
1 INTRODUCTION

In which we try to explain why we consider artificial intelligence to be a subject most
worthy of study, and in which we try to decide what exactly it is, this being a good
thing to decide before embarking.

Humankind has given itself the scientific name homo sapiens—man the wise—because our
mental capacities are so important to our everyday lives and our sense of self. The field of
artificial intelligence, or AI, attempts to understand intelligent entities. Thus, one reason toARTIFICIAL

INTELLIGENCE
study it is to learn more about ourselves. But unlike philosophy and psychology, which are
also concerned with intelligence, AI strives to build intelligent entities as well as understand
them. Another reason to study AI is that these constructed intelligent entities are interesting and
useful in their own right. AI has produced many significant and impressive products even at this
early stage in its development. Although no one can predict the future in detail, it is clear that
computers with human-level intelligence (or better) would have a huge impact on our everyday
lives and on the future course of civilization.

AI addresses one of the ultimate puzzles. How is it possible for a slow, tiny brain, whether
biological or electronic, to perceive, understand, predict, and manipulate a world far larger and
more complicated than itself? How do we go about making something with those properties?
These are hard questions, but unlike the search for faster-than-light travel or an antigravity device,
the researcher in AI has solid evidence that the quest is possible. All the researcher has to do is
look in the mirror to see an example of an intelligent system.

AI is one of the newest disciplines. It was formally initiated in 1956, when the name
was coined, although at that point work had been under way for about five years. Along with
modern genetics, it is regularly cited as the “field I would most like to be in” by scientists in other
disciplines. A student in physics might reasonably feel that all the good ideas have already been
taken by Galileo, Newton, Einstein, and the rest, and that it takes many years of study before one
can contribute new ideas. AI, on the other hand, still has openings for a full-time Einstein.

The study of intelligence is also one of the oldest disciplines. For over 2000 years, philoso-
phers have tried to understand how seeing, learning, remembering, and reasoning could, or should,
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4 Chapter 1. Introduction

be done.1 The advent of usable computers in the early 1950s turned the learned but armchair
speculation concerning these mental faculties into a real experimental and theoretical discipline.
Many felt that the new “Electronic Super-Brains” had unlimited potential for intelligence. “Faster
Than Einstein” was a typical headline. But as well as providing a vehicle for creating artificially
intelligent entities, the computer provides a tool for testing theories of intelligence, and many
theories failed to withstand the test—a case of “out of the armchair, into the fire.” AI has turned
out to be more difficult than many at first imagined, and modern ideas are much richer, more
subtle, and more interesting as a result.

AI currently encompasses a huge variety of subfields, from general-purpose areas such as
perception and logical reasoning, to specific tasks such as playing chess, proving mathematical
theorems, writing poetry, and diagnosing diseases. Often, scientists in other fields move gradually
into artificial intelligence, where they find the tools and vocabulary to systematize and automate
the intellectual tasks on which they have been working all their lives. Similarly, workers in AI
can choose to apply their methods to any area of human intellectual endeavor. In this sense, it is
truly a universal field.

1.1 WHAT IS AI?

We have now explained why AI is exciting, but we have not said what it is. We could just say,
“Well, it has to do with smart programs, so let’s get on and write some.” But the history of science
shows that it is helpful to aim at the right goals. Early alchemists, looking for a potion for eternal
life and a method to turn lead into gold, were probably off on the wrong foot. Only when the aim
changed, to that of finding explicit theories that gave accurate predictions of the terrestrial world,
in the same way that early astronomy predicted the apparent motions of the stars and planets,
could the scientific method emerge and productive science take place.

Definitions of artificial intelligence according to eight recent textbooks are shown in Fig-
ure 1.1. These definitions vary along two main dimensions. The ones on top are concerned
with thought processes and reasoning, whereas the ones on the bottom address behavior. Also,
the definitions on the left measure success in terms of human performance, whereas the ones
on the right measure against an ideal concept of intelligence, which we will call rationality. ARATIONALITY

system is rational if it does the right thing. This gives us four possible goals to pursue in artificial
intelligence, as seen in the caption of Figure 1.1.

Historically, all four approaches have been followed. As one might expect, a tension exists
between approaches centered around humans and approaches centered around rationality.2 A
human-centered approach must be an empirical science, involving hypothesis and experimental

1 A more recent branch of philosophy is concerned with proving that AI is impossible. We will return to this interesting
viewpoint in Chapter 26.
2 We should point out that by distinguishing between human and rational behavior, we are not suggesting that humans
are necessarily “irrational” in the sense of “emotionally unstable” or “insane.” One merely need note that we often make
mistakes; we are not all chess grandmasters even though we may know all the rules of chess; and unfortunately, not
everyone gets an A on the exam. Some systematic errors in human reasoning are cataloged by Kahneman et al. (1982).
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Section 1.1. What is AI? 5

“The exciting new effort to make computers
think . . . machines with minds, in the full
and literal sense” (Haugeland, 1985)

“The study of mental faculties through the
use of computational models”
(Charniak and McDermott, 1985)

“[The automation of] activities that we asso-
ciate with human thinking, activities such as
decision-making, problem solving, learning
. . .” (Bellman, 1978)

“The study of the computations that make
it possible to perceive, reason, and act”
(Winston, 1992)

“The art of creating machines that perform
functions that require intelligence when per-
formed by people” (Kurzweil, 1990)

“A field of study that seeks to explain and
emulate intelligent behavior in terms of
computational processes” (Schalkoff, 1990)

“The study of how to make computers do
things at which, at the moment, people are
better” (Rich and Knight, 1991)

“Thebranch of computer sciencethat is con-
cerned with the automation of intelligent
behavior” (Luger and Stubblefield, 1993)

Figure 1.1 Some definitions of AI. They are organized into four categories:

Systems that think like humans. Systems that think rationally.

Systems that act like humans. Systems that act rationally.

confirmation. A rationalist approach involves a combination of mathematics and engineering.
People in each group sometimes cast aspersions on work done in the other groups, but the truth
is that each direction has yielded valuable insights. Let us look at each in more detail.

Acting humanly: The Turing Test approach

The Turing Test, proposed by Alan Turing (1950), was designed to provide a satisfactoryTURING TEST

operational definition of intelligence. Turing defined intelligent behavior as the ability to achieve
human-level performance in all cognitive tasks, sufficient to fool an interrogator. Roughly
speaking, the test he proposed is that the computer should be interrogated by a human via a
teletype, and passes the test if the interrogator cannot tell if there is a computer or a human at the
other end. Chapter 26 discusses the details of the test, and whether or not a computer is really
intelligent if it passes. For now, programming a computer to pass the test provides plenty to work
on. The computer would need to possess the following capabilities:

natural language processing to enable it to communicate successfully in English (or someNATURAL LANGUAGE
PROCESSING

other human language);
knowledgerepresentation to store information provided before or during the interrogation;KNOWLEDGE

REPRESENTATION

automated reasoning to use the stored information to answer questions and to draw newAUTOMATED
REASONING

conclusions;
machine learning to adapt to new circumstances and to detect and extrapolate patterns.MACHINE LEARNING

Turing’s test deliberately avoided direct physical interaction between the interrogator and the
computer, because physical simulation of a person is unnecessary for intelligence. However,
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6 Chapter 1. Introduction

the so-called total Turing Test includes a video signal so that the interrogator can test theTOTAL TURING TEST

subject’s perceptual abilities, as well as the opportunity for the interrogator to pass physical
objects “through the hatch.” To pass the total Turing Test, the computer will need

computer vision to perceive objects, andCOMPUTER VISION

robotics to move them about.ROBOTICS

Within AI, there has not been a big effort to try to pass the Turing test. The issue of acting
like a human comes up primarily when AI programs have to interact with people, as when an
expert system explains how it came to its diagnosis, or a natural language processing system has
a dialogue with a user. These programs must behave according to certain normal conventions of
human interaction in order to make themselves understood. The underlying representation and
reasoning in such a system may or may not be based on a human model.

Thinking humanly: The cognitive modelling approach

If we are going to say that a given program thinks like a human, we must have some way of
determining how humans think. We need to get inside the actual workings of human minds.
There are two ways to do this: through introspection—trying to catch our own thoughts as they
go by—or through psychological experiments. Once we have a sufficiently precise theory of
the mind, it becomes possible to express the theory as a computer program. If the program’s
input/output and timing behavior matches human behavior, that is evidence that some of the
program’s mechanisms may also be operating in humans. For example, Newell and Simon, who
developed GPS, the “General Problem Solver” (Newell and Simon, 1961), were not content to
have their program correctly solve problems. They were more concerned with comparing the
trace of its reasoning steps to traces of human subjects solving the same problems. This is in
contrast to other researchers of the same time (such as Wang (1960)), who were concerned with
getting the right answers regardless of how humans might do it. The interdisciplinary field of
cognitive science brings together computer models from AI and experimental techniques fromCOGNITIVE SCIENCE

psychology to try to construct precise and testable theories of the workings of the human mind.
Although cognitive science is a fascinating field in itself, we are not going to be discussing

it all that much in this book. We will occasionally comment on similarities or differences between
AI techniques and human cognition. Real cognitive science, however, is necessarily based on
experimental investigation of actual humans or animals, and we assume that the reader only has
access to a computer for experimentation. We will simply note that AI and cognitive science
continue to fertilize each other, especially in the areas of vision, natural language, and learning.
The history of psychological theories of cognition is briefly covered on page 12.

Thinking rationally: The laws of thought approach

The Greek philosopher Aristotle was one of the first to attempt to codify “right thinking,” that is,
irrefutable reasoning processes. His famous syllogisms provided patterns for argument structuresSYLLOGISMS

that always gave correct conclusions given correct premises. For example, “Socrates is a man;
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Section 1.1. What is AI? 7

all men are mortal; therefore Socrates is mortal.” These laws of thought were supposed to govern
the operation of the mind, and initiated the field of logic.LOGIC

The development of formal logic in the late nineteenth and early twentieth centuries, which
we describe in more detail in Chapter 6, provided a precise notation for statements about all kinds
of things in the world and the relations between them. (Contrast this with ordinary arithmetic
notation, which provides mainly for equality and inequality statements about numbers.) By 1965,
programs existed that could, given enough time and memory, take a description of a problem
in logical notation and find the solution to the problem, if one exists. (If there is no solution,
the program might never stop looking for it.) The so-called logicist tradition within artificialLOGICIST

intelligence hopes to build on such programs to create intelligent systems.
There are two main obstacles to this approach. First, it is not easy to take informal

knowledge and state it in the formal terms required by logical notation, particularly when the
knowledge is less than 100% certain. Second, there is a big difference between being able to
solve a problem “in principle” and doing so in practice. Even problems with just a few dozen
facts can exhaust the computational resources of any computer unless it has some guidance as to
which reasoning steps to try first. Although both of these obstacles apply to any attempt to build
computational reasoning systems, they appeared first in the logicist tradition because the power
of the representation and reasoning systems are well-defined and fairly well understood.

Acting rationally: The rational agent approach

Acting rationally means acting so as to achieve one’s goals, given one’s beliefs. An agent is justAGENT

something that perceives and acts. (This may be an unusual use of the word, but you will get
used to it.) In this approach, AI is viewed as the study and construction of rational agents.

In the “laws of thought” approach to AI, the whole emphasis was on correct inferences.
Making correct inferences is sometimes part of being a rational agent, because one way to act
rationally is to reason logically to the conclusion that a given action will achieve one’s goals,
and then to act on that conclusion. On the other hand, correct inference is not all of rationality,
because there are often situations where there is no provably correct thing to do, yet something
must still be done. There are also ways of acting rationally that cannot be reasonably said to
involve inference. For example, pulling one’s hand off of a hot stove is a reflex action that is
more successful than a slower action taken after careful deliberation.

All the “cognitive skills” needed for the Turing Test are there to allow rational actions. Thus,
we need the ability to represent knowledge and reason with it because this enables us to reach
good decisions in a wide variety of situations. We need to be able to generate comprehensible
sentences in natural language because saying those sentences helps us get by in a complex society.
We need learning not just for erudition, but because having a better idea of how the world works
enables us to generate more effective strategies for dealing with it. We need visual perception not
just because seeing is fun, but in order to get a better idea of what an action might achieve—for
example, being able to see a tasty morsel helps one to move toward it.

The study of AI as rational agent design therefore has two advantages. First, it is more
general than the “laws of thought” approach, because correct inference is only a useful mechanism
for achieving rationality, and not a necessary one. Second, it is more amenable to scientific
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8 Chapter 1. Introduction

development than approaches based on human behavior or human thought, because the standard
of rationality is clearly defined and completely general. Human behavior, on the other hand,
is well-adapted for one specific environment and is the product, in part, of a complicated and
largely unknown evolutionary process that still may be far from achieving perfection. This
book will therefore concentrate on general principles of rational agents, and on components for
constructing them. We will see that despite the apparent simplicity with which the problem can
be stated, an enormous variety of issues come up when we try to solve it. Chapter 2 outlines
some of these issues in more detail.

One important point to keep in mind: we will see before too long that achieving perfect
rationality—always doing the right thing—is not possible in complicated environments. The
computational demands are just too high. However, for most of the book, we will adopt the
working hypothesis that understanding perfect decision making is a good place to start. It
simplifies the problem and provides the appropriate setting for most of the foundational material
in the field. Chapters 5 and 17 deal explicitly with the issue of limited rationality—actingLIMITED

RATIONALITY

appropriately when there is not enough time to do all the computations one might like.

1.2 THE FOUNDATIONS OF ARTIFICIAL INTELLIGENCE

In this section and the next, we provide a brief history of AI. Although AI itself is a young field,
it has inherited many ideas, viewpoints, and techniques from other disciplines. From over 2000
years of tradition in philosophy, theories of reasoning and learning have emerged, along with the
viewpoint that the mind is constituted by the operation of a physical system. From over 400 years
of mathematics, we have formal theories of logic, probability, decision making, and computation.
From psychology, we have the tools with which to investigate the human mind, and a scientific
language within which to express the resulting theories. From linguistics, we have theories of
the structure and meaning of language. Finally, from computer science, we have the tools with
which to make AI a reality.

Like any history, this one is forced to concentrate on a small number of people and events,
and ignore others that were also important. We choose to arrange events to tell the story of how
the various intellectual components of modern AI came into being. We certainly would not wish
to give the impression, however, that the disciplines from which the components came have all
been working toward AI as their ultimate fruition.

Philosophy (428 B.C.–present)

The safest characterization of the European philosophical tradition is that it consists of a series
of footnotes to Plato.
—Alfred North Whitehead

We begin with the birth of Plato in 428 B.C. His writings range across politics, mathematics,
physics, astronomy, and several branches of philosophy. Together, Plato, his teacher Socrates,
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Section 1.2. The Foundations of Artificial Intelligence 9

and his student Aristotle laid the foundation for much of western thought and culture. The
philosopher Hubert Dreyfus (1979, p. 67) says that “The story of artificial intelligence might well
begin around 450 B.C.” when Plato reported a dialogue in which Socrates asks Euthyphro,3 “I
want to know what is characteristic of piety which makes all actions pious . . . that I may have it
to turn to, and to use as a standard whereby to judge your actions and those of other men.”4 In
other words, Socrates was asking for an algorithm to distinguish piety from non-piety. Aristotle
went on to try to formulate more precisely the laws governing the rational part of the mind. He
developed an informal system of syllogisms for proper reasoning, which in principle allowed one
to mechanically generate conclusions, given initial premises. Aristotle did not believe all parts
of the mind were governed by logical processes; he also had a notion of intuitive reason.

Now that we have the idea of a set of rules that can describe the working of (at least part
of) the mind, the next step is to consider the mind as a physical system. We have to wait for
René Descartes (1596–1650) for a clear discussion of the distinction between mind and matter,
and the problems that arise. One problem with a purely physical conception of the mind is that
it seems to leave little room for free will: if the mind is governed entirely by physical laws, then
it has no more free will than a rock “deciding” to fall toward the center of the earth. Although a
strong advocate of the power of reasoning, Descartes was also a proponent of dualism. He heldDUALISM

that there is a part of the mind (or soul or spirit) that is outside of nature, exempt from physical
laws. On the other hand, he felt that animals did not possess this dualist quality; they could be
considered as if they were machines.

An alternative to dualism is materialism, which holds that all the world (including theMATERIALISM

brain and mind) operate according to physical law.5 Wilhelm Leibniz (1646–1716) was probably
the first to take the materialist position to its logical conclusion and build a mechanical device
intended to carry out mental operations. Unfortunately, his formulation of logic was so weak that
his mechanical concept generator could not produce interesting results.

It is also possible to adopt an intermediate position, in which one accepts that the mind
has a physical basis, but denies that it can be explained by a reduction to ordinary physical
processes. Mental processes and consciousness are therefore part of the physical world, but
inherently unknowable; they are beyond rational understanding. Some philosophers critical of
AI have adopted exactly this position, as we discuss in Chapter 26.

Barring these possible objections to the aims of AI, philosophy had thus established a
tradition in which the mind was conceived of as a physical device operating principally by
reasoning with the knowledge that it contained. The next problem is then to establish the
source of knowledge. The empiricist movement, starting with Francis Bacon’s (1561–1626)EMPIRICIST

Novum Organum,6 is characterized by the dictum of John Locke (1632–1704): “Nothing is in
the understanding, which was not first in the senses.” David Hume’s (1711–1776) A Treatise
of Human Nature (Hume, 1978) proposed what is now known as the principle of induction:INDUCTION

3 The Euthyphro describes the events just before the trial of Socrates in 399 B.C. Dreyfus has clearly erred in placing it
51 years earlier.
4 Note that other translations have “goodness/good” instead of “piety/pious.”
5 In this view, the perception of “free will” arises because the deterministic generation of behavior is constituted by the
operation of the mind selecting among what appear to be the possible courses of action. They remain “possible” because
the brain does not have access to its own future states.
6 An update of Aristotle’s organon, or instrument of thought.
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10 Chapter 1. Introduction

that general rules are acquired by exposure to repeated associations between their elements.
The theory was given more formal shape by Bertrand Russell (1872–1970) who introduced
logical positivism. This doctrine holds that all knowledge can be characterized by logicalLOGICAL POSITIVISM

theories connected, ultimately, to observation sentences that correspond to sensory inputs.7 TheOBSERVATION
SENTENCES

confirmation theory of Rudolf Carnap and Carl Hempel attempted to establish the nature of theCONFIRMATION
THEORY

connection between the observation sentences and the more general theories—in other words, to
understand how knowledge can be acquired from experience.

The final element in the philosophical picture of the mind is the connection between
knowledge and action. What form should this connection take, and how can particular actions
be justified? These questions are vital to AI, because only by understanding how actions are
justified can we understand how to build an agent whose actions are justifiable, or rational.
Aristotle provides an elegant answer in the Nicomachean Ethics (Book III. 3, 1112b):

We deliberate not about ends, but about means. For a doctor does not deliberate whether he
shall heal, nor an orator whether he shall persuade, nor a statesman whether he shall produce
law and order, nor does any one else deliberate about his end. They assume the end and
consider how and by what means it is attained, and if it seems easily and best produced
thereby; while if it is achieved by one means only they consider how it will be achieved by
this and by what means this will be achieved, till they come to the first cause, which in the
order of discovery is last . . . and what is last in the order of analysis seems to be first in the
order of becoming. And if we come on an impossibility, we give up the search, e.g. if we
need money and this cannot be got; but if a thing appears possible we try to do it.

Aristotle’s approach (with a few minor refinements) was implemented 2300 years later by Newell
and Simon in their GPS program, about which they write (Newell and Simon, 1972):

The main methods of GPS jointly embody the heuristic of means–ends analysis. Means–endsMEANS–ENDS
ANALYSIS

analysis is typified by the following kind of common-sense argument:

I want to take my son to nursery school. What’s the difference between what I
have and what I want? One of distance. What changes distance? My automobile.
My automobile won’t work. What is needed to make it work? A new battery.
What has new batteries? An auto repair shop. I want the repair shop to put in a
new battery; but the shop doesn’t know I need one. What is the difficulty? One
of communication. What allows communication? A telephone . . . and so on.

This kind of analysis—classifying things in terms of the functions they serve and oscillating
among ends, functions required, and means that perform them—forms the basic system of
heuristic of GPS.

Means–ends analysis is useful, but does not say what to do when several actions will achieve the
goal, or when no action will completely achieve it. Arnauld, a follower of Descartes, correctly
described a quantitative formula for deciding what action to take in cases like this (see Chapter 16).
John Stuart Mill’s (1806–1873) book Utilitarianism (Mill, 1863) amplifies on this idea. The more
formal theory of decisions is discussed in the following section.

7 In this picture, all meaningful statements can be verified or falsified either by analyzing the meaning of the words or
by carrying out experiments. Because this rules out most of metaphysics, as was the intention, logical positivism was
unpopular in some circles.

Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig, c 1995 Prentice-Hall, Inc.



Section 1.2. The Foundations of Artificial Intelligence 11

Mathematics (c. 800–present)

Philosophers staked out most of the important ideas of AI, but to make the leap to a formal
science required a level of mathematical formalization in three main areas: computation, logic,
and probability. The notion of expressing a computation as a formal algorithm goes back toALGORITHM

al-Khowarazmi, an Arab mathematician of the ninth century, whose writings also introduced
Europe to Arabic numerals and algebra.

Logic goes back at least to Aristotle, but it was a philosophical rather than mathematical
subject until George Boole (1815–1864) introduced his formal language for making logical
inference in 1847. Boole’s approach was incomplete, but good enough that others filled in the
gaps. In 1879, Gottlob Frege (1848–1925) produced a logic that, except for some notational
changes, forms the first-order logic that is used today as the most basic knowledge representation
system.8 Alfred Tarski (1902–1983) introduced a theory of reference that shows how to relate
the objects in a logic to objects in the real world. The next step was to determine the limits of
what could be done with logic and computation.

David Hilbert (1862–1943), a great mathematician in his own right, is most remembered
for the problems he did not solve. In 1900, he presented a list of 23 problems that he correctly
predicted would occupy mathematicians for the bulk of the century. The final problem asks
if there is an algorithm for deciding the truth of any logical proposition involving the natural
numbers—the famous Entscheidungsproblem, or decision problem. Essentially, Hilbert was
asking if there were fundamental limits to the power of effective proof procedures. In 1930, Kurt
Gödel (1906–1978) showed that there exists an effective procedure to prove any true statement in
the first-order logic of Frege and Russell; but first-order logic could not capture the principle of
mathematical induction needed to characterize the natural numbers. In 1931, he showed that real
limits do exist. His incompleteness theorem showed that in any language expressive enoughINCOMPLETENESS

THEOREM
to describe the properties of the natural numbers, there are true statements that are undecidable:
their truth cannot be established by any algorithm.

This fundamental result can also be interpreted as showing that there are some functions
on the integers that cannot be represented by an algorithm—that is, they cannot be computed.
This motivated Alan Turing (1912–1954) to try to characterize exactly which functions are
capable of being computed. This notion is actually slightly problematic, because the notion
of a computation or effective procedure really cannot be given a formal definition. However,
the Church–Turing thesis, which states that the Turing machine (Turing, 1936) is capable of
computing any computable function, is generally accepted as providing a sufficient definition.
Turing also showed that there were some functions that no Turing machine can compute. For
example, no machine can tell in general whether a given program will return an answer on a
given input, or run forever.

Although undecidability and noncomputability are important to an understanding of com-
putation, the notion of intractability has had a much greater impact. Roughly speaking,INTRACTABILITY

a class of problems is called intractable if the time required to solve instances of the class
grows at least exponentially with the size of the instances. The distinction between polynomial
and exponential growth in complexity was first emphasized in the mid-1960s (Cobham, 1964;
Edmonds, 1965). It is important because exponential growth means that even moderate-sized in-

8 To understand why Frege’s notation was not universally adopted, see the cover of this book.
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12 Chapter 1. Introduction

stances cannot be solved in any reasonable time. Therefore, one should strive to divide the overall
problem of generating intelligent behavior into tractable subproblems rather than intractable ones.
The second important concept in the theory of complexity is reduction, which also emerged inREDUCTION

the 1960s (Dantzig, 1960; Edmonds, 1962). A reduction is a general transformation from one
class of problems to another, such that solutions to the first class can be found by reducing them
to problems of the second class and solving the latter problems.

How canone recognizean intractable problem? The theory of NP-completeness, pioneeredNP-COMPLETENESS

by Steven Cook (1971) and Richard Karp (1972), provides a method. Cook and Karp showed
the existence of large classes of canonical combinatorial search and reasoning problems that
are NP-complete. Any problem class to which an NP-complete problem class can be reduced
is likely to be intractable. (Although it has not yet been proved that NP-complete problems
are necessarily intractable, few theoreticians believe otherwise.) These results contrast sharply
with the “Electronic Super-Brain” enthusiasm accompanying the advent of computers. Despite
the ever-increasing speed of computers, subtlety and careful use of resources will characterize
intelligent systems. Put crudely, the world is an extremely large problem instance!

Besides logic and computation, the third great contribution of mathematics to AI is the
theory of probability. The Italian Gerolamo Cardano (1501–1576) first framed the idea of
probability, describing it in terms of the possible outcomes of gambling events. Before his time,
the outcomes of gambling games were seen as the will of the gods rather than the whim of chance.
Probability quickly became an invaluable part of all the quantitative sciences, helping to deal
with uncertain measurements and incomplete theories. Pierre Fermat (1601–1665), Blaise Pascal
(1623–1662), James Bernoulli (1654–1705), Pierre Laplace (1749–1827), and others advanced
the theory and introduced new statistical methods. Bernoulli also framed an alternative view
of probability, as a subjective “degree of belief” rather than an objective ratio of outcomes.
Subjective probabilities therefore can be updated as new evidence is obtained. Thomas Bayes
(1702–1761) proposed a rule for updating subjective probabilities in the light of new evidence
(published posthumously in 1763). Bayes’ rule, and the subsequent field of Bayesian analysis,
form the basis of the modern approach to uncertain reasoning in AI systems. Debate still rages
between supporters of the objective and subjective views of probability, but it is not clear if the
difference has great significance for AI. Both versions obey the same set of axioms. Savage’s
(1954) Foundations of Statistics gives a good introduction to the field.

As with logic, a connection must be made between probabilistic reasoning and action.
Decision theory, pioneered by John Von Neumann and Oskar Morgenstern (1944), combinesDECISION THEORY

probability theory with utility theory (which provides a formal and complete framework for
specifying the preferences of an agent) to give the first general theory that can distinguish good
actions from bad ones. Decision theory is the mathematical successor to utilitarianism, and
provides the theoretical basis for many of the agent designs in this book.

Psychology (1879–present)

Scientific psychology can be said to have begun with the work of the German physicist Hermann
von Helmholtz (1821–1894) and his student Wilhelm Wundt (1832–1920). Helmholtz applied
the scientific method to the study of human vision, and his Handbook of Physiological Optics
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Section 1.2. The Foundations of Artificial Intelligence 13

is even now described as “the single most important treatise on the physics and physiology of
human vision to this day” (Nalwa, 1993, p.15). In 1879, the same year that Frege launched first-
order logic, Wundt opened the first laboratory of experimental psychology at the University of
Leipzig. Wundt insisted on carefully controlled experiments in which his workers would perform
a perceptual or associative task while introspecting on their thought processes. The careful
controls went a long way to make psychology a science, but as the methodology spread, a curious
phenomenon arose: each laboratory would report introspective data that just happened to match
the theories that were popular in that laboratory. The behaviorism movement of John WatsonBEHAVIORISM

(1878–1958) and Edward LeeThorndike (1874–1949) rebelled against this subjectivism,rejecting
any theory involving mental processes on the grounds that introspection could not provide reliable
evidence. Behaviorists insisted on studying only objective measures of the percepts (or stimulus)
given to an animal and its resulting actions (or response). Mental constructs such as knowledge,
beliefs, goals, and reasoning steps were dismissed as unscientific “folk psychology.” Behaviorism
discovered a lot about rats and pigeons, but had less success understanding humans. Nevertheless,
it had a strong hold on psychology (especially in the United States) from about 1920 to 1960.

The view that the brain possesses and processes information, which is the principal char-
acteristic of cognitive psychology, can be traced back at least to the works of William James9COGNITIVE

PSYCHOLOGY
(1842–1910). Helmholtz also insisted that perception involved a form of unconscious logical in-
ference. The cognitive viewpoint was largely eclipsed by behaviorism until 1943, when Kenneth
Craik published The Nature of Explanation. Craik put back the missing mental step between
stimulus and response. He claimed that beliefs, goals, and reasoning steps could be useful valid
components of a theory of human behavior, and are just as scientific as, say, using pressure and
temperature to talk about gases, despite their being made of molecules that have neither. Craik
specified the three key steps of a knowledge-based agent: (1) the stimulus must be translated into
an internal representation, (2) the representation is manipulated by cognitive processes to derive
new internal representations, and (3) these are in turn retranslated back into action. He clearly
explained why this was a good design for an agent:

If the organism carries a “small-scale model” of external reality and of its own possible actions
within its head, it is able to try out various alternatives, conclude which is the best of them,
react to future situations before they arise, utilize the knowledge of past events in dealing with
the present and future, and in every way to react in a much fuller, safer, and more competent
manner to the emergencies which face it. (Craik, 1943)

An agent designed this way can, for example, plan a long trip by considering various possi-
ble routes, comparing them, and choosing the best one, all before starting the journey. Since
the 1960s, the information-processing view has dominated psychology. It it now almost taken
for granted among many psychologists that “a cognitive theory should be like a computer pro-
gram” (Anderson, 1980). By this it is meant that the theory should describe cognition as consisting
of well-defined transformation processes operating at the level of the information carried by the
input signals.

For most of the early history of AI and cognitive science, no significant distinction was
drawn between the two fields, and it was common to see AI programs described as psychological

9 William James was the brother of novelist Henry James. It is said that Henry wrote fiction as if it were psychology
and William wrote psychology as if it were fiction.
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results without any claim as to the exact human behavior they were modelling. In the last decade
or so, however, the methodological distinctions have become clearer, and most work now falls
into one field or the other.

Computer engineering (1940–present)

For artificial intelligence to succeed, we need two things: intelligence and an artifact. The
computer has been unanimously acclaimed as the artifact with the best chance of demonstrating
intelligence. The modern digital electronic computer was invented independently and almost
simultaneously by scientists in three countries embattled in World War II. The first operational
modern computer was the Heath Robinson,10 built in 1940 by Alan Turing’s team for the single
purpose of deciphering German messages. When the Germans switched to a more sophisticated
code, the electromechanical relays in the Robinson proved to be too slow, and a new machine
called the Colossus was built from vacuum tubes. It was completed in 1943, and by the end of
the war, ten Colossus machines were in everyday use.

The first operational programmable computer was the Z-3, the invention of Konrad Zuse
in Germany in 1941. Zuse invented floating-point numbers for the Z-3, and went on in 1945 to
develop Plankalkul, the first high-level programming language. Although Zuse received some
support from the Third Reich to apply his machine to aircraft design, the military hierarchy did
not attach as much importance to computing as did its counterpart in Britain.

In the United States, the first electronic computer, the ABC, was assembled by John
Atanasoff and his graduate student Clifford Berry between 1940 and 1942 at Iowa State University.
The project received little support and was abandoned after Atanasoff became involved in military
research in Washington. Two other computer projects were started as secret military research:
the Mark I, II, and III computers were developed at Harvard by a team under Howard Aiken; and
the ENIAC was developed at the University of Pennsylvania by a team including John Mauchly
and John Eckert. ENIAC was the first general-purpose, electronic, digital computer. One of its
first applications was computing artillery firing tables. A successor, the EDVAC, followed John
Von Neumann’s suggestion to use a stored program, so that technicians would not have to scurry
about changing patch cords to run a new program.

But perhaps the most critical breakthrough was the IBM 701, built in 1952 by Nathaniel
Rochester and his group. This was the first computer to yield a profit for its manufacturer. IBM
went on to become one of the world’s largest corporations, and sales of computers have grown to
$150 billion/year. In the United States, the computer industry (including software and services)
now accounts for about 10% of the gross national product.

Each generation of computer hardware has brought an increase in speed and capacity, and
a decrease in price. Computer engineering has been remarkably successful, regularly doubling
performance every two years, with no immediate end in sight for this rate of increase. Massively
parallel machines promise to add several more zeros to the overall throughput achievable.

Of course, there were calculating devices before the electronic computer. The abacus
is roughly 7000 years old. In the mid-17th century, Blaise Pascal built a mechanical adding

10 Heath Robinson was a cartoonist famous for his depictions of whimsical and absurdly complicated contraptions for
everyday tasks such as buttering toast.
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and subtracting machine called the Pascaline. Leibniz improved on this in 1694, building a
mechanical device that multiplied by doing repeated addition. Progress stalled for over a century
until Charles Babbage (1792–1871) dreamed that logarithm tables could be computed by machine.
He designed a machine for this task, but never completed the project. Instead, he turned to the
design of the Analytical Engine, for which Babbage invented the ideas of addressable memory,
stored programs, and conditional jumps. Although the idea of programmable machines was
not new—in 1805, Joseph Marie Jacquard invented a loom that could be programmed using
punched cards—Babbage’s machine was the first artifact possessing the characteristics necessary
for universal computation. Babbage’s colleague Ada Lovelace, daughter of the poet Lord Byron,
wrote programs for the Analytical Engine and even speculated that the machine could play chess
or compose music. Lovelace was the world’s first programmer, and the first of many to endure
massive cost overruns and to have an ambitious project ultimately abandoned.11 Babbage’s basic
design was proven viable by Doron Swade and his colleagues, who built a working model using
only the mechanical techniques available at Babbage’s time (Swade, 1993). Babbage had the
right idea, but lacked the organizational skills to get his machine built.

AI also owes a debt to the software side of computer science, which has supplied the
operating systems, programming languages, and tools needed to write modern programs (and
papers about them). But this is one area where the debt has been repaid: work in AI has pioneered
many ideas that have made their way back to “mainstream” computer science, including time
sharing, interactive interpreters, the linked list data type, automatic storage management, and
some of the key concepts of object-oriented programming and integrated program development
environments with graphical user interfaces.

Linguistics (1957–present)

In 1957, B. F. Skinner published Verbal Behavior. This was a comprehensive, detailed account
of the behaviorist approach to language learning, written by the foremost expert in the field. But
curiously, a review of the book became as well-known as the book itself, and served to almost kill
off interest in behaviorism. The author of the review was Noam Chomsky, who had just published
a book on his own theory, Syntactic Structures. Chomsky showed how the behaviorist theory did
not address the notion of creativity in language—it did not explain how a child could understand
and make up sentences that he or she had never heard before. Chomsky’s theory—based on
syntactic models going back to the Indian linguist Panini (c. 350 B.C.)—could explain this, and
unlike previous theories, it was formal enough that it could in principle be programmed.

Later developments in linguistics showed the problem to be considerably more complex
than it seemed in 1957. Language is ambiguous and leaves much unsaid. This means that
understanding language requires an understanding of the subject matter and context, not just an
understanding of the structure of sentences. This may seem obvious, but it was not appreciated
until the early 1960s. Much of the early work in knowledge representation (the study of how to
put knowledge into a form that a computer can reason with) was tied to language and informed
by research in linguistics, which was connected in turn to decades of work on the philosophical
analysis of language.

11 She also gave her name to Ada, the U.S. Department of Defense’s all-purpose programming language.
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Modern linguistics and AI were “born” at about the same time, so linguistics does not play
a large foundational role in the growth of AI. Instead, the two grew up together, intersecting
in a hybrid field called computational linguistics or natural language processing, which
concentrates on the problem of language use.

1.3 THE HISTORY OF ARTIFICIAL INTELLIGENCE

With the background material behind us, we are now ready to outline the development of AI
proper. We could do this by identifying loosely defined and overlapping phases in its development,
or by chronicling the various different and intertwined conceptual threads that make up the field.
In this section, we will take the former approach, at the risk of doing some degree of violence
to the real relationships among subfields. The history of each subfield is covered in individual
chapters later in the book.

The gestation of artificial intelligence (1943–1956)

The first work that is now generally recognized as AI was done by Warren McCulloch and
Walter Pitts (1943). They drew on three sources: knowledge of the basic physiology and
function of neurons in the brain; the formal analysis of propositional logic due to Russell and
Whitehead; and Turing’s theory of computation. They proposed a model of artificial neurons in
which each neuron is characterized as being “on” or “off,” with a switch to “on” occurring in
response to stimulation by a sufficient number of neighboring neurons. The state of a neuron
was conceived of as “factually equivalent to a proposition which proposed its adequate stimulus.”
They showed, for example, that any computable function could be computed by some network
of connected neurons, and that all the logical connectives could be implemented by simple
net structures. McCulloch and Pitts also suggested that suitably defined networks could learn.
Donald Hebb (1949) demonstrated a simple updating rule for modifying the connection strengths
between neurons, such that learning could take place.

The work of McCulloch and Pitts was arguably the forerunner of both the logicist tradition
in AI and the connectionist tradition. In the early 1950s, Claude Shannon (1950) and Alan
Turing (1953) were writing chess programs for von Neumann-style conventional computers.12

At the same time, two graduate students in the Princeton mathematics department, Marvin
Minsky and Dean Edmonds, built the first neural network computer in 1951. The SNARC, as
it was called, used 3000 vacuum tubes and a surplus automatic pilot mechanism from a B-24
bomber to simulate a network of 40 neurons. Minsky’s Ph.D. committee was skeptical whether
this kind of work should be considered mathematics, but von Neumann was on the committee
and reportedly said, “If it isn’t now it will be someday.” Ironically, Minsky was later to prove
theorems that contributed to the demise of much of neural network research during the 1970s.

12 Shannon actually had no real computer to work with, and Turing was eventually denied access to his own team’s
computers by the British government, on the grounds that research into artificial intelligence was surely frivolous.
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Princeton was home to another influential figure in AI, John McCarthy. After graduation,
McCarthy moved to Dartmouth College, which was to become the official birthplace of the
field. McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help him bring
together U.S. researchers interested in automata theory, neural nets, and the study of intelligence.
They organized a two-month workshop at Dartmouth in the summer of 1956. All together there
were ten attendees, including Trenchard More from Princeton, Arthur Samuel from IBM, and
Ray Solomonoff and Oliver Selfridge from MIT.

Two researchers from Carnegie Tech,13 Allen Newell and Herbert Simon, rather stole the
show. Although the others had ideas and in some cases programs for particular applications
such as checkers, Newell and Simon already had a reasoning program, the Logic Theorist (LT),
about which Simon claimed, “We have invented a computer program capable of thinking non-
numerically, and thereby solved the venerable mind–body problem.”14 Soon after the workshop,
the program was able to prove most of the theorems in Chapter 2 of Russell and Whitehead’s
Principia Mathematica. Russell was reportedly delighted when Simon showed him that the pro-
gram had come up with a proof for one theorem that was shorter than the one in Principia. The
editors of the Journal of Symbolic Logic were less impressed; they rejected a paper coauthored
by Newell, Simon, and Logic Theorist.

The Dartmouth workshop did not lead to any new breakthroughs, but it did introduce all
the major figures to each other. For the next 20 years, the field would be dominated by these
people and their students and colleagues at MIT, CMU, Stanford, and IBM. Perhaps the most
lasting thing to come out of the workshop was an agreement to adopt McCarthy’s new name for
the field: artificial intelligence.

Early enthusiasm, great expectations (1952–1969)

The early years of AI were full of successes—in a limited way. Given the primitive computers
and programming tools of the time, and the fact that only a few years earlier computers were
seen as things that could do arithmetic and no more, it was astonishing whenever a computer did
anything remotely clever. The intellectual establishment, by and large, preferred to believe that “a
machine can never do X” (see Chapter 26 for a long list of X’s gathered by Turing). AI researchers
naturally responded by demonstrating one X after another. Some modern AI researchers refer to
this period as the “Look, Ma, no hands!” era.

Newell and Simon’s early success was followed up with the General Problem Solver,
or GPS. Unlike Logic Theorist, this program was designed from the start to imitate human
problem-solving protocols. Within the limited class of puzzles it could handle, it turned out that
the order in which the program considered subgoals and possible actions was similar to the way
humans approached the same problems. Thus, GPS was probably the first program to embody
the “thinking humanly” approach. The combination of AI and cognitive science has continued
at CMU up to the present day.

13 Now Carnegie Mellon University (CMU).
14 Newell and Simon also invented a list-processing language, IPL, to write LT. They had no compiler, and translated it
into machine code by hand. To avoid errors, they worked in parallel, calling out binary numbers to each other as they
wrote each instruction to make sure they agreed.
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At IBM, Nathaniel Rochester and his colleagues produced some of the first AI programs.
Herbert Gelernter (1959) constructed the Geometry Theorem Prover. Like the Logic Theorist,
it proved theorems using explicitly represented axioms. Gelernter soon found that there were
too many possible reasoning paths to follow, most of which turned out to be dead ends. To help
focus the search, he added the capability to create a numerical representation of a diagram—a
particular case of the general theorem to be proved. Before the program tried to prove something,
it could first check the diagram to see if it was true in the particular case.

Starting in 1952, Arthur Samuel wrote a series of programs for checkers (draughts) that
eventually learned to play tournament-level checkers. Along the way, he disproved the idea that
computers can only do what they are told to, as his program quickly learned to play a better game
than its creator. The program was demonstrated on television in February 1956, creating a very
strong impression. Like Turing, Samuel had trouble finding computer time. Working at night, he
used machines that were still on the testing floor at IBM’s manufacturing plant. Chapter 5 covers
game playing, and Chapter 20 describes and expands on the learning techniques used by Samuel.

John McCarthy moved from Dartmouth to MIT and there made three crucial contributions
in one historic year: 1958. In MIT AI Lab Memo No. 1, McCarthy defined the high-level language
Lisp, which was to become the dominant AI programming language. Lisp is the second-oldestLISP

language in current use.15 With Lisp, McCarthy had the tool he needed, but access to scarce and
expensive computing resources was also a serious problem. Thus, he and others at MIT invented
time sharing. After getting an experimental time-sharing system up at MIT, McCarthy eventually
attracted the interest of a group of MIT grads who formed Digital Equipment Corporation, which
was to become the world’s second largest computer manufacturer, thanks to their time-sharing
minicomputers. Also in 1958, McCarthy published a paper entitled Programs with Common
Sense, in which he described the Advice Taker, a hypothetical program that can be seen as the
first complete AI system. Like the Logic Theorist and Geometry Theorem Prover, McCarthy’s
program was designed to use knowledge to search for solutions to problems. But unlike the others,
it was to embody general knowledge of the world. For example, he showed how some simple
axioms would enable the program to generate a plan to drive to the airport to catch a plane. The
program was also designed so that it could accept new axioms in the normal course of operation,
thereby allowing it to achieve competence in new areas without being reprogrammed. The Advice
Taker thus embodied the central principles of knowledge representation and reasoning: that it
is useful to have a formal, explicit representation of the world and the way an agent’s actions
affect the world, and to be able to manipulate these representations with deductive processes. It
is remarkable how much of the 1958 paper remains relevant after more than 35 years.

1958 also marked the year that Marvin Minsky moved to MIT. For years he and McCarthy
were inseparable as they defined the field together. But they grew apart as McCarthy stressed
representation and reasoning in formal logic, whereas Minsky was more interested in getting
programs to work, and eventually developed an anti-logical outlook. In 1963, McCarthy took
the opportunity to go to Stanford and start the AI lab there. His research agenda of using
logic to build the ultimate Advice Taker was advanced by J. A. Robinson’s discovery of the
resolution method (a complete theorem-proving algorithm for first-order logic; see Section 9.6).
Work at Stanford emphasized general-purpose methods for logical reasoning. Applications of

15 FORTRAN is one year older than Lisp.
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logic included Cordell Green’s question answering and planning systems (Green, 1969b), and the
Shakey robotics project at the new Stanford Research Institute (SRI). The latter project, discussed
further in Chapter 25, was the first to demonstrate the complete integration of logical reasoning
and physical activity.

Minsky supervised a series of students who chose limited problems that appeared to require
intelligence to solve. These limited domains became known as microworlds. James Slagle’sMICROWORLDS

SAINT program (1963a) was able to solve closed-form integration problems typical of first-year
college calculus courses. Tom Evans’s ANALOGY program (1968) solved geometric analogy
problems that appear in IQ tests, such as the one in Figure 1.2. Bertram Raphael’s (1968) SIR
(Semantic Information Retrieval) was able to accept input statements in a very restricted subset
of English and answer questions thereon. Daniel Bobrow’s STUDENT program (1967) solved
algebra story problems such as

If the number of customers Tom gets is twice the square of 20 percent of the number of
advertisements he runs, and the number of advertisements he runs is 45, what is the number
of customers Tom gets?

is to as is to:

1 2 3 4 5

Figure 1.2 An example problem solved by Evans’s ANALOGY program.

The most famous microworld was the blocks world, which consists of a set of solid blocks
placed on a tabletop (or more often, a simulation of a tabletop), as shown in Figure 1.3. A task
in this world is to rearrange the blocks in a certain way, using a robot hand that can pick up one
block at a time. The blocks world was home to the vision project of David Huffman (1971),
the vision and constraint-propagation work of David Waltz (1975), the learning theory of Patrick
Winston (1970), the natural language understanding program of Terry Winograd (1972), and the
planner of Scott Fahlman (1974).

Early work building on the neural networks of McCulloch and Pitts also flourished. The
work of Winograd and Cowan (1963) showed how a large number of elements could collectively
represent an individual concept, with a corresponding increase in robustness and parallelism.
Hebb’s learning methods were enhanced by Bernie Widrow (Widrow and Hoff, 1960; Widrow,
1962), who called his networks adalines, and by Frank Rosenblatt (1962) with his perceptrons.
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Figure 1.3 A scene from the blocks world. A task for the robot might be “Pick up a big red
block,” expressed either in natural language or in a formal notation.

Rosenblatt proved the famous perceptron convergence theorem, showing that his learning
algorithm could adjust the connection strengths of a perceptron to match any input data, provided
such a match existed. These topics are covered in Section 19.3.

A dose of reality (1966–1974)

From the beginning, AI researchers were not shy in making predictions of their coming successes.
The following statement by Herbert Simon in 1957 is often quoted:

It is not my aim to surprise or shock you—but the simplest way I can summarize is to say
that there are now in the world machines that think, that learn and that create. Moreover, their
ability to do these things is going to increase rapidly until—in a visible future—the range of
problems they can handle will be coextensive with the range to which human mind has been
applied.

Although one might argue that terms such as “visible future” can be interpreted in various ways,
some of Simon’s predictions were more concrete. In 1958, he predicted that within 10 years
a computer would be chess champion, and an important new mathematical theorem would be
proved by machine. Claims such as these turned out to be wildly optimistic. The barrier that
faced almost all AI research projects was that methods that sufficed for demonstrations on one or
two simple examples turned out to fail miserably when tried out on wider selections of problems
and on more difficult problems.

The first kind of difficulty arose because early programs often contained little or no
knowledge of their subject matter, and succeeded by means of simple syntactic manipulations.
Weizenbaum’s ELIZA program (1965), which could apparently engage in serious conversation
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on any topic, actually just borrowed and manipulated the sentences typed into it by a human.
A typical story occurred in early machine translation efforts, which were generously funded by
the National Research Council in an attempt to speed up the translation of Russian scientific
papers in the wake of the Sputnik launch in 1957. It was thought initially that simple syntactic
transformations based on the grammars of Russian and English, and word replacement using
an electronic dictionary, would suffice to preserve the exact meanings of sentences. In fact,
translation requires general knowledge of the subject matter in order to resolve ambiguity and
establish the content of the sentence. The famous retranslation of “the spirit is willing but the
flesh is weak” as “the vodka is good but the meat is rotten” illustrates the difficulties encountered.
In 1966, a report by an advisory committee found that “there has been no machine translation
of general scientific text, and none is in immediate prospect.” All U.S. government funding for
academic translation projects was cancelled.

The second kind of difficulty was the intractability of many of the problems that AI was
attempting to solve. Most of the early AI programs worked by representing the basic facts about
a problem and trying out a series of steps to solve it, combining different combinations of steps
until the right one was found. The early programs were feasible only because microworlds
contained very few objects. Before the theory of NP-completeness was developed, it was widely
thought that “scaling up” to larger problems was simply a matter of faster hardware and larger
memories. The optimism that accompanied the development of resolution theorem proving, for
example, was soon dampened when researchers failed to prove theorems involving more than a
few dozen facts. The fact that a program can find a solution in principle does not mean that the
program contains any of the mechanisms needed to find it in practice.

The illusion of unlimited computational power was not confined to problem-solving pro-
grams. Early experiments in machine evolution (now called genetic algorithms) (Friedberg,MACHINE EVOLUTION

1958; Friedberg et al., 1959) were based on the undoubtedly correct belief that by making an
appropriate series of small mutations to a machine code program, one can generate a program
with good performance for any particular simple task. The idea, then, was to try random muta-
tions and then apply a selection process to preserve mutations that seemed to improve behavior.
Despite thousands of hours of CPU time, almost no progress was demonstrated.

Failure to come to grips with the “combinatorial explosion” was one of the main criticisms
of AI contained in the Lighthill report (Lighthill, 1973), which formed the basis for the decision
by the British government to end support for AI research in all but two universities. (Oral
tradition paints a somewhat different and more colorful picture, with political ambitions and
personal animosities that cannot be put in print.)

A third difficulty arose because of some fundamental limitations on the basic structures
being used to generate intelligent behavior. For example, in 1969, Minsky and Papert’s book
Perceptrons (1969) proved that although perceptrons could be shown to learn anything they were
capable of representing, they could represent very little. In particular, a two-input perceptron
could not be trained to recognize when its two inputs were different. Although their results
did not apply to more complex, multilayer networks, research funding for neural net research
soon dwindled to almost nothing. Ironically, the new back-propagation learning algorithms for
multilayer networks that were to cause an enormous resurgence in neural net research in the late
1980s were actually discovered first in 1969 (Bryson and Ho, 1969).
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Knowledge-based systems: The key to power? (1969–1979)

The picture of problem solving that had arisen during the first decade of AI research was of a
general-purpose search mechanism trying to string together elementary reasoning steps to find
complete solutions. Such approaches have been called weak methods, because they use weakWEAK METHODS

information about the domain. For many complex domains, it turns out that their performance is
also weak. The only way around this is to use knowledge more suited to making larger reasoning
steps and to solving typically occurring cases in narrow areas of expertise. One might say that to
solve a hard problem, you almost have to know the answer already.

The DENDRAL program (Buchanan et al., 1969) was an early example of this approach. It
was developed at Stanford, where Ed Feigenbaum (a former student of Herbert Simon), Bruce
Buchanan (a philosopher turned computer scientist), and Joshua Lederberg (a Nobel laureate
geneticist) teamed up to solve the problem of inferring molecular structure from the information
provided by a mass spectrometer. The input to the program consists of the elementary formula of
the molecule (e.g., C6H13NO2), and the mass spectrum giving the masses of the various fragments
of the molecule generated when it is bombarded by an electron beam. For example, the mass
spectrum might contain a peak at m = 15 corresponding to the mass of a methyl (CH3) fragment.

The naive version of the program generated all possible structures consistent with the
formula, and then predicted what mass spectrum would be observed for each, comparing this
with the actual spectrum. As one might expect, this rapidly became intractable for decent-sized
molecules. The DENDRAL researchers consulted analytical chemists and found that they worked
by looking for well-knownpatterns of peaks in the spectrum that suggested common substructures
in the molecule. For example, the following rule is used to recognize a ketone (C=O) subgroup:

if there are two peaks at x1 and x2 such that
(a) x1 + x2 = M + 28 (M is the mass of the whole molecule);
(b) x1 28 is a high peak;
(c) x2 28 is a high peak;
(d) At least one of x1 and x2 is high.
then there is a ketone subgroup

Having recognized that the molecule contains a particular substructure, the number of possible
candidates is enormously reduced. The DENDRAL team concluded that the new system was
powerful because

All the relevant theoretical knowledge to solve these problems has been mapped over from its
general form in the [spectrum prediction component] (“first principles”) to efficient special
forms (“cookbook recipes”). (Feigenbaum et al., 1971)

The significance of DENDRAL was that it was arguably the first successful knowledge-intensive
system: its expertise derived from large numbers of special-purpose rules. Later systems also
incorporated the main theme of McCarthy’s Advice Taker approach— the clean separation of the
knowledge (in the form of rules) and the reasoning component.

With this lesson in mind, Feigenbaum and others at Stanford began the Heuristic Program-
ming Project (HPP), to investigate the extent to which the new methodology of expert systemsEXPERT SYSTEMS

could be applied to other areas of human expertise. The next major effort was in the area of
medical diagnosis. Feigenbaum, Buchanan, and Dr. Edward Shortliffe developed MYCIN to
diagnose blood infections. With about 450 rules, MYCIN was able to perform as well as some
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experts, and considerably better than junior doctors. It also contained two major differences from
DENDRAL. First, unlike the DENDRAL rules, no general theoretical model existed from which the
MYCIN rules could be deduced. They had to be acquired from extensive interviewing of experts,
who in turn acquired them from direct experience of cases. Second, the rules had to reflect the
uncertainty associated with medical knowledge. MYCIN incorporated a calculus of uncertainty
called certainty factors (see Chapter 14), which seemed (at the time) to fit well with how doctors
assessed the impact of evidence on the diagnosis.

Other approaches to medical diagnosis were also followed. At Rutgers University, Saul
Amarel’s Computers in Biomedicine project began an ambitious attempt to diagnose diseases
based on explicit knowledge of the causal mechanisms of the disease process. Meanwhile, large
groups at MIT and the New England Medical Center were pursuing an approach to diagnosis and
treatment based on the theories of probability and utility. Their aim was to build systems that
gave provably optimal medical recommendations. In medicine, the Stanford approach using rules
provided by doctors proved more popular at first. But another probabilistic reasoning system,
PROSPECTOR (Duda et al., 1979), generated enormous publicity by recommending exploratory
drilling at a geological site that proved to contain a large molybdenum deposit.

The importance of domain knowledge was also apparent in the area of understanding
natural language. Although Winograd’s SHRDLU system for understanding natural language had
engendered a good deal of excitement, its dependence on syntactic analysis caused some of
the same problems as occurred in the early machine translation work. It was able to overcome
ambiguity and understand pronoun references, but this was mainly because it was designed
specifically for one area—the blocks world. Several researchers, including Eugene Charniak,
a fellow graduate student of Winograd’s at MIT, suggested that robust language understanding
would require general knowledge about the world and a general method for using that knowledge.

At Yale, the linguist-turned-AI-researcherRoger Schank emphasizedthis point by claiming,
“There is no such thing as syntax,” which upset a lot of linguists, but did serve to start a useful
discussion. Schank and his students built a series of programs (Schank and Abelson, 1977;
Schank and Riesbeck, 1981; Dyer, 1983) that all had the task of understanding natural language.
The emphasis, however, was less on language per se and more on the problems of representing
and reasoning with the knowledge required for language understanding. The problems included
representing stereotypical situations (Cullingford, 1981), describing human memory organization
(Rieger, 1976; Kolodner, 1983), and understanding plans and goals (Wilensky, 1983). William
Woods (1973) built the LUNAR system, which allowed geologists to ask questions in English
about the rock samples brought back by the Apollo moon mission. LUNAR was the first natural
language program that was used by people other than the system’s author to get real work done.
Since then, many natural language programs have been used as interfaces to databases.

The widespread growth of applications to real-world problems caused a concomitant in-
crease in the demands for workable knowledge representation schemes. A large number of
different representation languages were developed. Some were based on logic—for example,
the Prolog language became popular in Europe, and the PLANNER family in the United States.
Others, following Minsky’s idea of frames (1975), adopted a rather more structured approach,FRAMES

collecting together facts about particular object and event types, and arranging the types into a
large taxonomic hierarchy analogous to a biological taxonomy.
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AI becomes an industry (1980–1988)

The first successful commercial expert system, R1, began operation at Digital Equipment Cor-
poration (McDermott, 1982). The program helped configure orders for new computer systems,
and by 1986, it was saving the company an estimated $40 million a year. By 1988, DEC’s AI
group had 40 deployed expert systems, with more on the way. Du Pont had 100 in use and 500 in
development, saving an estimated $10 million a year. Nearly every major U.S. corporation had
its own AI group and was either using or investigating expert system technology.

In 1981, the Japanese announced the “Fifth Generation” project, a 10-year plan to build
intelligent computers running Prolog in much the same way that ordinary computers run machine
code. The idea was that with the ability to make millions of inferences per second, computers
would be able to take advantage of vast stores of rules. The project proposed to achieve full-scale
natural language understanding, among other ambitious goals.

The Fifth Generation project fueled interest in AI, and by taking advantage of fears of
Japanese domination, researchers and corporations were able to generate support for a similar
investment in the United States. The Microelectronics and Computer Technology Corporation
(MCC) was formed as a research consortium to counter the Japanese project. In Britain, the
Alvey report reinstated the funding that was cut by the Lighthill report.16 In both cases, AI was
part of a broad effort, including chip design and human-interface research.

The booming AI industry also included companies such as Carnegie Group, Inference,
Intellicorp, and Teknowledge that offered the software tools to build expert systems, and hard-
ware companies such as Lisp Machines Inc., Texas Instruments, Symbolics, and Xerox that
were building workstations optimized for the development of Lisp programs. Over a hundred
companies built industrial robotic vision systems. Overall, the industry went from a few million
in sales in 1980 to $2 billion in 1988.

The return of neural networks (1986–present)

Although computer science had neglected the field of neural networks after Minsky and Papert’s
Perceptrons book, work had continued in other fields, particularly physics. Large collections
of simple neurons could be understood in much the same way as large collections of atoms in
solids. Physicists such as Hopfield (1982) used techniques from statistical mechanics to analyze
the storage and optimization properties of networks, leading to significant cross-fertilization of
ideas. Psychologists including David Rumelhart and Geoff Hinton continued the study of neural
net models of memory. As we discuss in Chapter 19, the real impetus came in the mid-1980s
when at least four different groups reinvented the back-propagation learning algorithm first found
in 1969 by Bryson and Ho. The algorithm was applied to many learning problems in computer
science and psychology, and the widespread dissemination of the results in the collection Parallel
Distributed Processing (Rumelhart and McClelland, 1986) caused great excitement.

At about the same time, some disillusionment was occurring concerning the applicability
of the expert system technology derived from MYCIN-type systems. Many corporations and

16 To save embarrassment, a new field called IKBS (Intelligent Knowledge-BasedSystems) was defined because Artificial
Intelligence had been officially cancelled.
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research groups found that building a successful expert system involved much more than simply
buying a reasoning system and filling it with rules. Some predicted an “AI Winter” in which AI
funding would be squeezed severely. It was perhaps this fear, and the historical factors on the
neural network side, that led to a period in which neural networks and traditional AI were seen
as rival fields, rather than as mutually supporting approaches to the same problem.

Recent events (1987–present)

Recent years have seen a sea change in both the content and the methodology of research in
artificial intelligence.17 It is now more common to build on existing theories than to propose
brand new ones, to base claims on rigorous theorems or hard experimental evidence rather than
on intuition, and to show relevance to real-world applications rather than toy examples.

The field of speech recognition illustrates the pattern. In the 1970s, a wide variety of
different architectures and approaches were tried. Many of these were rather ad hoc and fragile,
and were demonstrated on a few specially selected examples. In recent years, approaches based
on hidden Markov models (HMMs) have come to dominate the area. Two aspects of HMMs are
relevant to the present discussion. First, they are based on a rigorous mathematical theory. This
has allowed speech researchers to build on several decades of mathematical results developed in
other fields. Second, they are generated by a process of training on a large corpus of real speech
data. This ensures that the performance is robust, and in rigorous blind tests the HMMs have
been steadily improving their scores. Speech technology and the related field of handwritten
character recognition are already making the transition to widespread industrial and consumer
applications.

Another area that seems to have benefitted from formalization is planning. Early work by
Austin Tate (1977), followed up by David Chapman (1987), has resulted in an elegant synthesis
of existing planning programs into a simple framework. There have been a number of advances
that built upon each other rather than starting from scratch each time. The result is that planning
systems that were only good for microworlds in the 1970s are now used for scheduling of factory
work and space missions, among other things. See Chapters 11 and 12 for more details.

Judea Pearl’s (1988) Probabilistic Reasoning in Intelligent Systems marked a new accep-
tance of probability and decision theory in AI, following a resurgence of interest epitomized by
Peter Cheeseman’s (1985) article “In Defense of Probability.” The belief network formalism was
invented to allow efficient reasoning about the combination of uncertain evidence. This approach
largely overcomes the problems with probabilistic reasoning systems of the 1960s and 1970s,
and has come to dominate AI research on uncertain reasoning and expert systems. Work by
Judea Pearl (1982a) and by Eric Horvitz and David Heckerman (Horvitz and Heckerman, 1986;
Horvitz et al., 1986) promoted the idea of normative expert systems: ones that act rationally
according to the laws of decision theory and do not try to imitate human experts. Chapters 14 to
16 cover this area.

17 Some have characterized this change as a victory of the neats—those who think that AI theories should be grounded
in mathematical rigor—over the scruffies—those who would rather try out lots of ideas, write some programs, and then
assess what seems to be working. Both approaches are important. A shift toward increased neatness implies that the field
has reached a level of stability and maturity. (Whether that stability will be disrupted by a new scruffy idea is another
question.)
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Similar gentle revolutions have occurred in robotics, computer vision, machine learning
(including neural networks), and knowledge representation. A better understanding of the prob-
lems and their complexity properties, combined with increased mathematical sophistication, has
led to workable research agendas and robust methods. Perhaps encouraged by the progress in
solving the subproblems of AI, researchers have also started to look at the “whole agent” problem
again. The work of Allen Newell, John Laird, and Paul Rosenbloom on SOAR (Newell, 1990;
Laird et al., 1987) is the best-known example of a complete agent architecture in AI. The so-called
“situated” movement aims to understand the workings of agents embedded in real environments
with continuous sensory inputs. Many interesting results are coming out of such work, including
the realization that the previously isolated subfields of AI may need to be reorganized somewhat
when their results are to be tied together into a single agent design.

1.4 THE STATE OF THE ART

International grandmaster Arnold Denker studies the pieces on the board in front of him. He
realizes there is no hope; he must resign the game. His opponent, HITECH, becomes the first
computer program to defeat a grandmaster in a game of chess (Berliner, 1989).

“I want to go from Boston to San Francisco,” the traveller says into the microphone. “What
date will you be travelling on?” is the reply. The traveller explains she wants to go October 20th,
nonstop, on the cheapest available fare, returning on Sunday. A speech understanding program
named PEGASUS handles the whole transaction, which results in a confirmed reservation that
saves the traveller $894 over the regular coach fare. Even though the speech recognizer gets one
out of ten words wrong,18 it is able to recover from these errors because of its understanding of
how dialogs are put together (Zue et al., 1994).

An analyst in the Mission Operations room of the Jet Propulsion Laboratory suddenly
starts paying attention. A red message has flashed onto the screen indicating an “anomaly” with
the Voyager spacecraft, which is somewhere in the vicinity of Neptune. Fortunately, the analyst
is able to correct the problem from the ground. Operations personnel believe the problem might
have been overlooked had it not been for MARVEL, a real-time expert system that monitors the
massive stream of data transmitted by the spacecraft, handling routine tasks and alerting the
analysts to more serious problems (Schwuttke, 1992).

Cruising the highway outside of Pittsburgh at a comfortable 55 mph, the man in the driver’s
seat seems relaxed. He should be—for the past 90 miles, he has not had to touch the steering
wheel. The real driver is a robotic system that gathers input from video cameras, sonar, and laser
range finders attached to the van. It combines these inputs with experience learned from training
runs and succesfully computes how to steer the vehicle (Pomerleau, 1993).

A leading expert on lymph-node pathology describes a fiendishly difficult case to the
expert system, and examines the system’s diagnosis. He scoffs at the system’s response. Only
slightly worried, the creators of the system suggest he ask the computer for an explanation of

18 Some other existing systems err only half as often on this task.
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the diagnosis. The machine points out the major factors influencing its decision, and explains
the subtle interaction of several of the symptoms in this case. The expert admits his error,
eventually (Heckerman, 1991).

From a camera perched on a street light above the crossroads, the traffic monitor watches
the scene. If any humans were awake to read the main screen, they would see “Citroën 2CV
turning from Place de la Concorde into Champs Elysées,” “Large truck of unknown make stopped
on Place de la Concorde,” and so on into the night. And occasionally, “Major incident on Place
de la Concorde, speeding van collided with motorcyclist,” and an automatic call to the emergency
services (King et al., 1993; Koller et al., 1994).

These are just a few examples of artificial intelligence systems that exist today. Not magic
or science fiction—but rather science, engineering, and mathematics, to which this book provides
an introduction.

1.5 SUMMARY

This chapter defines AI and establishes the cultural background against which it has developed.
Some of the important points are as follows:

Different people think of AI differently. Two important questions to ask are: Are you
concerned with thinking or behavior? Do you want to model humans, or work from an
ideal standard?
In this book, we adopt the view that intelligence is concerned mainly with rational action.
Ideally, an intelligent agent takes the best possible action in a situation. We will study the
problem of building agents that are intelligent in this sense.
Philosophers (going back to 400 B.C.) made AI conceivable by considering the ideas that
the mind is in some ways like a machine, that it operates on knowledge encoded in some
internal language, and that thought can be used to help arrive at the right actions to take.
Mathematicians provided the tools to manipulate statements of logical certainty as well
as uncertain, probabilistic statements. They also set the groundwork for reasoning about
algorithms.
Psychologists strengthened the idea that humans and other animals can be considered
information processing machines. Linguists showed that language use fits into this model.
Computer engineering provided the artifact that makes AI applications possible. AI pro-
grams tend to be large, and they could not work without the great advances in speed and
memory that the computer industry has provided.
The history of AI has had cycles of success, misplaced optimism, and resulting cutbacks
in enthusiasm and funding. There have also been cycles of introducing new creative
approaches and systematically refining the best ones.
Recent progress in understanding the theoretical basis for intelligence has gone hand in
hand with improvements in the capabilities of real systems.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

Daniel Crevier’s (1993) Artificial Intelligence gives a complete history of the field, and Raymond
Kurzweil’s (1990) Age of Intelligent Machines situates AI in the broader context of computer
science and intellectual history in general. Dianne Martin (1993) documents the degree to which
early computers were endowed by the media with mythical powers of intelligence.

The methodological status of artificial intelligence is discussed in The Sciences of the Ar-
tificial, by Herb Simon (1981), which discusses research areas concerned with complex artifacts.
It explains how AI can be viewed as both science and mathematics.

Artificial Intelligence: The Very Idea, by John Haugeland (1985) gives a readable account of
the philosophical and practical problems of AI. Cognitive science is well-described by Johnson-
Laird’s The Computer and the Mind: An Introduction to Cognitive Science. Baker (1989)
covers the syntactic part of modern linguistics, and Chierchia and McConnell-Ginet (1990) cover
semantics. Allen (1995) covers linguistics from the AI point of view.

Early AI work is covered in Feigenbaum and Feldman’s Computers and Thought, Minsky’s
Semantic Information Processing, and the Machine Intelligence series edited by Donald Michie.
A large number of influential papers are collected in Readings in Artificial Intelligence (Webber
and Nilsson, 1981). Early papers on neural networks are collected in Neurocomputing (Anderson
and Rosenfeld, 1988). The Encyclopedia of AI (Shapiro, 1992) contains survey articles on almost
every topic in AI. These articles usually provide a good entry point into the research literature on
each topic. The four-volume Handbook of Artificial Intelligence (Barr and Feigenbaum, 1981)
contains descriptions of almost every major AI system published before 1981.

The most recent work appears in the proceedings of the major AI conferences: the biennial
International Joint Conference on AI (IJCAI), and the annual National Conference on AI, more
often known as AAAI, after its sponsoring organization. The major journals for general AI are
Artificial Intelligence, Computational Intelligence, the IEEE Transactions on Pattern Analysis
and Machine Intelligence, and the electronic Journal of Artificial Intelligence Research. There
are also many journals devoted to specific areas, which we cover in the appropriate chapters.
Commercial products are covered in the magazines AI Expert and PC AI. The main professional
societies for AI are the American Association for Artificial Intelligence (AAAI), the ACM Special
Interest Group in Artificial Intelligence (SIGART), and the Society for Artificial Intelligence and
Simulation of Behaviour (AISB). AAAI’s AI Magazine and the SIGART Bulletin contain many
topical and tutorial articles as well as announcements of conferences and workshops.

EXERCISES

These exercises are intended to stimulate discussion, and some might be set as term projects.
Alternatively, preliminary attempts can be made now, and these attempts can be reviewed after
completing the book.

1.1 Read Turing’s original paper on AI (Turing, 1950). In the paper, he discusses several
potential objections to his proposed enterprise and his test for intelligence. Which objections
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still carry some weight? Are his refutations valid? Can you think of new objections arising from
developments since he wrote the paper? In the paper, he predicts that by the year 2000, a computer
will have a 30% chance of passing a five-minute Turing Test with an unskilled interrogator. Do
you think this is reasonable?

1.2 We characterized the definitions of AI along two dimensions, human vs. ideal and thought
vs. action. But there are other dimensions that are worth considering. One dimension is whether
we are interested in theoretical results or in practical applications. Another is whether we intend
our intelligent computers to be conscious or not. Philosophers have had a lot to say about this
issue, and although most AI researchers are happy to leave the questions to the philosophers,
there has been heated debate. The claim that machines can be conscious is called the strong AISTRONG AI

claim; the weak AI position makes no such claim. Characterize the eight definitions on pageWEAK AI

5 and the seven following definitions according to the four dimensions we have mentioned and
whatever other ones you feel are helpful.

Artificial intelligence is . . .

a. “a collection of algorithms that are computationally tractable, adequate approximations of
intractably specified problems” (Partridge, 1991)

b. “the enterprise of constructing a physical symbol system that can reliably pass the Turing
Test” (Ginsberg, 1993)

c. “the field of computer science that studies how machines can be made to act intelli-
gently” (Jackson, 1986)

d. “a field of study that encompasses computational techniques for performing tasks that
apparently require intelligence when performed by humans” (Tanimoto, 1990)

e. “a very general investigation of the nature of intelligence and the principles and mechanisms
required for understanding or replicating it” (Sharples et al., 1989)

f. “the getting of computers to do things that seem to be intelligent” (Rowe, 1988).

1.3 There are well-known classes of problems that are intractably difficult for computers,
and other classes that are provably undecidable by any computer. Does this mean that AI is
impossible?

1.4 Suppose we extend Evans’s ANALOGY program so that it can score 200 on a standard IQ
test. Would we then have a program more intelligent than a human? Explain.

1.5 Examine the AI literature to discover whether or not the following tasks can currently be
solved by computers:

a. Playing a decent game of table tennis (ping-pong).

b. Driving in the center of Cairo.
c. Playing a decent game of bridge at a competitive level.

d. Discovering and proving new mathematical theorems.

e. Writing an intentionally funny story.
f. Giving competent legal advice in a specialized area of law.

g. Translating spoken English into spoken Swedish in real time.
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For the currently infeasible tasks, try to find out what the difficulties are and estimate when they
will be overcome.

1.6 Find an article written by a lay person in a reputable newspaper or magazine claiming
the achievement of some intelligent capacity by a machine, where the claim is either wildly
exaggerated or false.

1.7 Fact, fiction, and forecast:

a. Find a claim in print by a reputable philosopher or scientist to the effect that a certain
capacity will never be exhibited by computers, where that capacity has now been exhibited.

b. Find a claim by a reputable computer scientist to the effect that a certain capacity would
be exhibited by a date that has since passed, without the appearance of that capacity.

c. Compare the accuracy of these predictions to predictions in other fields such as biomedicine,
fusion power, nanotechnology, transportation, or home electronics.

1.8 Some authors have claimed that perception and motor skills are the most important part of
intelligence, and that “higher-level” capacities are necessarily parasitic—simple add-ons to these
underlying facilities. Certainly, most of evolution and a large part of the brain have been devoted
to perception and motor skills, whereas AI has found tasks such as game playing and logical
inference to be easier, in many ways, than perceiving and acting in the real world. Do you think
that AI’s traditional focus on higher-level cognitive abilities is misplaced?

1.9 “Surely computers cannot be intelligent—they can only do what their programmers tell
them.” Is the latter statement true, and does it imply the former?

1.10 “Surely animals cannot be intelligent—they can only do what their genes tell them.” Is
the latter statement true, and does it imply the former?
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