
EUROGRAPHICS 2005 / M. Alexa and J. Marks
(Guest Editors)

Volume 24 (2005), Number 3

Structure Preserving CAD Model Repair

Stephan Bischoff Leif Kobbelt

Computer Graphics Group
RWTH Aachen

Abstract

There are two major approaches for converting a tessellated CAD model that contains inconsistencies like cracks
or intersections into a manifold and closed triangle mesh. Surface oriented algorithms try to fix the inconsistencies
by perturbing the input only slightly, but they often cannot handle special cases. Volumetric algorithms on the other
hand produce guaranteed manifold meshes but mostly destroy the structure of the input tessellation due to global
resampling. In this paper we combine the advantages of both approaches: We exploit the topological simplicity
of a voxel grid to reconstruct a cleaned up surface in the vicinity of intersections and cracks, but keep the input
tessellation in regions that are away from these inconsistencies. We are thus able to preserve any characteristic
structure (i.e. iso-parameter or curvature lines) that might be present in the input tessellation. Our algorithm closes
gaps up to a user-defined maximum diameter, resolves intersections, handles incompatible patch orientations and
produces a feature-sensitive, manifold output that stays within a prescribed error-tolerance to the input model.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Model-
ing]: Curve, surface, solid, and object representations

1. Introduction

A common dilemma in todays CAM production environ-
ments are the different geometry representations that are em-
ployed by CAD systems on the one hand and downstream
applications on the other hand. While CAD systems usually
represent a model by a set of trimmed NURBS patches or by
other surface primitives (that possibly are extracted from a
CSG representation), downstream applications like compu-
tational fluid- or structure simulation, rapid prototyping, and
numerically controlled machining rely on closed and consis-
tent manifold triangle meshes as input. The conversion from
one representation into the other is not only a major bottle-
neck in terms of time, but also with respect to the accuracy
and quality of the output and thus directly impacts all subse-
quent production stages.

Common tessellation algorithms are able to efficiently
and accurately convert single surface primitives into triangle
meshes, but usually cannot handle continuity constraints be-
tween different primitives or detect and resolve intersecting
geometry. This leads to artifacts like gaps, overlaps, inter-
sections, or inconsistent orientations between the tessellated
patches, which often have to be repaired in a manual and te-

dious postprocessing step. For this reason, quite some effort
has been put into algorithms that are able to automatically
repair such models.

There are two major approaches for converting a tessel-
lated CAD model that contains inconsistencies like gaps
or intersections into a clean and manifold closed triangle
mesh. Surface oriented algorithms try to explicitly compute
or identify consistent (sub-)patches that are subsequently
stitched together by snapping boundary elements. These al-
gorithms only minimally perturb the input patches, but due
to numerical issues cannot guarantee a consistent output
mesh and hence usually require user-interaction. Volumetric
algorithms on the other hand use a signed distance grid as
an intermediate representation and are able to produce guar-
anteed manifold reconstructions. Unfortunately, these algo-
rithms destroy the structure of the input tessellation due to
a global resampling stage. Furthermore the resolution of the
underlying grid limits the quality of the reconstruction.

In this paper we combine the advantages of both ap-
proaches: We exploit the topological simplicity of a voxel
grid to reconstruct a cleaned up surface in the vicinity of
intersections and cracks, but keep the input tessellation in

c© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

Stephan Bischoff & Leif Kobbelt / Structure Preserving CAD Model Repair

Figure 1: Our algorithm converts a tessellated CAD model into an intersection-free and closed triangle mesh which covers
all gaps up to a prescribed size. Left: The input patches were created by tessellating a CAD model consisting of 385 trimmed
NURBS surfaces. Middle: A standard volumetric reconstruction algorithm resamples the model globally and destroys any
structure of the tessellation. Right: Our algorithm only resamples the model locally in regions around artifacts like gaps and
intersections and thus preserves most of the input tessellation.

regions that are away from these inconsistencies. We are
thus able to preserve any characteristic structure (e.g. iso-
parameter or curvature lines) that might be present in the
input tessellation. Our algorithm closes gaps up to a user-
defined maximum diameter, resolves intersections and over-
laps, handles incompatible patch orientations and produces
a feature-sensitive, manifold output that stays within a pre-
scribed error-tolerance to the input model.

The basic idea is to first identify the critical regions con-
taining artifacts like gaps and overlaps, then selectively ap-
plying a volumetric reconstruction algorithm in these re-
gions and finally joining the reconstruction with the unmodi-
fied outside components. Due to its selectivity our algorithm
is on the one hand able to achieve high grid resolutions and
thus a high reconstruction quality near the artifacts, but on
the other hand does not incur the performance overhead of
algorithms that globally reconstruct the input.

2. Previous Work

Surface-based algorithms work directly on the input tessel-
lation and use a number of techniques to detect and resolve
artifacts. These techniques include, e.g. snapping boundary
elements onto each other, projecting and inserting bound-
ary edges into faces, explicitly computing the intersections
between faces, propagating the normal field from patch to
patch [BW92, BS95, BDK98, GTLH01, MD93], stitching
small patches into gaps [TL94, Lie03], resolving topologi-
cal noise by identifying and cutting handles [GW01], etc.

Surface-based approaches only locally modify the input
geometry in a small region around the artifacts. Hence, the
input tessellation is preserved wherever possible. However,
these approaches usually cannot give any guarantees on the

quality of the output: There might be no globally consistent
orientation of the input patches; certain artifacts, like over-
lapping geometry or “double walls” are hard to handle; in-
tersections are difficult to detect and to resolve; due to nu-
merical issues a robust and efficient implementation is chal-
lenging.

Volume oriented approaches convert the input into a vol-
umetric representation, i.e. a signed distance field or a grid
of directed distances [NT03, Ju04, FPRJ00]. From this volu-
metric representation one then extracts a surface using tech-
niques like marching cubes [LC87, KBSS01] or dual con-
touring [Gib98, JLSW02, Ju04].

Volumetric techniques produce guaranteed manifold out-
put. Furthermore, topological artifacts and holes can eas-
ily be removed using various filter operations on the vol-
ume [ABA02,DMGL02,NT03]. On the downside, however,
the conversion to and from a volume acts as a low-pass fil-
ter that removes sharp features and leads to aliasing artifacts
in the reconstruction. Furthermore, due to the global resam-
pling, the structure of the input patches is completely de-
stroyed and the output is usually highly over-tessellated.

3. Algorithm

The input to our algorithm is a tessellated CAD model
M0 = {P1, . . . ,Pn} which consists of n patches Pi. Each
patch Pi is a manifold triangle mesh and is uniquely iden-
tified by its patch ID i. Furthermore, the user prescribes an
error tolerance ε0 and a maximum gap diameter γ0. The out-
put is an intersection-free and closed triangle mesh T that
approximates M0 up to a maximum error of ε0 and covers
all gaps of diameter ≤ γ0. Our algorithm proceeds in several
stages (see Figure 2):

c© The Eurographics Association and Blackwell Publishing 2005.

Stephan Bischoff & Leif Kobbelt / Structure Preserving CAD Model Repair

1. Conversion of M0 to a closed mesh M (Section 3.1)
2. Identification of a set C ⊂ Z

3 of critical vertices that
encloses all intersections and all gaps of diameter ≤ γ0
(Section 3.2)

3. Eroding C to a minimal set C′ (Section 3.3)
4. Transforming C′ to a set D of critical cells that covers all

gaps and all intersections (Section 3.4)
5. Clipping M against D (Section 3.4)
6. Reconstruction of the model geometry inside D (Sec-

tion 3.5)
7. Postprocessing to reduce the output complexity (Sec-

tion 3.6)

3.1. Setup

In the following we assume without loss of generality that
the input model is scaled and translated such that the error
tolerance ε0 = 1 and that M0 is enclosed by an integer grid
of extent

[0,2k]× [0,2k]× [0,2k]

for some k. Note that the size of the grid cells just equals the
error tolerance ε0. We also assume that the maximum gap
diameter is given as γ0 = 2γ for some positive integer γ.

We often have to associate data with a small subset of
the grid vertices or the grid cells. To improve memory effi-
ciency, this data is stored in the finest-level nodes of an oc-
tree of depth k. The octree is adaptively refined on demand,
i.e. when we access a certain grid vertex or grid cell.

For each patch Pi ∈ M0 we produce
a mirror patch P ′

i by duplicating Pi and
reversing the orientation of each trian-
gle. Then we seam Pi and P ′

i along their
common boundary by triangle strips Si.
This yields a new and closed patch Qi
that represents Pi from both sides. We
collect the new patches in a new model
M = {Qi}. Note that M is closed, but still contains the
same artifacts as M0. Note also that by this construction our
algorithm becomes invariant with respect to the orientation
of the input patches. If it turns out that the resulting “double
walls” are not necessary to guarantee manifoldness of the
reconstruction, they will be removed in the post-processing
stage, see Section 3.6.

3.2. Critical regions

In the following we compute a set Cγ of critical grid ver-
tices. We think of these critical vertices as particles that fill
those regions of space where two or more patches of M get
closer than 2γ. These critical regions include all gaps of di-
ameter ≤ 2γ and in particular all intersections between dif-
ferent patches. Later stages of the algorithm will then ex-
tract the interface between critical vertices and non-critical

1. input patches 2. critical vertices

3. critical cells 4. clipped

5. prelim. reconstruction 6. result

Figure 2: Stages of our algorithm. The input patches typ-
ically exhibit artifacts like gaps and intersections (1). We
determine a (rather large) set of critical vertices in a lo-
cal neighborhood around these artifacts (2) and then convert
these vertices into a (smaller) set of critical cells (3). The in-
put patches are clipped against the critical cells (4) and the
interior of the cells is reconstructed using a variant of the
Marching Cubes algorithm (5). This preliminary reconstruc-
tion is then simplified to get the final result (6). Note that the
model geometry away from the artifacts is not affected by
our reconstruction algorithm and hence any structure in the
input patches is well preserved.

vertices to create surface patches that actually close the gaps
and resolve the intersections.

Let us call a grid vertex v ∈ Z
3 ambiguous if

Boxγ(v) := {w ∈ Z
3 : ||w−v||∞ ≤ γ}

is intersected by two or more patches of M. If v is an am-
biguous vertex, we set all vertices ∈ Boxγ(v) to critical, i.e.

Cγ :=
[

v ambiguous
Boxγ(v)

Figure 3 shows some configurations of M and the corre-
sponding ambiguous and critical vertices.

Ambiguous vertices can efficiently be located by using
a (temporary) octree of depth k. We shift the origin of the
octree by (.5, .5, .5)T such that the centers of the finest-level

c© The Eurographics Association and Blackwell Publishing 2005.

Stephan Bischoff & Leif Kobbelt / Structure Preserving CAD Model Repair

octree nodes have integer coordinates, i.e. they correspond
to grid vertices. If n is an octree node, we denote by cn ∈ Z

3

its center and by 0 ≤ dn ≤ k its depth. Hence, if n is a finest-
level node (dn = k) we want to check whether

Box(n) := Boxγ(cn)

is intersected by two or more different patches. Our idea is to
build up a hierarchy of nested boxes which matches the oc-
tree hierarchy. Hence, if n is an interior octree node, Box(n)
is chosen such that it contains the boxes of all descendants
of n. A short calculation shows that this property is fulfilled
by letting

Box(n) := Boxhn(cn), hn = 2k−dn−1 −1/2+ γ

Note in particular, that a triangle intersecting the box of a
finest-level node n will also intersect the boxes of all ances-
tors of n. We now recursively insert each triangle of M into
the octree using an algorithm similar to that of Ju [Ju04].
Starting with the root node, a triangle is inserted into a node
n if it intersects Box(n). This can efficiently be tested using
the separating axes theorem [GLM96]. If a node n contains
triangles belonging to different patches, n is split and the tri-
angles are distributed to its children. In the end, the center
cn ∈ Z

3 of each finest-level node n that contains triangles
belonging to two or more patches represents an ambiguous
vertex.

To increase the resolution of the critical region near M,
we also compute the directed distances of each critical vertex
v∈Cγ to M by shooting rays along the coordinate axes (Fig-
ure 3). Fortunately, the temporary octree we built up above
already provides a spatial search structure to speed up the
ray-model intersection tests. If we find an intersection within
unit distance, we denote the triple (v,d,δ) consisting of the
vertex v, the direction

d ∈ ±{(1,0,0)T ,(0,1,0)T ,(0,0,1)T}

and the distance δ ∈ [0,1] as a cut. The cuts will later be
used for resampling the geometry at the points v + δd. In
the figures, cuts are illustrated as small arrows attached to v
and pointing in direction d, see Figure 3.

3.3. Eroding Cγ

In the previous stage we computed a set C := Cγ of critical
vertices which we think of as particles that fill in all gaps of
M. Later stages of the algorithm will extract the boundary
of C to create surface patches that actually close these gaps
and resolve the intersections. As this fill-in should alter M
as little as possible, C should be as small as possible. Hence
we replace C by a minimal set C′ ⊂ C that still fills in all
gaps. We get C′ by applying a topology-preserving erosion
operator on C, i.e. we successively remove critical vertices
from C that are simple. (Note that we only remove critical
vertices but not the cuts.) Intuitively, a vertex is called sim-
ple, if its removal does not change the topology of C, i.e. if it

patch ambiguous vertex
cuts critical vertex ∈C1

Figure 3: Example configurations. Some possible configu-
rations of patches Q ∈M are shown above. Note that each
patch is a closed triangle mesh. The critical vertices Cγ fill
the regions where two or more different patches of M are
less than 2γ away from each other. Cuts effectively provide
sub-voxel accuracy near M.

does not create new connected components or handles. The
exact definition of simplicity and an efficient method to de-
termine whether a vertex is simple from its 26-neighborhood
is given in [BK03]. However, we have to take into account,
that in our case the cuts represent material, while in [BK03]
the cuts represent empty space.

We proceed as follows: For each critical vertex v, we com-
pute its distance d(v) to the boundary of Cγ. If v has a non-
critical neighbor, we set d(v) = 0. The distances of the other
critical vertices are computed by a distance transform on Cγ
that respects the cuts, i.e. distances are not propagated over
a cut. We then remove d2γe layers of simple critical vertices
to get a new set C′ of critical vertices (Figures 4(left) and 5):

for layer=0,1,...,d2γe do
for all vertices v with d(v)=layer do

if v is simple then
set v to non-critical

As the following reconstruction will take place along the
cuts, there should be cuts between non-critical vertices w 6∈
C′ and critical vertices v ∈C′. Furthermore, there should be
no cuts between vertices v ∈ C′ and M (Figures 4(right)
and 5). Hence, if v is a critical vertex, we remove all cuts
(v,d,δ) and instead insert cuts (w,v − w,δsmooth) for all

c© The Eurographics Association and Blackwell Publishing 2005.

Stephan Bischoff & Leif Kobbelt / Structure Preserving CAD Model Repair

non-critical 6-neighbors w of v. Here, δsmooth is a special
value to tell the reconstruction algorithm that w + δsmoothd
corresponds to a fill-in and that the corresponding vertices
should be smoothed in a postprocessing phase.

Figure 4: Erosion. To the left we see the set C2 of critical
vertices that fills in a gap between two patches. The green
vertices are removed by a topology-preserving erosion op-
eration. The red vertices cannot be removed without discon-
necting the two patches. Right: Each remaining (blue) ver-
tex is replaced by cuts pointing into the vertex. All cuts now
form the interface that is extracted in the later stages of the
algorithm to close the gaps by surface patches.

critical cell critical vertex ∈C′

removed cuts additional cuts

Figure 5: Example configurations (cont.) The topology-
preserving erosion operation (Section 3.3) shrinks Cγ to a
smaller set C′ which is surrounded by additional cuts. Grid
cells that are adjacent to a critical vertex ∈ C′ or that are
intersected by multiple patches are marked as critical (Sec-
tion 3.4).

3.4. Clipping

In this stage we clip M against a set of critical grid cells D
into an inside and an outside component such that the inside
component contains all the artifacts of the model. The inside
component is then discarded and replaced by a well-behaved
reconstruction as described in Section 3.5.

First, we need to determine the set of critical grid cells D.
As D should cover all artifacts of M, i.e. all intersections
and all gaps, we set a grid cell to critical,

• if it contains two or more patches of M (intersection) or
• if one of its incident vertices is critical (gap)

Figure 5 shows some example configurations of M and their
corresponding critical grid cells. In the following, we will
denote a grid face as critical, if it shares an un-critical and a
critical cell. A grid edge is called critical, if it is incident to
a critical face.

The basic idea is to split all triangles of M along the criti-
cal faces into sub-triangles such that each sub-triangle either
lies completely inside or completely outside the critical re-
gion D. We then simply discard those triangles that lie com-
pletely inside.

Although the mathematics of intersecting planar faces is
straightforward, the actual implementation of an efficient
and numerically robust clipping algorithm is a hard prob-
lem. In the following we will present a new algorithm that is
specifically tailored to our setup.

• At all times during the run of the algorithm the meshes
stay triangle meshes. We do not have to cope with gen-
eral polygons of arbitrary valence, containing holes, etc.
In fact, we modify the meshes using only the Euler-
operations split-1-to-3 and split-2-to-4 (edge-split) which
are provided as elementary operations by most mesh li-
braries.

• By using a mixed fixed-point/adaptive-precision represen-
tation for the vertex locations, we achieve considerable
speedups without sacrifying robustness or accuracy.

The clipping proceeds in three phases which are illus-
trated in Figure 6. In phase I we intersect the critical edges
and the model faces and insert the intersection points into
the model using 1-to-3 or 2-to-4 splits. In phase II we inter-
sect the critical faces and the model edges, again inserting
the intersection points using 2-to-4 splits. This process au-
tomatically produces the edges that result from intersecting
a model triangle with all critical grid faces. Thus each trian-
gle now either lies completely inside or completely outside
the critical cells. In phase III we then simply discard those
triangles whose center of gravity lies in a critical cell.

To effectively enumerate the critical edges and critical
faces, we use the recursive octree traversal technique pro-
posed by Ju et al [JLSW02]. However, to speed up the al-
gorithm, before descending into an octree cell, we first test

c© The Eurographics Association and Blackwell Publishing 2005.

Stephan Bischoff & Leif Kobbelt / Structure Preserving CAD Model Repair

whether the current triangle really intersects the cell using
the separating axis theorem.

Initial configuration Phase I

Phase II Phase III

Figure 6: Initial configuration: A triangle mesh is to be
clipped against a set of critical grid cells. Phase I: The in-
tersections of the grid edges with the triangles are inserted
into the mesh by 1-to-3-splits or 2-to-4-splits. Phase II: The
intersections of mesh edges and grid faces are inserted by
2-to-4-splits. Now each triangle either lies completely inside
or completely outside the set of critical grid cells. Phase III:
The interior triangles are discarded.

Implementation The algorithm above only works if inter-
sections are reliably detected and correctly calculated. How-
ever, just switching to exact arithmetics will extremely slow
down the algorithm. For this reason, we use a mixed repre-
sentation. Let the positions of the input vertices of the model
be quantized to N bits. For each vertex v, we store

• its exact position pexact,v using an adaptive precision rep-
resentation [Pri91, She97].

• its approximate position papprox,v using a fixed point rep-
resentation of N bits width

such that (remember that the extent of the grid is 2k):

||pexact,v −papprox,v|| < η := 2k−N

We can then use the approximate positions for evaluating
“easy rejects” when computing intersection points. Consider
for example the intersection of an edge e and a grid face
f = [fmin, fmax]. We first check whether eapprox intersects the
box

[fmin − (η,η,η)T , fmax +(η,η,η)T]

This test can exactly be evaluated in fixed-point arithmetics
using a maximum of 3N bits only [Ju04]. Only if this test is

successful, we calculate the real intersection point using ex-
act arithmetics. Analogous considerations apply for triangle-
edge intersections, edge-edge intersections, triangle-cell in-
tersections, etc.

3.5. Reconstruction

We now present an algorithm to reconstruct the surface in
the interior of the critical cells. This algorithm uses elements
of the feature–sensitive marching cubes and dual contouring
algorithms that were proposed by Kobbelt et al. [KBSS01]
and Ju et al. [JLSW02] and later extended by Varadhan et
al. [VKK∗03] to arbitrary grids of directed distances. How-
ever, in addition to being feature-sensitive, our algorithm can
also handle multiple cuts per edge and seamlessly connects
the reconstruction inside the critical cells to the outside ge-
ometry.

We first enumerate all interior grid faces, again using a
recursive octree traversal technique. For each interior grid
face, we collect the cuts that are located on the edges of this
face. Note that a grid edge might support more than two cuts,
if a single patch intersects that edge multiple times. By con-
struction, the number of cuts is always even. Furthermore,
cuts pointing in clockwise (cw) direction alternate with cuts
pointing in counter-clockwise (ccw) direction. We now con-
nect these cuts by edges: a cw cut is connected to the next
ccw cut by going ccw around the grid face (Figure 7, left),
see also [Blo88, NH91]. If we connect two cuts from the
same grid edge, we insert an auxiliary point at the face center
to prevent topological degeneracies. Note that by construc-
tion, the edges do not intersect.

We then visit each critical cell in turn. The edges on the
cell’s faces were either created as described above or are
boundary edges of the outside geometry. In any case, these
edges form one or more connected loops around the cell.
Each of these loops is triangulated by a triangle fan (Fig-
ure 7, right). As the edges do not intersect, the loops will
also be free of intersections and so are the triangle fans.

Figure 7: We connect the cuts incident to a grid face by
edges (left). For each grid cell these edges and the bound-
ary edges of the outside geometry form loops around the
cell. Each of these loops is triangulated by a fan of trian-
gles (right).

c© The Eurographics Association and Blackwell Publishing 2005.

Stephan Bischoff & Leif Kobbelt / Structure Preserving CAD Model Repair

The position p of the fan’s center vertex is computed by
minimizing the squared distances to the supporting planes of
the triangles that intersect the grid cell [Lin00]. Note that, if
the cell contains a feature edge or corner, this construction
will place p exactly on the feature. If the computed point
p happens to lie outside the cell or if it does not lie on all
supporting planes, it is set to invalid. Invalid vertices are
smoothed in the post-processing stage. Finally we flip the
edges in interior grid faces, such that the center vertices be-
come connected. This guarantees feature vertices in neigh-
boring cells to be connected by a (feature) edge (Figure 8).

sampled vertex smoothed vertex

Figure 8: Example configurations (cont.) The geometry in
the critical grid cells is replaced by a reconstructed surface
R which is extracted from the cuts using a variant of the
Marching Cubes algorithm. Some of the vertices of R can
directly be sampled from M. Others, however, correspond
to those parts of R that cover the gaps of M. The position of
these vertices is determined by an iterative smoothing filter.

3.6. Postprocessing

Smoothing After the reconstruction stage the positions of
the following types of vertices is not yet determined.

• Vertices that correspond to those parts of the reconstruc-
tion that span gaps of M and hence have no canonical po-
sition. These are the vertices that either are derived from
cuts (v,d,δsmooth) or are the centers of triangle fans that
are created in an empty grid cell.

• Vertices that are the centers of triangle fans in grid cells
that contain conflicting geometry — usually due to an in-
sufficient refinement depth k.

In both cases we smooth the vertex positions by applying an
iterative smoothing filter [Tau95].

Decimation The output of the reconstruction algorithm is
a closed and manifold triangle mesh T which approximates
the input model M but has all artifacts resolved. However,
T usually contains much more vertices and faces than M0
due to the artificial refinement near the gaps. This can be
attributed to two effects

• Every patch of the input model is represented from both
sides by T .

• The higher the resolution of the underlying grid, the more
triangles are needed for reconstructing the model in the
critical regions.

Accordingly, we have two options for reducing the output
complexity. First, the mesh T usually consists of multiple
connected components, only few of which really contribute
to the outside of M. The other components merely triangu-
late M from the inside and hence can be easily identified
and discarded. The identification can be done manually or
automatically by a flood fill process as in [Ju04]. Second,
we apply a standard feature-sensitive mesh decimation algo-
rithm to T [GH97]. However, to preserve the input tessella-
tion of M, we only do this in regions that were reconstructed
anyway.

4. Results

We have evaluated our method on a number of CAD mod-
els of different complexities (Figures 9, 10, 11). All timings
were taken on a 2GB, 3.2 GHz Pentium 4 computer.

Choice of input parameters As our algorithm only recon-
structs the regions around artifacts and as this local recon-
struction is further decimated in the postprocessing phase,
the output complexity grows typically only sub-linearly with
respect to the grid resolution. Hence we can use high grid
resolutions to improve the reconstruction quality without in-
curing an undue overhead of generated triangles. If the tes-
sellation of the input patches is sufficiently accurate, we can
set γ = 1 without missing any gaps even for high resolutions.

Asymptotic behaviour If the artifacts form a one dimen-
sional subspace e.g. along the intersection of two surfaces
or along two abutting patches, the number of critical ver-
tices and cells should in theory grow linearly with respect to
the grid resolution for a constant γ. Our experimental results
match well with this theoretical statement, only the Camera
model (Figure 10) is an exception because it contains a lot
of interior geometry and “double walls”. These artifacts can-
not suffiently be resolved and hence the critical vertices and
cells actually form a two or three-dimensional subspace. In
these regions the octree has to be refined to maximum depth,
which causes a significant increase in memory usage.

c© The Eurographics Association and Blackwell Publishing 2005.

Stephan Bischoff & Leif Kobbelt / Structure Preserving CAD Model Repair

Helicopter, 10 k triangles in 60 patches, γ = 1
resolution 10243 20483 40963 81923

#critical vertices 242 k 505 k 1037 k 2079 k
#critical cells 68 k 141 k 277 k 561 k
#output triangles 28 k 34 k 44 k 60 k
time 47 s 116 s 291 s 868 s

Figure 9: Helicopter

5. Discussion

We have presented a new and efficient algorithm for fully
automatic and selective repair of tessellated CAD models.
However, a number of issues are still open for future work.

Artifacts within a single patch Our algorithm does reli-
ably detect and resolve artifacts between different patches.
However, it does not resolve artifacts within a single patch,
like e.g. self-intersections. Of course, we could extend our
algorithm to also handle such artifacts, but that would signif-
icantly decrease its performance. The reason is, that during
the construction of the vertex octree, we often have to check
whether a certain box contains two or more patches. Cur-
rently this check is very fast, as we only have to compare the
patch IDs of the participating triangles. However, if we also
wanted to detect self-intersections within a single patch, we
would actually have to intersect each triangle with all other
triangles in the box. This can be done very fast [SAUK04]
but as none of our models has self-intersecting patches, we
conclude that such a situation does not happen very often in
practice. If it does, the user has to manually divide the patch
into non-self-intersecting subpatches.

Selectivity Our algorithm does only modify critical regions
of the model, i.e. regions containing intersections or gaps,
and preserves the structure of the tessellation everywhere
else. These critical regions are determined fully automat-
ically from a global user-defined parameter γ0. It should,

Camera, 19 k triangles in 83 patches, γ = 1
resolution 1283 2563 5123

#critical vertices 192 k 655 k 1978 k
#critical cells 83 k 270 k 874 k
#output triangles 33 k 61 k 81 k
time 56 s 145 s 639 s

Figure 10: Camera

however, be possible to let this parameter locally depend on
the underlying model geometry such as to close gaps of dif-
ferent sizes. It should also be possible to apply one of the
surface oriented mesh repair algorithms in a preprocessing
step to segment the input into large and manifold patches
wherever possible and apply our method only to those re-
gions where the surface oriented methods fail.

Reconstruction We reconstruct the surface in the critical
regions from a grid of directed distances using a novel
contouring algorithm. This algorithm correctly resolves any
self-intersections based on the local configuration of the cuts
around a grid face only. However, other (possibly global)
criteria might also be incorporated. For example, we might
strive for a reconstruction of minimal genus or of minimal
number of connected components. For a standard grid of
signed distances and the Marching Cubes algorithm, this has
already been explored by Andujar et al. [ABC∗04].

Space and time efficiency Due to its selectivity, our algo-
rithm already proved to be quite space and time efficient.
In our implementation we have used standard libraries for
the octree and mesh data structures and for the exact arith-
metic and the mesh decimation framework. We believe that
we could achieve considerable speed ups and lower memory
usage if we used custom-tailored data structures and algo-
rithms instead. As our algorithm operates on local informa-
tion only, it should also be easily possible to generalize it to
parallel machines.

c© The Eurographics Association and Blackwell Publishing 2005.

Stephan Bischoff & Leif Kobbelt / Structure Preserving CAD Model Repair

Ventilator, 269 k triangles in 12 patches, γ = 2
resolution 10243 20483 40963 81923

#critical vertices 238 k 460 k 828 k 1649 k
#critical cells 64 k 113 k 229 k 523 k
#output triangles 503 k 512 k 529 k 556 k
time 83 s 123 s 193 s 303 s

Figure 11: Ventilator

References

[ABA02] ANDUJAR C., BRUNET P., AYALA D.:
Topology-reducing surface simplification using a discrete
solid representation. ACM Trans. Graph. 21, 2 (2002),
88–105.

[ABC∗04] ANDUJAR C., BRUNET P., CHICA A.,
NAVAZO I., ROSSIGNAC J., VINACUA A.: Optimizing
the topological and combinatorial complexity of isosur-
faces. Computer-Aided Design to appear (2004).

[BDK98] BAREQUET G., DUNCAN C., KUMAR S.:
RSVP: A geometric toolkit for controlled repair of solid
models. IEEE Trans. on Visualization and Computer
Graphics 4, 2 (1998), 162–177.

[BK03] BISCHOFF S., KOBBELT L.: Sub-voxel topology
control for level-set surfaces. Computer Graphics Forum
22, 3 (September 2003), 273–280.

[Blo88] BLOOMENTHAL J.: Polygonization of implicit
surfaces. Computer Aided Geometric Design 5, 4 (1988),
341–355.

[BS95] BAREQUET G., SHARIR M.: Filling gaps in the
boundary of a polyhedron. Computer-Aided Geometric
Design 12, 2 (1995), 207–229.

[BW92] BØHN J. H., WOZNY M. J.: Automatic CAD

model repair: Shell-closure. In Proc. Symp. on Solid
Freeform Fabrication (1992), pp. 86–94.

[DMGL02] DAVIS J., MARSCHNER S., GARR M.,
LEVOY M.: Filling holes in complex surfaces using vol-
umetric diffusion. In Proc. International Symposium on
3D Data Processing, Visualization, Transmission (2002),
pp. 428–438.

[FPRJ00] FRISKEN S. F., PERRY R. N., ROCKWOOD

A. P., JONES T. R.: Adaptively sampled distance fields:
A general representation of shape for computer graphics.
In Proc. SIGGRAPH 00 (2000), pp. 249–254.

[GH97] GARLAND M., HECKBERT P. S.: Surface simpli-
fication using quadric error metrics. In Proc. SIGGRAPH
97 (1997), pp. 209–216.

[Gib98] GIBSON S. F. F.: Using distance maps for accu-
rate surface representation in sampled volumes. In Proc.
IEEE Symposium on Volume Visualization (1998), pp. 23–
30.

[GLM96] GOTTSCHALK S., LIN M. C., MANOCHA D.:
OBBTree: a hierarchical structure for rapid interference
detection. In Proc. SIGGRAPH 96 (1996), pp. 171–180.

[GTLH01] GUÉZIEC A., TAUBIN G., LAZARUS F.,
HORN B.: Cutting and stitching: Converting sets of poly-
gons to manifold surfaces. IEEE Transactions on Visual-
ization and Computer Graphics 7, 2 (2001), 136–151.

[GW01] GUSKOV I., WOOD Z. J.: Topological noise re-
moval. In Proc. Graphics Interface 2001 (2001), pp. 19–
26.

[JLSW02] JU T., LOSASSO F., SCHAEFER S., WARREN

J.: Dual contouring of hermite data. In Proc. SIGGRAPH
02 (2002), pp. 339–346.

[Ju04] JU T.: Robust repair of polygonal models. In Proc.
SIGGRAPH 04 (2004), pp. 888–895.

[KBSS01] KOBBELT L. P., BOTSCH M., SCHWANECKE

U., SEIDEL H.-P.: Feature sensitive surface extrac-
tion from volume data. In Proc. SIGGRAPH 01 (2001),
pp. 57–66.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes:
A high resolution 3D surface construction algorithm. In
Proc. SIGGRAPH 87 (1987), pp. 163–169.

[Lie03] LIEPA P.: Filling holes in meshes. In Proc. Sym-
posium on Geometry Processing 03 (2003), pp. 200–205.

[Lin00] LINDSTROM P.: Out-of-core simplification of
large polygonal models. In Proc. SIGGRAPH 02 (2000),
pp. 259–262.

[MD93] MÄKELÄ I., DOLENC A.: Some efficient pro-
cedures for correcting triangulated models. In Solid
Freeform Fabrication Symposium Proceedings (1993),
pp. 126–134.

[NH91] NIELSON G. M., HAMANN B.: The asymptotic
decider: resolving the ambiguity in marching cubes. In

c© The Eurographics Association and Blackwell Publishing 2005.

Stephan Bischoff & Leif Kobbelt / Structure Preserving CAD Model Repair

VIS ’91: Proceedings of the 2nd conference on Visualiza-
tion ’91 (1991), pp. 83–91.

[NT03] NOORUDDIN F., TURK G.: Simplification
and repair of polygonal models using volumetric tech-
niques. IEEE Transactions on Visualization and Com-
puter Graphics 9, 2 (2003), 191–205.

[Pri91] PRIEST D. M.: Algorithms for arbitrary precision
floating point arithmetic. In Tenth Symposium on Com-
puter arithmetic (1991), pp. 132–143.

[SAUK04] SHIUE L.-J., ALLIEZ P., URSU R., KETTNER

L.: A Tutorial on CGAL Polyhedron for Subdivision Al-
gorithms. Tech. rep., 2004.

[She97] SHEWCHUK J. R.: Adaptive precision floating-
point arithmetic and fast robust geometric predicates. Dis-
crete & Computational Geometry 18 (1997), 305–363.

[Tau95] TAUBIN G.: A signal processing approach to fair
surface design. In Proc. SIGGRAPH 95 (1995), pp. 351–
358.

[TL94] TURK G., LEVOY M.: Zippered polygon meshes
from range images. In Proc. SIGGRAPH 94 (1994),
pp. 311–318.

[VKK∗03] VARADHAN G., KRISHNAN S., KIM Y., DIG-
GAVI S., MANOCHA D.: Efficient max-norm distance
computation and reliable voxelization. In Proc. Sympo-
sium on Geometry Processing (2003), pp. 116–126.

c© The Eurographics Association and Blackwell Publishing 2005.

