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The problem

L is a second order elliptic operator

Ω is a Lipschitz domain with boundary Γ = ΓD ∪̇ΓN

Solve

Lu = f in Ω

for u, subject to Dirichlet and von Neumann boundary conditions

u = 0 on ΓD, 〈∇u,n〉 = h on ΓN ,

where f and h are given data.



The weak form of the problem

Find u ∈ V such that

a(u, v) = l(v) for all v ∈ V

where

V = {u ∈ H1(Ω) | u|ΓD
= 0}

a : V × V → R is the symmetric bilinear form corresponding to L.

The linear functional l : V → R contains the right-hand side f and the Neumann
function h.



The Galerkin projection...

...replaces V by the n-dimensional space

Sh = span{φ1, . . . , φn} ⊂ V.

Find uh ∈ Sh such that

a(uh, v) = l(v) for all v ∈ Sh

⇔ Solve Aq = b where

A = (a(φi, φj))i,j=1,...,n is the stiffness matrix

b = (l(φ1), . . . , l(φm)) is the right-hand side

and the vector q contains the coefficients of uh,

uh =
n

∑

i=0

qiφi



Desirable properties

1. Convergence: Refinement (h → 0) implies convergence to the exact soluti-
on. While local refinement is preferred in practice, uniform refinement is the
basis for standard convergence proofs.

2. Regularity: We aim at conforming methods with basis functions at least in
H1(Ω). In contrast to conventional FEM wisdom, additional global smooth-
ness is regarded as beneficial.

3. Support: The basis functions should have a small and compact support.

4. Accurate representation of geometry: complex geometries should be ex-
actly resolved already on coarse grids.



The isoparametric approach

Ω0 standard geometry (e.g. a triangle)

N1, . . . , Nm shape functions (e.g. [linear] polynomials)

The domain Ω is partitioned into a mesh Tk with grid points xk
i (e.g. corners of

the triangle). Its elements (triangles) are described by geometry functions

Gk(ξ) =
∑

Nj(ξ)x
k
j

The basis functions of S ⊂ V are Φi = Nj ◦ G−1
k



The isoparametric approach (continued)

h refinement: split the elements

p refinement: increase the degree of the shape functions Ni

Well-established a posteriori error estimators are available to guide the refine-
ment.

The global smoothness of the functions φi is C0

Most obvious drawback: no exact geometry description



Isogeometric Analysis

(T. Hughes et al. 2005) uses only one global geometry function

G : Ω0 = [0,1]2 → Ω

G(ξ) =
∑

i

Ni(ξ)Pi with tensor-product B-splines Ni

The basis functions of S ⊂ V are φi = Ni ◦ G−1

h refinement: knot insertion p refinement: degree elevation

k refinement: do both

Drawback of tensor-product splines: All refinements act glo bally!
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From tensor-product B-splines to T-splines

Coarse tensor-product B-spline



From tensor-product B-splines to T-splines

Error estimator indicates necessary refinements



From tensor-product B-splines to T-splines

Tensor-product splines require global refinements

black dots: control points associated with “unwanted” basis functions



From tensor-product B-splines to T-splines

T-splines support local refinement



Locally refinable tensor-product splines

Forsey & Bartels 1995: hierarchical splines

Weller & Hagen 1995: splines with knot line segments

Greiner & Hormann 1997: scattered data fitting with hierarchical splines

Sederberg et al. 2003, 2004: T-splines

Deng, Cheng and Feng 2006: Dimensions of certain splines (e.g. C1, degree
(3,3)) over T-meshes
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T-meshes

The edges intersect in grid points.

No additional edges connecting grid points can be added.

The T-mesh partitions the box ΩI into regular polygons (patches).



Blending functions associated with T-meshes...

...are products of B-splines

Ni,j(s, t) = Bσ(i)(s)Bτ(j)(t)



Refinement

The patches in the T-mesh marked by the error estimator are split.

We use a state-of-the-art error estimator , which is based on hierarchical bases
and bubble functions.
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Examples

The three examples are adopted from T. Hughes et al. (2005).

1: Stationary heat conduction

2: Linear Elasticity

3: Advection Dominated Advection–Diffusion



Example 1: Stationary heat conduction

Solve the Laplace equation ∆u = 0 on

subject to

〈∇u, n〉 = 〈∇f, n〉 on ΓN u = 0 on ΓD

where f is the exact solution

f(r, φ) = r2/3 sin

(

2φ − π

3

)



Example 1: Stationary heat conduction

Description of the domain: 2 biquadratic patches, joined C0 along the diagonal
(no singular parameterization, as in Hughes et al, 2005)

We compared uniform refinement with

“Rule of thumb” refinement adaptive Refinement

475 dof 652 dof



Example 1: Stationary heat conduction

Exact L2 error Exact energy error

The use of T-splines leads to a significant improvement.



Example 2: Linear Elasticity

Solve the Laplace equation divσ(u) = 0

subject to Dirichlet and von Neumann boundary conditions derived from the exact
solution, which is known for a homogeneous and isotropic material.

description of the domain: global C0 parameterization without singular points



Example 2: Linear Elasticity

Error of σx at top of circle Exact energy error

The use of T-splines leads to a slight improvement.



Example 2: Linear Elasticity

The refined T-mesh (mapped onto Ω) after 5 refinement steps, 4302 dof.



Example 3: Advection Dominated Advection–Diffusion

Solve κ∆u + a · ∇u = 0 with diffusion coefficient κ = 10−6 and advection
velocity a = (sin θ, cos θ) for θ = 45◦.

grey: estimated position of sharp layers

is solved using SUPG stabilization



Example 3: Advection Dominated Advection–Diffusion

T-mesh Solution patches marked for refi-
nement
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Example 3: Advection Dominated Advection–Diffusion

T-mesh Solution patches marked for refi-
nement

Refinement of T-splines is not as local as we hoped it to be!

Insertion of a grid point may trigger a chain of additional grid point insertions, in
order to get a refinement of the previous T-spline space.

This seems to be especially worse for refinement along diagonals.



Effect of grid point insertions

Original T-spline grid



Effect of grid point insertions

One grid point is to be inserted



Effect of grid point insertions

This blending function is affected.



Effect of grid point insertions

It is to be split into two blending functions.



Effect of grid point insertions

This requires another grid point.



Outline

• Preliminaries: Galerkin projection, Isogeometric approach

• Tensor-product splines and T-splines

• Examples

• Future Work: EXCITING



EXCITING Future Work

EXCITING is a project in FP7 of the EU, program SST (sustainable surface trans-
portation), 2008-2011, negotiation pending.

Exact Geometry Simulation for Optimized Design of Vehicles and Vessels

“EGSODVV”

We will apply isogeometric analysis to functional free-form surfaces and co-
re components of vehicles and vessels: ship hulls, ship propellers, car com-
ponents and frames.
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The structure of EXCITING

JKU Linz / B. Jüttler
VA Tech HYDRO (ship propellers)
TU Munich / B. Simeon
SIEMENS (car components)
NTU Athens / P. Kaklis
HRS (ships)
SINTEF / T. Dokken
DNV (ships)
INRIA / B. Mourrain



EXCITING challenges

Eliminate mesh generation. All computational tools will be based on the same
representation of geometry.

Fluid structure interaction. Isogeometric solver with exact description of the
interface.

Automated design optimization. Build design optimization loop based on iso-
geometric numerical simulation.

Isogeometric toolbox. Make the specific tools (for propellers, ship hulls, car
components) which will be developed in the project useful for a wider range of
problems.


