
Machine learning methodology: Overfitting,
regularization, and all that

CS194-10 Fall 2011

CS194-10 Fall 2011 1

Outline

♦ Measuring learning performance

♦ Overfitting

♦ Regularization

♦ Cross-validation

♦ Feature selection

CS194-10 Fall 2011 2

Performance measurement

We care about how well the learned function h generalizes to new data:

GenLossL(h) = Ex,yL(x, y, h(x))

Estimate using a test set of examples drawn from
same distribution over example space as training set

Learning curve = loss on test set as a function of training set size
(often averaged over many trials)

generalization loss

of examples

slow learning

fast learning

This is a way of evaluating learning algorithms

CS194-10 Fall 2011 3

Performance measurement contd.

E.g., suppose data generated by quadratic + noise:
– Quadratic h is the realizable case (can express true f up to noise);

learns quickly, reaches noise floor
– Linear h is the non-realizable case (restricted H or missing inputs);

suffers additional structural error
– High-degree polynomial h: realizable but redundant; learns slowly

generalization loss

of examples

nonrealizable

redundant
realizablenoise floor

structural error

CS194-10 Fall 2011 4

Training error

During learning, we have access to training error (empirical loss);
things may look quite different given fixed training set:

empirical loss

of examples

nonrealizable

redundant
realizablenoise floor

CS194-10 Fall 2011 5

Overfitting

Fix the training set size, vary H complexity (e.g., degree of polynomials)

Example from Bishop, Figure 1.5

M

E
R

M
S

0 3 6 9
0

0.5

1
Training
Test

For any given N , some h of sufficient complexity fits the data
but may have very bad generalization error!!

CS194-10 Fall 2011 6

Regularization

Reduces overfitting by adding a complexity penalty to the loss function

L2 regularization: complexity = sum of squares of weights
Combine with L2 loss to get ridge regression:

ŵ = arg min
w

(Y−Xw)T (Y−Xw) + λ‖w‖2
2

where λ ≥ 0 is a fixed multiplier and ‖w‖2
2 =

∑D
j = 1 w2

j

w0 not penalized, otherwise regularization effect depends on y-origin

CS194-10 Fall 2011 7

L2 Regularization Solution

First “center” the data:
– Fix w0 = y = 1

N

∑N
i = 1 yi

– Drop dummy x0 from data matrix X and set x′ij = xij − xj

Now can write

ŵ = arg min
w

(Y−Xw)T (Y−Xw) + λwTw

Derivative with respect to w is

−2XTY + 2XTXw︸ ︷︷ ︸
as before

+2λw

and setting this to zero gives

ŵ = (XTX + λI)−1XTY

CS194-10 Fall 2011 8

MAP (maximum a posteriori) interpretation

General MAP learning:

ĥ = arg max
h

P (data | h)P (h)

= arg min
h
− log P (data | h)︸ ︷︷ ︸

as in MLE

− log P (h)︸ ︷︷ ︸
complexity penalty

For regression, suppose we think weights are a priori independent and (except
for w0) probably small:

P (hw) =

D∏
j = 1

N(wj | 0, ρ2) = αD
ρ e−

∑
j w2

j/2ρ
2

= αD
ρ ew

Tw/2ρ2

CS194-10 Fall 2011 9

MAP interpretation contd.

Assuming Gaussian regression model with variance σ2, MAP formula is

ŵ = arg min
w

(
1

2σ2
(Y−Xw)T (Y−Xw)−Nασ

)
+

(
1

ρ2
wTw−Dαρ

)
= arg min

w
(Y−Xw)T (Y−Xw) +

σ2

ρ2
wTw

which is identical to L2 regularization with λ = σ2/ρ2

CS194-10 Fall 2011 10

Effect of L2 regularization

As λ increases, wTw decreases

Example from Hastie, Fig 3.8 (scale is inverse of λ):

CS194-10 Fall 2011 11

L1 regularization (LASSO)

ŵ = arg min
w

(Y−Xw)T (Y−Xw) + λ‖w‖1

where λ ≥ 0 and ‖w‖1 =
∑D

j = 1|wj|

Looks like a small tweak, but makes a big difference!

1) No more closed-form solution
– use quadratic programming

minw(Y−Xw)T (Y−Xw) s.t. ‖w‖1 ≤ s
– convex problem, polytime (but expensive) solution

2) LASSO = MAP learning with Laplacian prior

P (wj) =
1

2b
e−

|wj |
b

where b is the scale

CS194-10 Fall 2011 12

Effect of L1 regularization

Laplace prior encourages sparsity, i.e., mostly zero weights

Example from Hastie et al., Fig 3.10:

CS194-10 Fall 2011 13

Cross-validation

Regularization helps but still need to pick λ.
Want to minimize test-set error, but we have no test set!

Idea: make one (a validation set) by pretending we can’t see the labels

Try different values of λ, learn ĥλ on rest of data,
test ĥλ on validation set, pick best λ, train on all

Problem: small validation set ⇒ large error in estimated loss
large validation set ⇒ small training set ⇒ bad ĥλ

CS194-10 Fall 2011 14

Cross-validation contd.

K-fold cross-validation: divide data into K blocks
for k = 1 to k

train on blocks except kth block, test on kth block
average the results, choose best λ

Common cases: K = 5, 10 or K = N (LOOCV)

High computation cost: K folds × many choices of model or λ

CS194-10 Fall 2011 15

Feature selection

Another way to get a sparse predictor: pick out a small set of the most
relevant features

A set of features F ⊆ {X1, . . . , XD} is minimally relevant
if there is some h definable using F such that

1) no h′ defined on a superset of F has lower generalization loss
2) any h′′ defined on a subset of F has higher generalization loss

Any feature not in a minimally relevant set is irrelevant

Problems in choosing a minimally relevant set:
– inaccurate estimate of generalization loss

⇒ some features appear relevant when they’re not
– NP-hard to find a set even with perfect estimates

Forward selection: greedily add feature that decreases CV error most
Backward selection: greedily delete feature that decreases CV error most

CS194-10 Fall 2011 16

Summary

Learning performance = prediction accuracy measured on test set

Trading off complexity and degree of fit is hard

Regularization penalizes hypothesis complexity
L2 regularization leads to small weights
L1 regularization leads to many zero weights (sparsity)

Feature selection tries to discard irrelevant features

Cross-validation enables selection of feature sets or regularization penalties
by estimating test-set error on parts of the training set

CS194-10 Fall 2011 17

