(right) shows an example of a non-uniform Doo-Sabin sur-
face in which the knot spacings along certain control edges
have been set to zero (as labeled), thereby creating a G0

discontinuity along the oval edge on the left. Figure 2 shows

Figure 1: Uniform and non-uniform Doo-Sabin surfaces.

two non-uniform Catmull-Clark surfaces. The one on the
left contains a dart formed by setting two pairs of control-
edge knot spacings to zero. The one on the right shows
shape modi�cation induced by changing the knot spacing
along the top edges to 10 and along the center horizontal
edges to 0.1. The control net used here has the topology of
a B-spline control net, but these shapes cannot be obtained
using NURBS or uniform Catmull-Clark surfaces.

1.1 Background

The concept of image space subdivision as a graphics tech-
nique had been around for a long time when recursive subdi-
vision appeared as an object de�nition technique. The �rst
relevant result in parametric space subdivision of sculptured
surfaces was the de Casteljau algorithm, which both evalu-
ated a point on a B�ezier curve and provided the control
points for the parts of the curve meeting there. This was
generalized to B-splines in the form of the Oslo algorithm [6]
and Boehm subdivision [3] and used as a basis for interro-
gation methods applying parametric space subdivision.

However, what sparked the imagination of the graphics
and modeling communities in 1975 was a much more speci�c



Figure 2: Non-uniform Catmull-Clark surfaces.

subdivision of a quadratic B-spline, proposed by Chaikin as
a curve rendering technique [5], and recognized for what it
was by Forrest [11] and by Riesenfeld [26]. It later turned out
that the concept of a curve being the limit of a polygon under
the operation of cutting o� the corners had been explored by
de Rham in the 1940s and 50s. His results were translated
into modern terminology by de Boor [7].

It was quickly appreciated that the curve ideas could
give surface techniques just by applying the concept of ten-
sor product, but the important key concept, that subdivi-
sion could overcome the rigid rectangular partitioning of the
parametric domain | one of the major limitations of ten-
sor products | was reached more or less simultaneously by
Catmull and Clark [4] and by Doo and Sabin [8]. Since then
there have been �ve major directions of development:

1. The analysis of what happens near an extraordinary
point, started in the Doo-Sabin paper [8], was taken up
by Ball and Storry. This led to an optimization of the
coe�cients for the cubic case [1, 2] which unfortunately
missed one of the possible variations, and the task was
completed by Sabin [28], in a paper which also identi-
�ed that a cubic construction could never give full G2

continuity at the singular points, and that continuity
at such points was in fact a much more complicated
question than had been assumed. Further analysis was
carried out by Reif [25]. The nature of the behavior
around the extraordinary points is now well under-
stood.

2. Constructions based on box-splines, rather than on
tensor products, were explored by Farin [10] and by
Loop [15], and a collection of possible constructions
was assembled by Sabin [27].

3. Constructions that interpolate the control points were
explored by Dyn, Gregory and Levin [9], and an im-
proved scheme was derived by Zorin, Schr�oder and
Sweldens [31]. Kobbelt [14] proposed an alternative
for quadrilateral nets with arbitrary topology. The
simpler ones in this category can be viewed as duals
of quadratic B-spline constructions.

4. Nasri [17] studied the problems of e�cient implemen-
tation and practical edge-conditions and extended this
to modi�cations of the basic technique to achieve var-
ious interpolation conditions [18, 19, 20]. Halstead,
Kass, and DeRose showed that a fairness norm could
be computed exactly for Catmull-Clark surfaces [12],
enabling the determination of more fair limit surfaces.

5. The idea of using just a small number of subdivision
steps, and then using n-sided combinations of patches

to �ll in a con�guration made more regular in some
sense by those steps, was explored by Loop [16], Pe-
ters [21, 22, 23] and Prautzsch [24]. Ball and Storry [29]
took the opposite line, of using subdivision to de�ne
an n-sided patch.

What was not explored until now was that the general
topology subdivision schemes were as rigid as the equal in-
terval splines from which they were derived.

1.2 Overview

Section 2 reviews knot-doubling for non-uniform B-spline
curves of degree two and three and introduces a simple ap-
proach for labeling the knot intervals on the control polygon|
an idea that is crucial for the extension to subdivision sur-
faces. Section 3 then gives the corresponding expression for
knot doubling of non-uniform tensor product B-spline sur-
faces.Section 4 proposes subdivision rules for non-uniform
Doo-Sabin and Catmull-Clark surfaces, which reduce to non-
uniform B-spline surfaces when the control net is a rectan-
gular grid and when all knot intervals along every given row
and column are the same. A continuity analysis is given
in section 5, showing that non-uniform Doo-Sabin surfaces
are G1 and non-uniform Catmull-Clark surfaces are gener-
ally G2, but G1 at certain points. Section 6 makes some
observations on NURSSes, and o�ers a conclusion.

2 CURVE KNOT DOUBLING

For a quadratic periodic B-spline curve, each vertex of the
control polygon corresponds to a single quadratic curve seg-
ment. It is convenient then to express the knot vector by
writing the knot interval di of each curve segment next to its
corresponding control vertex Pi. If a new knot is inserted
at the midpoint of each current knot interval, the resulting
control polygon has twice as many control points, and their
coordinates Qk are:

Q2i =
(di + 2di+1)Pi + diPi+1

2(di + di+1)

Q2i+1 =
di+1Pi + (2di + di+1)Pi+1

2(di + di+1)
(1)

as illustrated in Figure 3.
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Figure 3: Non-uniform quadratic B-spline curve.

For cubic periodic B-spline curves, each edge of the con-
trol polygon corresponds to a single cubic curve segment,
and so we write the knot intervals adjacent to each edge
of the control polygon. The equations for the new control
points Qk generated upon inserting a knot midway through
each knot interval are:

Q2i+1 =
(di + 2di+1)Pi + (di + 2di�1)Pi+1

2(di�1 + di + di+1)
(2)

Q2i =
diQ2i�1 + (di�1 + di)Pi + di�1Q2i+1

2(di�1 + di)
(3)

as shown in Figure 4.
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Figure 4: Non-uniform cubic B-spline curve.

3 SURFACE KNOT DOUBLING

The knot-doubling formulae for B-spline curves extend eas-
ily to surfaces. Non-uniform B-spline surfaces are de�ned
in terms of a control net that is topologically a rectangular
grid, for which all horizontal knot vectors are scales of each
other, and all vertical knot vectors are scales of each other.

3.1 Quadratic Case

The formulae for the new control points FA can be written
in Doo-Sabin form, which is signi�cant because in this form
the new control points are seen as being in groups, creating
a new face in each old face, and the vertices of each such new
face are in 1:1 correspondence with the vertices of the old,
whereas under the tensor product form we merely see all the
new vertices as forming a new regular array (see Figure 5).

FA =
V +A

2
+
ac(B+C�A�D)

4(ad+ ac+ bc+ bd)
; (4)

where

V =
bdA + adB+ bcC+ acD

bd + ad+ bc+ ac
: (5)

FA

A B

C D

a b
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c/2
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a/2
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Figure 5: Knot doubling, quadratic B-spline.

3.2 Cubic Case

For non-uniform cubic B-spline surfaces, the re�nement rules
can be written as follows (see Figure 6). First, each face is
replaced with a new vertex Fi. For example,

F1 = [(e3 + 2e4)(d2 + 2d1)P0 + (e3 + 2e4)(d2 + 2d3)P1

+(e3 + 2e2)(d2 + 2d3)P5 + (e3 + 2e2)(d2 + 2d1)P2]

=[4(e2 + e3 + e4)(d1 + d2 + d3)]: (6)

Then, each edge is split with an edge vertex Ei, e.g.

E1 =
e2F1 + e3F4 + (e2 + e3)M1

2(e2 + e3)
; (7)

where

M1 =
(2d1 + d2)P0 + (d2 + 2d3)P1

2(d1 + d2 + d3)
: (8)

Finally, each original control point is replaced with a
vertex point V

V =
P0

4
+
d3e2F1 + d2e2F2 + d2e3F3 + d3e3F4

4(d2 + d3)(e2 + e3)
+

[d3(e2 + e3)M1 + e2(d2 + d3)M2 + d2(e2 + e3)M3

+e3(d2 + d3)M4]=[4(d2 + d3)(e2 + e3)]: (9)
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Figure 6: Face, edge and vertex points.

4 NURSS REFINEMENT

In uniform B-spline surfaces, all knot spacings are the same.
Doo-Sabin and Catmull-Clark proposed generalizations of
uniform B-spline surface schemes that allow for vertices of
the control mesh to have valence other than four, and the
faces of the control mesh to have other than four sides. Their
subdivision rules were designed such that when the control
mesh happens to be a rectangular grid, the subdivision rules
are equivalent to knot doubling of uniform B-spline surfaces.
The subdivision surfaces are then de�ned as the limit of the
control meshes when these subdivision rules are applied an
in�nite number of times.

We here de�ne generalizations of non-uniform B-spline
surfaces. As in the cubic curve case, each edge in the con-
trol polyhedron of a non-uniform Catmull-Clark surface is
assigned a knot spacing. For a non-uniform Doo-Sabin sur-
face, each vertex is assigned a knot spacing (possibly dif-
ferent) for each edge radiating from it. Our objective is to
devise a set of re�nement rules for NURSSes such that if all
knot intervals are equal, the quadratic NURSS reduces to
Doo-Sabin and the cubic NURSS reduces to Catmull-Clark.
There are actually two distinct rules to be devised. First,
we need to revise the Doo-Sabin and Catmull-Clark rules for
the new point coordinates, taking the knot spacings into ac-
count. Second, we need rules for determining the new knot
spacings.

Note that \NURSS" could just as well stand for \Non-
Uniform Rational Subdivision Surfaces," because it is a sim-
ple matter to �rst project rational control points to 4-D,
then apply our rules, and �nally to project back to 3-D.

In this section, bold capital letters stand for points, and
non-bold typeface for knot spacings. The indices for knot
spacing dkij indicate that the spacing pertains to an edge
with Pi as one endpoint. Referring to Figure 8, the notation
d0ij indicates the knot spacing for edge Pi{Pj . Rotating

counter-clockwise about Pi, d
1
ij denotes the knot spacing for

the �rst edge encountered, d2ij indicates that of the second
edge, etc. For the cubic case, each edge has a single knot
spacing, so d0ij = d0ji.



4.1 Quadratic Case

In the quadratic case, re�nement proceeds in a manner iden-
tical to Doo-Sabin subdivision: A polyhedron spawns a re-
�ned polyhedron for which new faces (of type F, type E and
type V respectively) are created for each face, edge, and
vertex of the previous polyhedron. During the subdivision
step, each face is replaced by a new face connected across
the old edges and across the old vertices by other new faces.
In such re�nement schemes, the extraordinary points are at
the \center" of n-sided faces with n 6= 4. After one itera-
tion, every vertex of the new polyhedron will have valence
four, and the number of faces with other than four sides will
remain constant.

Refer to Figure 7 for labels. The new vertex �Pi is com-
puted:

�Pi =
V +Pi

2
+ (d0i+1;i+2d

0
i+3;i+2 + d0i�1;i�2d

0
i�3;i�2)

�
�nPi +

Pn

j=1

�
1 + 2 cos

�
2�ji�jj

n

��
Pj

8
Pn

k=1
d0k�1;kd

0
k+1;k

(10)

where

V =

Pn

k=1
d0k�1;kd

0
k+1;kPkPn

k=1
d0k�1;kd

0
k+1;k

:

Pi

Pi-1
Pi+1Pi

_

di,i+1
0di,i-1

0

di-1,i
0 di+1,i

0

di,i+1
0

_
di,i+1

1
_

di,i-1
0
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_
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0

di+1,i+2
0

Figure 7: Quadratic re�nement rules.

4.1.1 New knot spacings

New knot spacings �dkij can be speci�ed in numerous ways.
Here are two straightforward options:

�d0i;i+1 = �d�1
i;i�1 = d0i;i+1=2

�d0i;i�1 = �d1i;i+1 = d0i;i�1=2

or
�d0i;i+1 = d0i;i+1=2; �d�1

i;i�1 = (d0i;i+1 + d�1
i;i�1)=4

�d0i;i�1 = d0i;i�1=2; �d1i;i+1 = (d0i;i�1 + d1i;i+1)=4

The former allows the re�nement matrix to remain constant
after a few iterations. The latter seems to produce more
satisfactory shapes.

4.2 Cubic Case

Our development parallels that for Catmull-Clark surfaces.
As shown in Figure 8, the face point for a face with n sides
is computed as

F =

Pn�1

i=0 wiPi
Pn�1

i=0 wi

; (11)

where

wi=(d0i+1;i+d
2
i+1;i + d�2

i+1;i+d
0
i�2;i�1 + d2i�2;i�1+d

�2
i�2;i�1)

�(d0i�1;i+d
2
i�1;i+d

�2
i�1;i+d

0
i+2;i+1+d

2
i+2;i+1+d

�2
i+2;i+1)(12)
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Figure 8: Face point.

The edge point is computed (see Figure 9a):

E = (1� �ij � �ji)M+ �ijFij + �jiFji; (13)

where

�ij =
d1ji + d�1

ij

2(d1ji + d�1
ij + d�1

ji + d1ij)
(14)

if d1ji + d�1
ij + d�1

ji + d1ij 6= 0 and �ij = 0 otherwise.

M =
(d0ji + d2ji + d�2

ji )Pi + (d0ij + d2ij + d�2
ij )Pj

d0ji + d2ji + d�2
ji + d0ij + d2ij + d�2

ij

(15)

dji
0dij

0

d
ij 1

dij
2

d ij
-2

d i
j-1

d
ji 1

d
ji
2

dji
-2d ji-1

Fji

Fij

Pi Pj

M

Eij

P0
V

Pi

Pi+1

Mi

Mi+1
Fi,i+1

Figure 9: a) Edge point. b) Vertex point.

The vertex point for a point of valence n is expressed
(see Figure 9b):

V = cP0 +
3
Pn

i=1(miMi + fi;i+1Fi;i+1)

n
Pn

i=1(mi + fi;i+1)
; (16)

where Mi are de�ned as (15), Fi;i+1 as (11), and

mi = (d10i + d�1
0i )(d

2
0i + d�2

0i )=2 (17)

fij = d10id
�1
0j (18)

c =
n� 3

n
if
Pn

i=1
(mi + fi;i+1) 6= 0 (19)

otherwise, c = 1.



4.2.1 New knot spacings

Each n-sided face is split into n four sided faces, whose knot
spacings are determined as shown in Figure 10.
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Figure 10: New knot spacings.

5 CONTINUITY ANALYSIS

For each construction, we consider the behavior of the limit
surface for all the knot spacings being positive.

5.1 Quadratic case

5.1.1 Limit surface structure

After one iteration, all type V and type E faces are four-
sided, with the property that the intervals crossing the orig-
inal edges are equal as seen from the two sides. Thus each
such type V face reduces to a mesh that is equivalent to a
uniform biquadratic B-spline, while each type E face reduces
to a mesh that is equivalent to a non-uniform biquadratic
B-spline. This leaves only the regression in the type F faces
to analyze for continuity.

The limit surface for a face consists of patches in the
structure as shown in Figure 11a. The face is four-sided in
this example.

a. b.

Pj

Pj-1
Pj+1

E(j-1),2

Cj
Ej1

Ej2

Figure 11: a) Sequence of quadratic polynomial pieces for a
four-sided face; b) Con�guration surrounding type F face.

5.1.2 Continuity at face-centers

It is convenient to consider four-sided faces alongside the
more general n-sided faces. After at most two subdivisions,
the con�guration surrounding a type F face may be rep-
resented as in Figure 11b. In the center lies the face (of
type F) P1P2 . . .Pn. Each edge of this face (for example
PjPj+1) is adjacent to a four-sided face of type E with ver-
tices PjPj+1Ej2Ej1. The neighborhood of each vertex Pj
is completed by a four-sided face of type V with vertices
PjEj1CjE(j�1)2.

Let the con�guration around this type F face be repre-
sented by the vector of points

M = [P1; . . . ; Pn; E11; E12; . . . ; En1; En2; C1; . . . ; Cn]
T ;

and �M be the corresponding con�guration after subdivision.
Then �M = SnM , where Sn is a 4n � 4n matrix called the
re�nement matrix. Here we only consider the �rst option
for the new knot spacings in which case Sn remains constant
through all the subsequent subdivision steps. Thus we can
use the eigenstructure of Sn to analyze continuity.

We carried out an algebraic eigenanalysis for orders 3 to
8 based on the discrete Fourier transform technique in an
exercise reported in [30]. This leads us to

Theorem 1 For orders 3 to 8, if all knot spacings di;j >
0, then the re�nement matrix Sn is not defective and its
eigenvalues are

�1 = 1 > �2 = �3 =
1

2
> j�4j; j�5j; � � � ; j�4nj:

By an argument similar to one used in [12] we can con-
clude that, provided that all the knot spacings are greater
than zero, the limit surface generated by the non-uniform
Doo-Sabin scheme is G1 continuous both at all ordinary
points and at extraordinary points of valence less than 9.

5.2 Cubic Case

5.2.1 Limit surface structure

After one subdivision, every face is four-sided, and after two
more, the pattern of knot intervals over the group of 16 sub-
faces replacing each original face is as shown in Figure 12a.
The hi are in arithmetic sequence as are the vi.

h5 h5 h5 h5

h4 h4 h4 h4

h3 h3 h3 h3

h2 h2 h2 h2

h1 h1 h1 h1

v5

v5

v5

v5

v4

v4

v4

v4

v3

v3

v3

v3

v2

v2

v2

v2

v1

v1

v1

v1

a. b.

Figure 12: a) Knot intervals after three subdivisions; b)
Sequence of cubic polynomial pieces.

When these values are substituted into (11), (13) and
(16), the positions of the new vertices in, or on the bound-
ary of, the innermost four sub-faces are exactly the same
as if all the horizontal intervals had been equal and all the
vertical intervals equal likewise. The innermost four sub-
faces therefore converge towards uniform bicubic B-splines,
giving a pattern of bicubic pieces as shown in Figure 12b,
where the largest square represents the face of a non-uniform
Catmull-Clark net with di�erent knot intervals along each
edge. The pattern of smaller squares shows schematically
the in�nite progression of B�ezier patches that make up the
limit surface. The interior of the limit surface of every such
face is therefore G2. We need only concern ourselves with
the continuity at the edges and at the vertices, where there
is a regression.



5.2.2 Continuity at vertices

In this section we consider continuity at vertex points of va-
lence � 3 (i.e., exceptional points, as well as vertex points
of valence four). Unfortunately, since the re�nement matrix
changes at each iteration, it is di�cult to perform an eigen-
analysis to determine if non-uniform Catmull-Clark surfaces
are G1 at vertex points, except for simple numerical cases.
One of the few cases that yield a constant re�nement matrix
is the valence three vertex in Figure 13 (right). In this case,
the second and the third eigenvalues are generally di�erent.

To �nd out what is going on in the neighborhood of this
point, we performed a numerical study, chosing a cube as
a control polyhedron with various knot spacings. Figure 13

1010
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100

100 1

1

1

θi

Vi E1
i

E2
i

E3
i

Non-uniform

Vi E1
i

E2
i

E3
i

1

1

1

1

1

1

1

1

1

Uniform

θi

Figure 13: Neighborhood of valence 3 vertex point after 25
iterations.

shows the neighborhood of a vertex point Vi (that began as
a corner of the cube) after 25 iterations. The �gure on the
left shows the uniform knot spacing; everything is symmetric
as expected. The �gure on the right came from the same
vertex on the same cube, only with knot intervals of value
100 assigned to one set of four parallel edges on the cube; of
value 10 assigned to another set of four parallel edges, and
of 1 assigned to the remaining four edges, again after i = 25
iterations. Notice that the angles are no longer equal. In
fact, it turns out that angle �i = 6 Ei

1 � V
i � Ei

3 tends to
zero as i!1.However, the three faces become coplanar at
a much faster rate, as shown in the following table. Here,
�Ni refers to the maximum angle between the planes Ei

1 �
Vi �Ei

2, E
i
1 �V

i �Ei
3, and E

i
2 �V

i �Ei
3.

Uniform Non-uniform
i �Ni �i �Ni �i

� radians � radians � radians � radians

0 5� 10�1 0:5 5� 10�1 0:5
5 5� 10�3 0:6665 2� 10�2 0:37
25 7� 10�10 0:666667 5� 10�8 0:15
50 1� 10�20 0:666667 9� 10�15 0:043
75 2� 10�30 0:666667 1� 10�21 0:013
100 6� 10�40 0:666667 2� 10�28 0:004

The normals are becoming parallel at a rate that is roughly
107 times faster than the rate at which �i is approaching
zero. After 100 iterations, the con�guration is as close to
G1 as anyone could possibly have need for. The facets are
25 orders of magnitude smaller than they need to be for any
practical use (�ve iterations are plenty for most graphics
applications).

We also did a similar study on valence four, using widely
varying knot spacings, and again observed a fast convergence
of normal vectors, but no tendency of any face angles to tend

to zero. Hence, we are con�dent that valence four points
are G1. Preliminary experiments with n > 4 indicate very
similar behavior.

5.2.3 Continuity across edges

Across the interior of an edge, the situation may be re-
garded as a standard non-uniform B-spline with a perturba-
tion due to the original variation between the knot intervals.
This perturbation tends to zero with a convergence rate of
O(2�i). Note that the non-uniform B-spline is C2 and the
surrounding vertices converge to a plane con�guration with
a rate of O(4�i). Therefore, in the limit, the non-uniform
Catmull-Clark surface is G1 across every edge.

6 DISCUSSION

Figure 14 shows the e�ect that knot spacing can have on a
surface. In the grid at the left, all edges are assigned knot
spacing of 1, except for the four edges labeled with a 0. Two
steps of non-uniform Catmull-Clark subdivision result in the
meshes shown (minus a few outer layers of quadrilaterals).
This con�guration of knot spacings causes the limit surface
to interpolate the center point with G0 continuity.

00

0

0

Figure 14: E�ect of non-uniform knot spacing.

In the absence of non-uniform subdivision surfaces, Hoppe
et. al. proposed a scheme for imposing features such as
creases, corners, and darts on an otherwise G1 subdivision
surface that uses special-case \masks" [13]. NURSSes can
provide for such features without the need for special masks.
For example, Figure 1 shows a crease imposed on a Doo-
Sabin surface by setting three knot spacings to zero. Fig-
ure 2 (left) shows a dart on a non-uniform Catmull-Clark
surface, created by setting four knot intervals to zero.

Figures 16{19 show a variety of shapes that can be at-
tained using NURSSes, but not using uniform subdivision
surfaces. The initial control polyhedra are shown in wire-
frame. Sharp features can be imposed by setting to zero the
knot spacing of appropriate edges.

Another use for knot spacing is in shape modi�cation.
Figure 2 (right) shows the e�ect of altering the knot spacing
on several control polygon edges of a torus-shaped Catmull-
Clark surface. Figure 17 shows a uniform Doo-Sabin surface
(on the left) and two non-uniform counterparts, formed by
choosing di�erent knot spacings as shown. The sphere in
Figure 18 cannot be expressed exactly using uniform sub-
division surfaces, rational or otherwise. Figure 19c,e,h are
other examples of non-uniform Catmull-Clark surfaces.

In summary,

� this method extends the known general topology methods
by permitting unequal knot intervals, thus allowing
a single surface description the strengths of both the
standard non-uniform tensor products and the uniform
recursive subdivision surfaces in one representation.



� Even in the situation where there are no extraordinary
points, this theory extends current capability by giv-
ing a G1 surface when the knot intervals are chosen
individually for every edge in the control polygon, not
constrained to support a tensor product structure.

� This scheme provides a lot of freedom to adjust the shape
of the surface. In particular, it can model sharp fea-
tures by properly setting certain knot spacings to zero.

Future work will design a convenient modeling interface
for the interactive purpose and determine how to use knot
spacing to best advantage.
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Appendix: Eigenanalysis Of Non-Uniform

Doo-Sabin Surfaces

1 Re�nement matrix

Refer to Figure 11b in the paper for the labels. In the center lies the shrunken polygon
P1P2 � � �Pn (type F). Each edge of this face (for example PjPj+1) is adjacent to a four-
sided face of type E with vertices Pj; Pj+1; Ej2; Ej1. The neighborhood of each vertex Pj
corresponds to a four-sided face of type V with vertices Pj ; Ej1; Cj; E(j�1)2. Here we only
consider the �rst option for the new knot spacings and use di;j instead of d0i;j to denote the
knot spacing for the notational simplicity. Noting the speci�c characteristics of the knot
spacings in the faces of type V and type E after at most two subdivisions, we rewrite the
re�nement formulas as follows:8>>>>>>>>>><

>>>>>>>>>>:

�Pj = V+Pj
2 + �j[�nPj +

Pn

k=1(1 + 2 cos 2�
n
k)Pj+k]

�Ej1 = (6(dj;j�1dj+1;j + 3dj;j+1dj+1;j+2)Pj + 3dj;j+1dj+1;j+2Pj+1+
(dj;j+1dj+1;j+2+ 2dj;j�1dj+1;j)Ej1 + dj;j+1dj+1;j+2Ej2)=
(8(dj;j+1dj+1;j+2+ dj;j�1dj+1;j))

�Ej2 = (3dj;j�1dj+1;jPj + 6(dj;j+1dj+1;j+2+ 3dj;j�1dj+1;j)Pj+1+
dj;j�1dj+1;jEj1 + (dj;j�1dj+1;j + 2dj;j+1dj+1;j+2)Ej2)=
(8(dj;j+1dj+1;j+2+ dj;j�1dj+1;j))

�Cj = (9Pj + 3Ej1+ 3E(j�1)2+Cj)=16

(1)

Let the con�guration around this type F face be represented by the vector of points

M = [P1; � � � ; Pn; E11; E12; � � � ; En1; En2; C1; � � � ; Cn]
T ;

and �M be the corresponding con�guration after subdivision. Then �M = SnM where the
re�nement matrix Sn is a 4n� 4n matrix, i.e.0
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�P1
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�En2
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�Cn

1
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Qn 0 0
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0 1
16

1
CCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBB@

P1
...
Pn
E11

E12

...
En1

En2

C1

...
Cn

1
CCCCCCCCCCCCCCCCCCCA

(2)
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where SEj are 2� 2 matrices:

SEj =

�
dj;j+1dj+1;j+2 + 2dj;j�1dj+1;j dj;j+1dj+1;j+2

dj;j�1dj+1;j dj;j�1dj+1;j + 2dj;j+1dj+1;j+2

�

8(dj;j+1dj+1;j+2 + dj;j�1dj+1;j)
(3)

2 Eigenvalues of the re�nement matrix

Lemma 1. Let A =

0
BBB@

a11 a12 � � � a1n
a�21 a22 � � � a2n
...

...
. . .

...
a�n1 a�n2 � � � ann

1
CCCA be an n � n Hessian matrix. If the eigen-

values �j of A satisfy 0 < �j < c with a constant c > 0; j = 1; � � � ; n, then for matrix

Ak =

0
BBB@

a11 a12 � � � a1k
a�21 a22 � � � a2k
...

...
. . .

...
a�k1 a�k2 � � � akk

1
CCCA, 1 � k � n, its eigenvalues �j also satisfy 0 < �j < c.

Proof: Since �j > 0, A is a positive de�nite matrix. So is Ak. Therefore �j > 0. On the
other hand, �j < c holds for j = 1; � � � ; n, so cI �A is a positive de�nite matrix. Therefore
cIk � Ak is a positive de�nite matrix, too. Thus we conclude �j < c.

Since the re�nement matrix Sn remains constant through all the subsequent subdivision
steps, we can use the eigenstructure of Sn to analyze continuity. The eigenvalues of Sn
consist of those of matrices Qn; SEk; (k = 1; � � � ; n) and 1

16In, where In is an n� n identity
matrix. Matrix 1

16In has n equal eigenvalues

�C1 = � � � = �Cn = 1=16: (4)

It is easy to verify that the eigenvalues of SEk are

�Ek

1 = 1=4; �Ek

2 = 1=8; k = 1; � � � ; n (5)

Now we have to look into the eigenvalues of Qn which satis�es from (6):0
B@

�P1
...
�Pn

1
CA = Qn

0
B@

P1
...
Pn

1
CA (6)

We use the discrete Fourier transform to analyze the eigenproperties. Let p!; �p! be Fourier
vectors corresponding to Pj; �Pj. For j = 1; � � � ; n,

�
Pj =

Pn�1
!=0 a!jpj

�Pj =
Pn�1

!=0 a!j �pj
(7)

where

ak = e
2�ki
n = cos(

2�k

n
) + i sin(

2�k

n
) (8)

The conjugate of ak is denoted by a�k = e�
2�ki
n .
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The re�nement may now be formulated in terms of the Fourier vectors:

n�1X
!=0

a!j �p! =
n�1X
!=0

c!p! + p0 +
1

2
ajp1 + �j

n�2X
!=2

a!jp! +
1

2
a(n�1)jpn�1 (9)

where

�j =
1

2
� n�j (10)

c! =
1

2

nX
l=1

a!ldl�1;ldl+1;l=

nX
k=1

dk�1;kdk+1;k (11)

It should be noted that
nX

k=1

ak =

�
n; if k = 0 mod (n)
0; otherwise

Multiplying equation (13) by a�lj ; (l = 0; � � � ; n� 1) and adding up from j = 1 to n, yield
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where

Bn�3 =
1

n

0
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Thus three of the eigenvalues of Qn are immediately obtained:

�1 = 1; �2 = �3 =
1

2
(14)

If n = 4, Bn�3 =
P

j �ja0j = (n=2� n=4)=n = 1=4, and thus

�4 =
1

4
(15)

Therefore in the following we only consider the case of n > 4. From (14), we have

Bn�3 =
1

2
I �An�3 (16)

where

An�3 =

0
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Obviously, A�n�3 = An�3, i.e. An�3 is a Hessian matrix. Therefore the eigenvalues of An�3

are real numbers. Also, An�3 can be rewritten as:

An�3 =

0
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Pn

j=1�ja0j
Pn

j=1�ja1j � � �
Pn

j=1�ja(n�4)jPn

j=1�ja(n�1)j
Pn

j=1�ja0j � � �
Pn

j=1�ja(n�5)j
...

...
. . .

...Pn

j=1�ja4j
Pn

j=1�ja5j � � �
Pn

j=1�ja0j

1
CCCA (18)

Now we construct a new matrix Gn:

Gn =

0
BBBBBBBB@
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(19)

This is a circulant matrix. If we let p(z) be a polynomial of z:

p(z) =
P

j �ja0j +
P

j �ja1jz + � � �+
P

j �ja(n�1)jz
n�1

=
Pn

j=1 �j(a0j + a1jz + � � �+ a(n�1)jz
n�1)

(20)

the eigenvalues �k of Gn are: (cf. page 73 of Philip J. Davis: Circulant Matrices, John
Wiley & Sons, 1979. )

�k = p(e
2�i
n
(k�1))

=
nP
j=1

�j(a0j + a1je
2�i
n

(k�1) + a2je
2�i
n

2(k�1)+ � � �+ a(n�1)je
2�i
n

(n�1)(k�1))

= n�n�k+1; k = 1; � � � ; n

(21)

From the de�nition of �j, we know that 0 < �j <
1
8 if all knot spacings di;j > 0 and n 6= 4.

Therefore it holds that 0 < �k < 1 for k = 1; � � � ; n if n < 9. By Lemma 1, all eigenvalues
�Aj of matrix An�3 also satisfy 0 < �Aj < 1. Since Bn�3 =

1
2I � An�3, the eigenvalues �

B
j

of Bn�3 satisfy

�
1

2
< �Bj <

1

2
(22)

Combining (8), (9), (18), (19) and (26), we obtain:

Theorem 1 If all knot spacings di;j in Sn are positive and n < 9, then the eigenvalues of
Sn are

�1 = 1 > �2 = �3 =
1

2
> j�4j; j�5j; � � � ; j�4nj:

3 Continuity at face-centres

We now look into the eigenvectors of the re�nement matrix Sn. First An�3 is a Hessian
matrix and has n � 3 independent eigenvectors. Thus Bn�3 and Qn have n � 3 and n
independent eigenvectors respectively. Second each SEk has two independent eigenvectors

4



and 1
16In has n. From the structure of Sn in (6), we know that the matrix Sn has 4n

independent eigenvectors. So Sn is not de�ctive.
Also note that the sum of each row in Sn is 1, and every element is not negative.

Therefore Sn describes an a�ne invariant process. Let l1; l2 and l3 be the left eigenvectors
of Sn corresponding to eigenvalues �1 = 1; �2 =

1
2
; �3 =

1
2
. Then carrying out an analysis

similar to that described in [12], we can get:

� the points on the type F face will converge to the limit point l1 �M

� the normal vector to the subdivision surface at the limit point l1 �M is the vector (l2 �
M )� (l3 �M ).

Therefore

Theorem 2 If all knot spacings di;j > 0, and all valences and all numbers of the edges
of each face are less than 9, then the limit surface generated by non-uniform subdivision
scheme (1)-(4) is G1 continuous everywhere.

Remark: Although we have proved G1 continuity for the case of n < 9, we conjecture the
conclusion (G1 continuity) is also true for n � 9.
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