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Abstract— This paper details a method for identifying a set
of piece-wise affine linear models that can be used for control
design for flapping-winged flight. The paper focuses on diving
maneuvers as the application for these models. The flight condi-
tions during the dive are segmented into separate dynamically
similar regions, and least-squares is used to estimate affine
linear models for each modeling region. These models are used
to compute the reachability sets that satisfy recovery conditions
for safe diving. The point within the dive to begin recovery
was determined by checking the current pose for inclusion in
the backward reachable set. Using this control method, 2.2
meter dives were achieved at a success rate of 60 percent.
The data-driven automatic modeling techniques and controller
design processes can be extended to additional flight maneuvers,
provided sufficient previous data have been collected for model
generation of those maneuvers.

I. INTRODUCTION

Bio-inspired flapping-winged robotics is a rapidly growing
field that is of interest to roboticists as well as biologists.
The aerodynamics of flapping-winged flight are nonlinear
and complex and are difficult to model. The flapping of the
wings creates an unsteady airflow around the control surfaces
of the flier, increasing the complexity of the aerodynamics
associated with the surfaces [1][2][3][4]. An understanding
of the behavior of these fliers in free flight is necessary
for successful control. Modeling the complete aerodynamics
and dynamics of flapping-winged fliers is computationally
intensive, so performing predictive control online is not
possible on an autonomous millirobotic platform due to
computational limitations. Therefore, a controller algorithm
that can be updated at a high sampling rate is necessary.

One method of understanding the flight behavior of
these fliers involves modeling the wing motion during each
wing stroke, e.g. using blade element theory [5][6][7].
Another method involves multi-body modeling to account
for the changing mass distribution as the flier flaps its
wings [8][9][10].

To accomplish on-board model-based control in 10 gram
scale fliers, a simplified representation of the aerodynamics is
necessary. With flight models that are more mathematically
tractable, fast control schemes can be designed to achieve
maneuvers that have not previously been studied.

Models computed using learning approaches can often
have less online computational overhead than strictly dy-
namic models, which are nonlinear for flapping-winged
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Fig. 1: Sample H2Bird dive maneuver path and a close up
of the H2Bird (inset). Letters A-D indicate the initiation of
the dive, the beginning of the recovery, the minimum height
in the dive, and the final height regulation, respectively.

flight. The trade-off is that model learning approaches can
require large training data sets and high offline computational
overhead for high-dimensional models. Nguyen-Tuong et. al.
conducted a survey of some of the current model learning
approaches for robot control [11]. For diving maneuvers,
it is necessary to have multi-step modeling capabilities to
prevent crashes, which can require a level of accuracy that
necessitates larger data sets and increased robustness.

For this aerodynamic modeling, it is necessary to collect
data that can be used to estimate the behavior of the MAV
over time. Common approaches to develop these models
include averaging the flight behavior over the wing beat
period, and using linear low-dimensional models to predict
the flight behavior over time. It has been shown that using
time averaged aerodynamic data is a valid approximation
over a given wing stroke [12][13]. Wind tunnels are often
used to measure aerodynamic properties of robotic fliers,
although some of the degrees of freedom are constrained by
the mounting mechanism. A simulation of insect flight for
the Robofly project uses aerodynamic models based upon
wind tunnel measurements [14][15]. In addition, mounted
sensor measurements have also been used to measure the
aerodynamic properties of wings for modeling by Khan and
Agrawal [16]. Lee and Han recently implemented a non-
contact magnetic suspension and balance system to control
the attitude of an experimental model [17]. This setup allows
for data collection and controller verification using selected
degrees of freedom.

An alternative method to using stationary wind tunnel data
for modeling is collecting free flight telemetry data using a
motion tracking system. Grauer et al. utilized this method to



create a dynamic model for their ”Slow Hawk” ornithopter
[18]. The flight data collected was used to fit parameters
to a multi-body dynamic model, and wind tunnel tests
were used to determine the associated aerodynamic model.
This method, however, involves the fitting of many model
parameters. Faruque et al. also used system identification to
generate linear models of the pitch and roll dynamics of their
insect-inspired micro-flier [19]. Their models were of a lower
complexity than Grauer et al., and they used the models to
inform their on-board stabilizing avionics package.

The flapping-winged behaviors that have been previously
studied are typically limited to height regulation, vision-
based path following, and flight stabilization. While these
behaviors have been extensively investigated, the methods
described in this paper are used as an approach to develop
models and controllers for non-equilibrium maneuvers.

One approach that is often used is Proportional-Integral-
Differential (PID) control for height regulation or path fol-
lowing. Baek et al. used on-board orientation estimation
along with a camera to seek and fly towards an LED
using their flapping-winged MAV, the iBird [20][21]. They
predicted the position of the LED using a Kalman filter and
controlled the yaw and height using a PID controller.

Ma et al. used mixed-model based control methods
for height regulation of a robotic fly, developed by
Wood [22][23]. They used a PD controller to regulate the
attitude of the flier, and calculated the angular reference to
the attitude controller using the lateral position reference
error. The altitude controller was designed using the lin-
earized dynamics of the flier about hover. The controllers
were decoupled to reduce the constraints on the sensitive
attitude and lateral position controllers.

A vision-based approach was utilized by the researchers at
the Delft University of Technology with their flapping flier,
the Delfly II [24]. de Croon et al. used a camera mounted
on the front of the Delfly to compute optical flow and texton
histograms for texture detection [25]. Both methods were
used to estimate the time to collision with an obstacle. A
human controlled the height, and open loop yaw inputs in the
vision loop were used for obstacle avoidance. In this case, the
vision inputs determined the necessary control, rather than a
specific model or controller.

Another approach was used by Moore and Tedrake to con-
trol the perching behavior of a fixed wing aircraft [26]. The
researchers used LQR Trees, a control method that Tedrake
developed [27]. They designed a feedback controller using
trajectory optimization and local linear feedback. The set of
controllers over the local trajectory regions are computed
within regions of attraction branching from the space of
initial conditions. The regions of attraction are computed
using time-varying Lyapunov functions.

Gerdes et al. studied aerobatic flight using indepen-
dently controlled wings on their Robo-Raven flapping-
winged MAV [28]. The authors used programmable servos
for independent wing actuation. They investigated aerobatic
maneuvers for their flier such as tight turns, backflips, and
dives by pre-programming the wing actuator motions based
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Fig. 2: Diagram of the control sections of the entire diving
maneuver. The black diamond marks the lowest point in the
dive.

upon simulations.

II. PIECE-WISE AFFINE MODELING

The diving behaviors of the H2Bird were modeled using
a piece-wise affine discrete time model with a 0.025 second
time step. The state data were segmented into diving and
recovery sections, and each section was segmented into
several linear models using K-means and least squares re-
gression, a similar approach used by Buchan et al. [29].
Using these linear models, reachability analysis determined
when to switch control behaviors within the maneuver to
reach the goal height.

A. Data Collection

Diving data were collected in free flight using a Vicon
motion capture system to collect translational position, ve-
locity, and pitch angle data from the H2Bird during the dive.
There were 29 dives in total, and each experiment consisted
of:

1) Release the H2Bird by hand from one side of the
tracking space.

2) Wait for the initial release transient flight to stabilize.
3) Manually begin the unpowered dive portion of the

maneuver.
4) Manually begin the powered recovery portion of the

maneuver.
During the unpowered dive portion of the maneuver,

the H2Bird stops flapping, and the wings remain pressed
together. The elevator is commanded to a neutral position of
20 degrees and the yaw controller remains active. Since the
maneuver is within the sagittal plane, the yaw motion for
these experiments was not modeled.

During the powered recovery portion of the maneuver, the
wings flap at a maximum frequency of approximately 20
Hz, and the elevator is set to its maximum deflection of
60 degrees. The 160 mAh LiPo battery was replaced after
every 3 trials to eliminate the effects of battery drain on the
experiments.

An illustration depicting the different sections of the
diving maneuver is in Figure 2. Both the gray and yellow



shading represent the unpowered dive portion of the ma-
neuver. The yellow shading alone represents an initial stall
period immediately after the wings are turned off to start
the dive. During this region, the forward velocity rapidly
decreases and the nose pitches up, causing a rapid increase in
downward velocity before the nose pitches back down. This
stall period before a glide slope is reached is aerodynamically
complex. Everything after the gray shading and before the
vertical dashed line is considered the recovery part of the
maneuver. The lowest point of the maneuver, which is
the final dive height, is indicated by the black diamond.
Hereafter, all references to the beginning and final heights
of the dive will represent the height at the beginning of the
unpowered portion and the lowest point during the recovery
portion, respectively. The means and standard deviations of
the terminal conditions of the maneuver for the 29 trials are
in Table I.

Variable Mean Standard Deviation Min Max
X Velocity [m/s] 3.53 0.41 2.55 4.56
Z Velocity [m/s] 0.03 0.10 -0.14 0.22
Pitch [rad] 0.88 0.07 0.76 1.07

TABLE I: Table of the mean, minimum, maximum, and
standard deviation of the terminal conditions for relevant
variables for the 29 model training dives.

Ground effect was not modeled during the diving trials,
although there were dives that came very close to the ground.
As a result, ground effect could be aiding the recovery of
the H2Bird from some of the dives, as ground effect increases
lift and decreases drag on an airfoil as it comes into close
proximity with a fixed surface. This phenomenon could have
some effect on the end result of the modeling used to design
the controllers.
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Fig. 3: Free body diagram of the H2Bird for the relevant
state variables for the discrete-time models [20].

B. Data Segmentation
The flight trajectory data were segmented into several

regions and linearized about the regions to reduce the
numerical complexity of the aerodynamics. The state of
the H2Bird is represented as

X =
[
xw zw ẋw żw θ

]
(1)

In the vector, xw is the forward position in world coordi-
nates, zw is the vertical position in world coordinates, θ is
the pitch angle, ẋw is the horizontal velocity in world coor-
dinates, and żw is the vertical velocity in world coordinates.
Figure 3 is a diagram of the relevant state variables and their
associated directions.

The model chosen for a particular data segmentation re-
gion should not be dependent upon the translational position
of the robot, so the segmentation routine was used on only
a portion of the state vector:

Xp =
[
ẋw żw θ

]
(2)

K-means clustering was used to segment the data, which
partitions the data into k clusters, each used as a separate
region for linearization [30]. An initial set of k region centers
m1

1, . . . ,m
1
k from all of the observed state data in all of the

diving trials is randomly selected to begin the segmentation
process. In the assignment step, each data point xp is then
assigned to the closest region center, according to Equation 3,
where St

i is the ith region cluster at time t.

St
i = {xp 3 ‖xp−mt

i‖2 ≤ ‖xp−mt
j‖2 ∀j, 1 ≤ j ≤ k} (3)

After the assignment step, the region centers are recalcu-
lated, according to Equation 4, as the mean of the regions
of clustered data points.

mt+1
i =

1

|St
i |
∑

xj∈St
i

xj (4)

The update and assignment steps are run iteratively 100
times. To account for bad seeding of the initial randomly
selected region centers, the entire k-means algorithm is run
10 times and the regions that minimize the sum of the
squared distances from each data point to its associated
region cluster are selected:

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖2 (5)

The results of the k-means segmentation of the two
portions of the dive are graphically represented in Figure 4,
with the model regions for the dive on the left and the regions
for the recovery on the right. Each color represents a different
region of the state space described in Equation 2.

C. Piece-wise Affine Model Generation

The least squares algorithm was used to fit linear models
to each region generated by the k-means segmentation. The
piece-wise linear discrete-time models fit to the data in each
region are of the form:

xt+1 = Aixt +Biut + fi (6)
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Fig. 4: Overview of the data collection, segmentation, model generation, and reachable set computation processes. The result
of this process is used to determine when to switch from the unpowered dive to the recovery control mode.

where xt+1 εR5x1 is the state vector described by Equa-
tion 1 at the next time step, xt εR5x1 is the state vector at the
current time step, ut εR2x1 is the input vector, Ai εR5x5 is
the state evolution matrix, Bi εR5x2 is the input matrix, and
fi εR5x1 is an affine portion of the state evolution equation,
for a modeling region i. The inputs in the vector ut are the
wing flap frequency and the elevator angle. A time step of
0.025 seconds was used for the modeling.

Since the first two variables of the state vector are the x
and z position, the state update equations for that portion of
the state space are:

xt+1 = xt + Ts ∗ ẋt
zt+1 = zt + Ts ∗ żt

(7)

where Ts is the time step. Therefore, the model is only
being fit to the reduced state vector in Equation 2, the same
state vector used for the k-means segmentation. This ensures
that the segmentation and models are independent of the
position.

The model parameters Ai, Bi, and fi for each model
region i are the solutions to the following least squares
optimization problem:

Xt+1 =
[
A B f

]
i

 X
u
1


t

= βiX̄t (8)

βi is the unknown model parameter matrix for all of the
points in region Si that satisfy Equation 3. Xt+1 εR3xN is
the vector of all N next states in the region i, collected
into the observation matrix of the least squares problem.
X εR3xN is the vector of all N current states in region
i, u εR2xN is the vector of all N inputs in region i, and
1 εR1xN is a vector of N ones, collected into the data matrix
X̄t of the least squares problem. The least squares problem
was solved for each region i in each the dive and recovery
regions for one- to ten-region k-means segmentations.

The Mahalanobis distance metric was used to determine
the appropriate number of regions to model the motion of
the H2Bird:√∑N

i=1

(
βiX̄t −Xt+1

)> ∗ Σx ∗
(
βiX̄t −Xt+1

)
N

(9)

N is the number of data points in the particular model
region i and Σx is the co-variance matrix of the state
measurements. The Mahalanobis distance was used as the
comparison metric because it relates vector quantities in
different spaces based on the distribution of values in a
signal. 80 percent of the measured data was used as the
training set for the models, and the other 20 percent was used
as the validation set. The distance values for the validation
sets are in Table II. The distance metric for the “Null” model
is in the first column of the table for comparison with the
other fitted models. The “Null” model is defined as:

Xt+1 =

 1 0 0
0 1 0
0 0 1

Xt (10)

For ease of computation, the models were computed using
the number of regions that provided an appreciable decrease
in error compared to a fewer number of regions.

# of Regions Null 1 2 3
Dive 0.113 0.0309 0.0188 0.0208
Escape 0.501 0.113 0.0859 0.0586

4 5 6 7
0.0205 0.0215 0.0212 0.0209
0.0540 0.0516 0.0470 0.0440

TABLE II: Table of the Mahalanobis distance for 1 through
7 regions for the dive and escape portions of the maneuver.

III. REACHABILITY ANALYSIS

To determine when to switch from the uncontrolled dive
to the bang-bang recovery controller, the backward reachable
sets were computed over a fixed horizon from the goal state.
The set of goal states were defined as the region of observed
terminal conditions at the lowest vertical point in the dive.
This point is indicated by a black diamond in Figure 2.
To conduct the reachability analysis, the set of possible
goal states were defined as the minimum and maximum
of the observed terminal velocities and pitch. The goal
position was defined as zero for the controller and thereby
the goal terminal region was defined as 0.1 meters above
and below zero for the horizontal and vertical position. An
equality constraint at zero for the goal position constrained



the problem too much and did not provide the needed result
for the analysis.

The backwards reachable set is defined as:

B (xf , U, t) = {x0 εX : ∃u εU, ∃t ε [0, t] s.t. x(t) = xf}
(11)

The backwards reachable set is the set of all states x0 such
that there exists an input u εU that can drive the collection
of states x0 into the collection of states xf in t time. The
backwards reachable set for the goal region was computed
for 16 time steps at a time step of 0.025 seconds, for a total
of 0.4 seconds. The total collection of all of the polytopes for
the reachable sets for each step in time is the total set of states
that can reach the target height in t ≤ 0.4s time. This set
boundary was used as a guard condition for switching control
schemes from the unpowered dive portion to the recovery
portion of the maneuver. The total reachable set within 0.4
seconds for the goal set is shown in Figure 5. When the
trajectory of the H2Bird during the dive enters this set, the
control mode switches into the recovery mode.

IV. ONLINE CONTROL

A. Control Implementation

+

Fig. 6: Controller block diagram of the diving maneuver.

The controllers for the diving maneuver are sectioned into
two distinct pieces: the uncontrolled dive and the powered
recovery. The location within the dive of each section
of the control is graphically depicted in Figure 2 by the
labels on the top of the diagram. To start the maneuver,
the H2Bird begins the unpowered dive and recovers from
the dive at a time dictated by the models described in
Section II. A block diagram of the control implementation
is in Figure 6. The controller switches from an initial
height regulation controller when the dive is initiated by
the user. The transition from the unpowered dive to the
recovery controller occurs when the estimated state, ym, of
the H2Bird is within the reachability polytope described in
Section III. Each controller section along with the transition
conditions are described in the following subsections.

1) Uncontrolled Dive: The dive portion of the maneuver
is uncontrolled; the wings stop flapping and the elevator
is commanded to a neutral position of 20 degrees upwards

deflection. The position at which the dive begins is marked
as the starting position of the maneuver.

2) Recovery Control: The set generated by the reach-
ability analysis is used as the hybrid guard condition to
determine the transition point between the uncontrolled dive
and recovery portions of the maneuver. The reachability set
for the desired goal set is numerically represented by a
collection of N polytopes of the form Aixt ≤ bi, where xt
is the current state, Ai εRMx5, and bi εRMx1. M depends
on the number of faces in the polytopes and varies polytope
to polytope. If the current state is within the reachability set,
the control scheme is switched to the recovery controller.
This check can be formally stated as:

if ∃Pi | Pi = Aix ≤ bi, Aixt − bi ≤ 0⇒ recover (12)

Pi is the ith polytope of the reachable set.
The recovery controller is a bang-bang controller that stays

active until the vertical velocity becomes positive. During the
recovery, the wings are flapped at maximum frequency and
the elevator is at its full upward deflection. The moment the
vertical velocity becomes positive is recorded as the final
dive height, and the controller switches back to the height
regulator.

V. EXPERIMENTS AND DISCUSSION

Experiments on the dive recovery control scheme were
conducted using a Vicon motion capture system to collect
flight telemetry. The Vicon was also used in the control
loop as the vertical and horizontal distance and velocity
measurement 1.

A. Recovery Control
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Fig. 7: Position data for a single trial of the H2Bird diving
experiment. The gray shading represents the unpowered
portion of the dive. The black marker indicates the conditions
at the lowest vertical position in the dive.

Experiments using various desired dive heights were
conducted to determine the effectiveness of the recovery
controller. Each trial consisted of releasing the H2Bird by

1Unfortunately, the H2Bird does not have any sensors to measure
position and velocity onboard.
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Fig. 8: Telemetry data for a single trial of the H2Bird diving
experiment. From the top are the horizontal position, vertical
position, horizontal velocity, vertical velocity, and pitch
angle. The gray shading represents the unpowered portion
of the dive. The black marker indicates the conditions at the
lowest vertical position in the dive.

hand, then triggering a dive to a particular set point. The
rest of the maneuver is autonomous, and the existing yaw
controller remained active to prevent lateral movement. A
successful dive was classified as one that did not contact the
ground, and a failed dive was classified as one that did. There
were no requirements or constraints on post-dive behavior,
although the H2Bird ascended at the end of each trial. Target

dive distances of 1.0, 1.5, and 2.0 meters were used. For
each trial, the H2Bird was released from approximately 2.6
meters above the ground with a 30 degree pitch angle set
point, and the dive was not initiated until the initial launch
transient ended. During each trial, the motor inputs from
the H2Bird and translational position, translational velocity,
and pitch angle from the Vicon were recorded.

Desired Dist [m] Succeed Fail Mean Dist [m] Std Dev
1.0 5 4 2.2 0.09
1.5 8 5 2.2 0.1
2.0 0 2 N/A N/A

TABLE III: Table of the number of successful trials, failed
trials, mean dive distance, and standard deviations for each
tested dive distance.

The data for a typical trial are presented in Figures 7 and 8.
The gray shaded region indicates the unpowered dive portion
of the experiment, and the recovery trigger point is at the
rightmost edge of the gray region. The black marker indicates
the lowest vertical point in the trajectory. In the parts of the
trajectory where the wings are flapping shows oscillations in
pitch and velocity due to wing artifacts because the velocity
is a time derivative of the tracked position. The Vicon
only provides angular position in axis-angle format and the
translational position of the tracked body by default. Since
the Vicon data was streaming directly to the control program,
the built-in post-processing provided by the tracking software
could not be used.

There were 24 total dive trials conducted: 9 at a 1.0 meter
desired dive depth, 13 at a 1.5 meter depth, and 2 at a 2.0
meter depth. The results of the dives are summarized in
Table III. For a 1.0 meter target dive distance, there was
a success rate of approximately 55 percent, for a 1.5 meter
target distance there was a 61 percent success rate, and for
2.0 meters there were no successful dives. The robot showed
no signs of success at the 2.0 meter set-point and would hit
the ground at a high rate of speed, eventually resulting in
damage, so no more than two trials were conducted.
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Fig. 9: The tracked paths for all of the dive experiments
with successful trials in green and failed trials in red. The
black vertical line is the starting point of the unpowered dive
section and the horizontal line is the lower tracking limit of
the Vicon. The squares represent the start of the recovery
controller.

The total dive distance from the point that the dive is
initiated (the wings stop flapping) to the lowest vertical point
in the maneuver is also in Table III. Unfortunately, the Vicon
tracking for some of the trials was of low quality in the
final parts of 1 dive at 1.0 meters and 1 dive at 1.5 meters,
so these trials were omitted. Although the H2Bird managed
to enter the backward reachable set in each of these trials
and successfully recover, the mean dive distance was 2.2
meters for both 1.0 and 1.5 meter set-point. The reason for
this was that the mean dive distance for the initial trials
used to train the models was 1.8 meters with a standard
deviation of 0.2 meters. The lack of diversity in the dive
distances that the model was based upon resulted in a model
that consistently yielded dive distances around 2.2 meters,
regardless of whether the set-point was 1.0 or 1.5 meters.
This problem could probably be remedied with a larger
training set with increased diversity in observed dive heights.
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The flight paths for all of the diving trials are in Figure 9.
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Fig. 11: The pitch angle at the recovery point and the time
to a downward pitch angle during the unpowered dive for
successful (green circle) and failed (red square) trials.

The vertical black line indicates the beginning of the un-
powered portion of the dive, and the horizontal black line
indicates the lower tracking limit of the Vicon, which is
approximately the floor. The lowest recovery initiation height
of successful dive was 1.0 meters. The failures that initiated
recovery below this point can be attributed to attempts to
recover too close to the floor.

The vertical velocity and the pitch angle at the recovery
point for successful (green circle) and unsuccessful (red
square) trials are plotted in Figure 10 to attempt to under-
stand why some of the trials in which recovery was initiated
above 1.0 meters failed. The markers with their respective
shapes surrounded in black are the trials when recovery
initiated above 1.0 meters. All of the failed trials exhibit
both a high vertical velocity and high downward pitch angle
at the time of recovery. When the wings begin flapping they
will induce both a downward pitch moment and increase in
velocity, which further exacerbates the problem. When this
happens, the H2Bird is likely to lose enough height, before
reaching a positive pitch angle, to crash into the ground.

These recovery conditions can be caused by the properties
of the stalling behavior shown in Figure 11. The x axis
represents the amount of time spent in a stall in the un-
powered dive, and the y axis represents the pitch angle at the
recovery point. The stall time is the time elapsed between the
maximum pitch angle during the stall and the first occurrence
of a negative pitch angle. On average, the failed trials exhibit
higher stall times, which lead to increased vertical velocities
at the point of recovery. The stall region at the beginning of
the dive is represented by the flight path diagram in Figure 2.

VI. CONCLUSIONS

To design computationally tractable models for online
control during a diving maneuver, linear models were fit
around clusters of flight conditions from a data set of sample
manually controlled dives. The data sets were segmented
into clusters of similar flight poses using k-means, and the
models were fit using linear least squares. The models were
then used to compute the backward reachable sets from a



goal set of previously experienced dive end poses. The point
within the dive to begin recovery was determined using
the backward reachable set by checking the current pose
and simulated poses 0.1 seconds ahead for inclusion in the
reachable set. Using this control method, 2.2 meter dives
were achieved at a success rate of 60 percent. The majority of
the failures can be attributed to extended stall conditions that
result in dangerous vertical velocities and pitch angles during
recovery. Another possible reason for the failures could be
attributed to the chosen observations to compute the models.
It is possible that observing the kinetic and potential energy
in the system during the dives could provide some insight
into good recovery conditions.

Linear piece-wise affine modeling of segments of flight
conditions within a maneuver has proven to be an effective
method for determining transition points between hybrid
controllers. This method could be extended to incorporate
models for chunks of additional maneuvers. These sections
of flight could form a library of maneuver segments that
could be stitched together to form flight patterns and tra-
jectories that were not previously experienced by the robot.
The controllers for each segment could be stored on-board
to enable autonomous navigation or obstacle avoidance by
picking maneuvers applicable to an observed situation. Since
the models are linear, the computational overhead for on-
board look-ahead simulation or computation of feedback
controllers is reduced relative to complex nonlinear models.
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