
PARTEMU: Enabling Dynamic Analysis of Real-World TrustZone Software
Using Emulation

Lee Harrison*1, Hayawardh Vijayakumar*1, Rohan Padhye2, Koushik Sen2, and Michael Grace1

1Samsung Knox, Samsung Research America
{lee.harrison,h.vijayakuma,m1.grace}@samsung.com

2EECS Department, University of California, Berkeley
{rohanpadhye,ksen}@cs.berkeley.edu

Abstract
ARM’s TrustZone technology is the basis for security of bil-
lions of devices worldwide, including Android smartphones
and IoT devices. Because TrustZone has access to sensitive
information such as cryptographic keys, access to TrustZone
has been locked down on real-world devices: only code that
is authenticated by a trusted party can run in TrustZone. A
side-effect is that TrustZone software cannot be instrumented
or monitored. Thus, recent advances in dynamic analysis tech-
niques such as feedback-driven fuzz testing have not been
applied to TrustZone software.

To address the above problem, this work builds an emu-
lator that runs four widely-used, real-world TrustZone oper-
ating systems (TZOSes) - Qualcomm’s QSEE, Trustonic’s
Kinibi, Samsung’s TEEGRIS, and Linaro’s OP-TEE - and
the trusted applications (TAs) that run on them. The tradi-
tional challenge for this approach is that the emulation effort
required is often impractical. However, we find that TZOSes
depend only on a limited subset of hardware and software
components. By carefully choosing a subset of components
to emulate, we find we are able to make the effort practical.
We implement our emulation on PARTEMU, a modular frame-
work we develop on QEMU and PANDA. We show the utility
of PARTEMU by integrating feedback-driven fuzz-testing us-
ing AFL and use it to perform a large-scale study of 194
unique TAs from 12 different Android smartphone vendors
and a leading IoT vendor, finding previously unknown vul-
nerabilities in 48 TAs, several of which are exploitable. We
identify patterns of developer mistakes unique to TrustZone
development that cause some of these vulnerabilities, high-
lighting the need for TrustZone-specific developer education.
We also demonstrate using PARTEMU to test the QSEE TZOS
itself, finding crashes in code paths that would not normally
be exercised on a real device. Our work shows that dynamic
analysis of real-world TrustZone software through emulation
is both feasible and beneficial.

* These authors contributed equally to this work.

1 Introduction

ARM’s TrustZone technology [2] is the basis for security
of billions of devices worldwide, including Android smart-
phones [51,54] and IoT devices [55]. TrustZone provides two
isolated environments: a rich execution environment (REE
or “normal world”) for running normal applications, and a
trusted execution environment (TEE or “secure world”) for
running trusted applications. Only the secure world has access
to sensitive data such as cryptographic keys and biometrics
information. The secure world runs security-critical “trusted
applications” (TAs) for cryptographic key management, attes-
tation [41], device integrity maintenance [4], and authentica-
tion on top of a TrustZone operating system (TZOS). It is the
responsibility of the TAs and TZOS to protect access to such
sensitive data even if the normal world is fully compromised,
for example, due to malicious apps or users who “root” their
smartphones [63]. A vulnerability in a TA or the TZOS leads
to a breakdown of this protection. Therefore, it is critical to
be able to analyze the security of TrustZone software.

In spite of TrustZone software’s importance to security,
dynamic analysis of real-world TrustZone software is limited
by TrustZone’s locked-down nature. In real-world TrustZone
deployments, only code that is authenticated (i.e., signed) by a
trusted party can run. This restriction maintains the security of
data accessible only by the secure world. However, it comes at
a cost: the inability to instrument or monitor code in the secure
world. This rules out applying dynamic analysis techniques
such as feedback-driven fuzz testing [9, 12, 40, 61], concolic
execution [13, 48], taint analysis [17, 58], or debugging, on
TrustZone software on real devices.

As a result, approaches to analyze real-world TrustZone
software have been limited. Approaches to find TA vulner-
abilities include static reverse-engineering of binaries [7,8]
and blind fuzzing without feedback [6] on real devices. Ap-
proaches that attempt to emulate software by forwarding re-
quests to real hardware [28, 31, 49, 59] through interfaces
such as JTAG or USB are not applicable, since TrustZone
hardware does not export such interfaces and its software is

locked down. Perhaps closest to our work is TEEMU, men-
tioned in a talk by Komaromy [30]. While they do not attempt
full-system TZOS and TA emulation, they run TAs for a real-
world TZOS (an older version of Trustonic’s Kinibi [56]) by
re-implementing a subset of the TZOS system calls. Since
they do not run the original TZOS, this limits TEEMU to
testing Kinibi TAs that use only those system calls that they
re-implement, and does not allow testing the Kinibi TZOS it-
self. Furthermore, reproducibility is dependent on the fidelity
of re-implementation of the TZOS system calls, which are
often complicated.

In this work, we re-host2 binary images of closed-source,
real-world TZOSes in a full-system emulator to enable holis-
tic dynamic analysis of TrustZone software - the TZOSes
themselves and the TAs that run on these TZOSes. Specif-
ically, we build an emulator that can run four widespread,
real-world TZOSes: Qualcomm’s QSEE [38], Trustonic’s
Kinibi [56], Samsung’s TEEGRIS [43], and Linaro’s OP-
TEE [34]3. As of 2019, Qualcomm’s QSEE runs on more
than 60% of Android phones [51, 62], Trustonic’s Kinibi runs
on over 1.7 billion devices, including 9 of the top 10 Android
vendors [54], and Samsung’s TEEGRIS runs on several of
Samsung’s non-Qualcomm smartphones, including its flag-
ship Samsung Galaxy S10 [22, 50], making them the three
most widely-used real-world TZOSes.

The obvious challenge for emulation is its practical fea-
sibility. Android smartphones, the biggest users of Trust-
Zone in the real-world, have a huge number of hardware
and software components. The naïve approach of attempting
to run an entire firmware image by emulating all required
hardware is not practically feasible, especially given many
vendor-specific, undocumented components. However, many
components, such as a hypervisor, are unrelated to the TZOS.
Therefore, to make the emulation effort practical, we start by
excluding components unrelated to the TZOS.

However, even after excluding such unrelated components,
we still find that supporting the remaining components is im-
practical. For example, the TZOS depends on the bootloader,
which itself depends on a variety of storage controllers that are
typically extremely complicated, vendor-specific and not suf-
ficiently supported by any open-source emulator. Our insight
is that, here, it is more practical to emulate the bootloader’s
APIs that the TZOS depends on than it is to support the entire,
unmodified bootloader binary with all its dependencies. Thus,
we re-implement the relevant functionality of the bootloader
in a custom component that mimics, or emulates, the origi-
nal bootloader to the TZOS. Our approach, therefore, is to
study TZOS dependencies on each software component and
determine whether it is more practical to reuse the original
component or emulate it. In this process, we also identify de-

2Firmware re-hosting [23] is the process of migrating firmware from its
original hardware environment into a virtual environment.

3OP-TEE can already be compiled to run in an emulator. However, we re-
host an already-built binary image that runs on real hardware to an emulator.

pendency patterns on each component that may help similar
future efforts for other closed-source TZOSes.

We implement our design on PARTEMU, a modular frame-
work that we built on QEMU [5] and PANDA [17]. We show
that both the software and hardware emulation effort required
to support these TZOSes is practically feasible: hardware
required emulation of a total of 235 distinct registers using
8 access patterns, and additional support for only 3 devices,
whereas software emulation of the bootloader and secure
monitor required specifying 52 data values and 17 APIs,
many again following simple patterns. We show the utility of
PARTEMU by integrating feedback-driven fuzz-testing using
AFL as a module, and use it to test 194 unique TAs from
12 different Android smartphone vendors and a leading IoT
vendor, finding previously unknown vulnerabilities in 48 TAs,
several of which are exploitable. We identify patterns unique
to TrustZone development that cause some of these vulnerabil-
ities, highlighting the need for TrustZone-specific developer
education. We also demonstrate using PARTEMU to test the
QSEE TZOS itself, finding crashes in code paths that would
not normally be exercised on a real device.

In summary, the work makes the following contributions.

• We study the software and hardware emulation effort
required to run four widespread, real-world TrustZone
OSes - Kinibi, QSEE, TEEGRIS, and OP-TEE - in an
emulator, showing that the emulation effort is practically
feasible if we choose a suitable subset of components to
emulate,

• We build PARTEMU, a system that enables modular dy-
namic analysis of TrustZone by addressing additional
challenges such as stability, performance, and TA authen-
tication, and

• We use PARTEMU to perform a large-scale study of 194
real-world TAs from 12 different smartphone vendors
and a leading IoT vendor, finding several previously-
unknown vulnerabilities and identifying patterns of
causes.

To the best of our knowledge, we are the first to demon-
strate that it is practically feasible to re-host real-world closed-
source TZOSes in an emulator, and to perform a large-scale
dynamic analysis of real-world TAs across Android smart-
phone vendors.

2 Problem

The problem we address in this paper is that dynamic analy-
sis for real-world, deployed TrustZone software is extremely
limited due to TrustZone’s necessarily locked-down nature.
TrustZone is often the foundation for smartphone security
since it has access to critical cryptographic material. For ex-
ample, it has access to a device-unique symmetric hardware

key [1, 41] that is used to ensure that data stored on disk en-
crypted by that key can only be decrypted on that particular
device. As another example, on Samsung phones, TrustZone
has access to a factory-installed per-device private key signed
by the Samsung CA [42] for remote attestation. Thus, remote
servers can verify that they are communicating with a valid,
protected, Samsung device, and can decide to store enterprise
data on such devices. By convention, on such devices, only
authenticated TrustZone software that is signed by a trusted
party can run. If arbitrary changes were possible to TrustZone
software, then these keys and secrets could be leaked, thus
completely compromising security.

A side-effect of the inability to change TrustZone software
is that dynamic analysis is extremely limited for the com-
munity. Without the ability to instrument or monitor Trust-
Zone software, the community cannot take advantage of ad-
vances in dynamic analysis such as feedback-driven fuzz
testing [12,40,48,61] for TrustZone software. State-of-the-art
for dynamic analysis on devices is limited to projects such
as FuzzZone [6], which enables black-box fuzz testing of
TrustZone on devices using a custom normal-world Linux
kernel driver. Even here, if there is a crash, it is almost im-
possible to find the root cause. Devices typically just reboot
and do not have TrustZone crash logs since such information
may leak sensitive data. Researchers have been restricted to
primarily static reverse-engineering of binaries [7, 8] to find
vulnerabilities in TrustZone software.

Thus, we are left with the status quo that TrustZone soft-
ware, despite being the foundation of security on millions of
smartphone devices across the world, has received limited
scrutiny from the community.

2.1 Goals
To address the above problem, our goal is to build an emulator
to enable dynamic analysis of real-world TrustZone software.
In particular, our aim is to re-host closed-source binary images
of four widely-deployed real-world TZOSes (and their TAs) in
an emulator: Qualcomm’s QSEE [38], Trustonic’s Kinibi [56],
Samsung’s TEEGRIS [43], and Linaro’s OP-TEE [34]. Specif-
ically, we have the following goals:

• Compatibility. The emulator should be able to run the
same TZOS and TA binaries that are deployed on real-
world devices.

• Reproducibility. The emulator should have sufficient
fidelity so that the issues discovered should be repro-
ducible on the real device.

• Feasbility. We want to require practically feasible hard-
ware and software emulation effort to build the emulator.

3 Challenge and Solution Overview

Our main challenge is that environments that use ARM Trust-
Zone in the real world have a large number of software and

Step 1:
Study Component

Dependencies

Step 2:
Select Component
Subset to Emulate

Step 3:
Emulate Selected

Components

TZOS

S.MonHyp

TEE
Driver

?

CA TA

Bootldr TZOS

S.Mon

TEE
Driver

TA

Bootldr TZOS

S.Mon

TEE
Driver

TA

Bootldr

?
?

?

?

?
?

?

Figure 1: Solution steps.

hardware components, thus making emulation non-trivial. An-
droid smartphones, the largest users of ARM TrustZone, have
software that includes the Android framework, Android apps,
the Linux kernel, and a hypervisor in the normal world, and
a secure monitor, TZOS, and TAs in the secure world. Hard-
ware includes the system-on-chip, TrustZone address-space
and protection controllers, cryptography co-processors, and
peripherals such as a touchscreen, camera, GPS, and storage.
Naïvely loading the entire firmware binary in an emulator and
running it is practically infeasible due to the huge amount of
hardware components, many custom and without documenta-
tion, that need to be emulated.

To make the emulation effort practically feasible, we first
note that the TZOS only depends on a limited subset of all
hardware and software components. For example, the TZOS
usually has no dependency on the hypervisor. Therefore, such
components can be excluded. Second, even for those compo-
nents that the TZOS depends on, we find that we can some-
times further reduce effort by extracting out only the relevant
parts of the component that the TZOS depends on into a stub,
depending on how tightly the TZOS is coupled with the com-
ponent. In general, we can more easily extract dependencies
and emulate a component using a stub if the TZOS is loosely
coupled with it. Otherwise, it is may be more practical to reuse
the original binary component and support its dependencies.

Our solution approach, therefore, has three main steps. We
start by studying the dependencies of the target component
we want to emulate (Step 1 in Figure 1). In our case, our tar-
get, the TZOS depends on the secure monitor, the TEE driver
in the Linux kernel, the TEE userspace, and the bootloader.
We exclude components that the TZOS does not depend on.
For each component the TZOS depends on, we estimate how
tightly they are coupled, i.e., how complex the dependency is.
Next, using this information, we decide whether to emulate
components using a stub or reuse original components (Step 2
in Figure 1). Section 5 describes criteria for choosing whether
to reuse or emulate a component, and Section 6 studies com-
ponent dependencies in our target TZOSes, finding concrete
patterns that suggest reuse or emulation.

Third, once we decide which software and hardware com-
ponents to emulate, we need to emulate them (Step 3 in Fig-
ure 1), that is, replace the component with a stub that suffi-
ciently mimics the original component. For most hardware

components, we find that the TZOS binary itself gives suffi-
cient information about the expected interaction, such as the
result of reading a register. We find that simple register access
patterns are sufficient to emulate most hardware (Section 7).

4 TZOS Background

In this section, we first present relevant background on ARM
TrustZone (Section 4.1), and then study component depen-
dencies in a typical system running ARM TrustZone (Sec-
tion 4.2).

4.1 ARM TrustZone Background
ARMv8, ARM’s 64-bit architecture that runs the majority
of smartphone devices today, has two orthogonal privilege
systems (Figure 2). First, it has four privilege levels called
exception levels (ELs), similar to rings in x86. Typically,
EL0, the lowest privilege level, runs userspace code, EL1 runs
the OS, EL2 the hypervisor, and EL3, the highest privilege
level, runs the secure monitor. For backwards compatibility,
ARMv8 supports running 32-bit code as well. Therefore, it
can support both the 64-bit TZOSes (QSEE, TEEGRIS), and
32-bit TZOSes (Kinibi).

Second, ARM TrustZone introduces another orthogonal
privilege system. It allows code in any of the exception levels
to run in either: (1) a trusted state, called the trusted execution
environment (TEE) or “secure world”, or (2) in an untrusted
state, called the rich execution environment (REE), non-secure
or “normal world”4,5. Transition from the normal to secure
world is done using the secure monitor call (SMC) instruction,
which calls into the secure monitor in EL3. SMCs can only
be made from EL1 or EL2, and not directly from EL0.

When running in the secure world, software can access all
memory and peripherals. When running in the normal world,
software can only access non-secure memory and non-secure
peripherals. This access control is enforced in hardware by the
TrustZone address-space controllers (TZASC) for memory
and protection controllers (TZPC) for peripherals.

4.2 TZOS Dependencies
TrustZone software components and their dependencies are
implementation-defined. However, we observe that most im-
plementations of TrustZone, including QSEE, Kinibi, TEE-
GRIS, OP-TEE, and Huawei’s TEE [45], have similar soft-
ware components and interactions. In the secure world, trusted
applications (TAs) run in secure EL0 (S.EL0), the TZOS in
secure EL1 (S.EL1), and the secure monitor in EL3. In the
normal world, applications that communicate with TAs, called
client applications (CAs) run in non-secure EL0 (NS.EL0)

4As of ARMv8.3, EL2 is only available in the normal world. ARMv8.4
removes this restriction

5EL3 runs in both secure and non-secure states

TrustZone OS
(TZOS)

Trusted
Application

(TA)

Trusted
Application

(TA)

Secure Monitor

Bootloader

struct callback_info {
 ...
}

struct boot_info {
 ...
}

B1

B2

Normal-world
 OS

R2

R3

Client
Application

(CA)

Client
Application

(CA)

TEE
Driver

R1

Shared
Memory

Hypervisor

N
or

m
al

 W
or

ld
S

ec
ur

e
W

or
ld

Non-Secure EL0
Non-Secure EL1

Non-Secure EL2

EL3

Secure EL0

Secure EL1

Figure 2: ARMv8 TrustZone architecture and a typical
TZOS’s software interactions.

alongside other apps. These CAs call into the TEE driver in
the OS kernel in NS.EL1 (e.g., Linux) that transitions to the
secure world using an SMC. Finally, during system startup,
the TZOS is loaded into memory by a bootloader that runs
either in EL3 or S.EL1. For ease of implementation, parts of
the TEE driver may optionally exist in userspace (NS.EL0);
these components form the TEE userspace.

We find that a typical TZOS’s dependency on other soft-
ware components can be broadly divided into dependencies
with the bootloader and secure monitor at boot-time, and the
secure monitor, and the TEE driver at run-time (Figure 2).

4.2.1 Boot-Time Dependencies

At boot-time, the TZOS depends on the bootloader and secure
monitor. The bootloader supplies boot-time arguments to
the TZOS through a boot information structure (Step B1 in
Figure 2). Depending on the boot flow, this information may
be passed to the TZOS through the secure monitor. Boot
information structures contain hardware information such as
the physical address ranges of RAM. The bootloader also sets
up any data structures referenced by the boot information, and
loads and starts execution of the TZOS binary.

Once the TZOS finishes boot successfully, it passes control
back to the secure monitor with specific information about
how to call back into the TZOS (Step B2). Thereafter, at
runtime, if the secure monitor receives an SMC from the
normal world that should be handled by the TZOS, it uses
this information to pass control to the TZOS.

4.2.2 Run-Time Dependencies

At run-time, the TZOS typically interacts with the TEE driver
in the normal world OS, the secure monitor, and TAs.

The main TZOS flow at run-time is to handle a request
from the normal world - originating from a client application
(CA) or the normal world OS itself. The normal world TEE

driver invokes an SMC instruction to call the secure monitor
(Step R1). The secure monitor determines if the request has
to be handled by the TZOS. If so, it passes control to the
TZOS (Step R2). The TZOS, in turn, handles the request. If
the request is to be handled by a TA, the TZOS passes control
to the TA (Step R3).

A special case is loading a TA. The TEE driver uses the
SMC in Step R2 to send the TA binary and shared memory to
communicate with the TA. The TZOS loads the TA and maps
the shared memory into the TA.

4.2.3 Hardware Dependencies

The TZOS and secure monitor typically depend on hardware
components that configure access control, such as the TZASC
and TZPC, to set up secure and normal memory and interrupts.
They also depend on the cryptography co-processor, which
usually has access to a device-unique hardware key that is
only available to TrustZone. One of either the TZOS or the
secure monitor interacts with most hardware components; this
is implementation-dependent.

5 Selecting Components to Emulate

In this section, we describe how we select a subset of com-
ponents to emulate with the aim of making the emulation
effort practically feasible. As noted, naïvely loading and run-
ning entire firmware images requires emulation of a huge
number of hardware components, many custom and without
documentation, thus making this approach infeasible.

To make the emulation effort practically feasible, our first
insight is that TZOSes only depend only on a limited subset
of all hardware and software components. For example, the
TZOS and TAs have no dependency on the hypervisor or most
of the Android framework. Therefore, such components can
be excluded, reducing emulation effort. However, we find that
even the emulation effort required to support the remaining
components is often impractical. For example, supporting
the bootloader requires emulation of particular storage con-
trollers [26, 27] that are extremely complicated, and that no
open-source emulators we know of support sufficiently. Thus,
we need a different approach in such cases.

For a software component the TZOS depends on, we find
we can sometimes make emulation more feasible by re-
implementing only the relevant parts of the component in
a stub. For example, the bootloader has several functions: it
reads the TZOS binary image from storage, loads it into mem-
ory, sets up arguments, and jumps to the TZOS. However,
the TZOS only directly depends on the bootloader setting
up the arguments to the TZOS and jumping to it; if we can
sufficiently mimic, i.e., emulate, this necessary functionality
of the bootloader in a stub, we eliminate the need to support
the entire original bootloader, and consequently, to emulate
the storage controller. This approach is analogous to QEMU’s

Component Prefer to Emulate Prefer to Reuse
Type Component C if Component C if

Software

C and target component C and target component
are loosely coupled are tightly coupled
C and other components C and other components
are tightly coupled are loosely coupled
C is partially or fully open-source C is closed-source
C is encrypted C is not encrypted

Hardware

C does not have interfaces C has interfaces to modify
to modify registers/memory registers/memory (e.g., JTAG)
C locks down software that runs C does not lock down
on it (e.g., using secure boot) software that runs on it

Table 1: Criteria to decide whether to reuse or emulate a
component C. As in object-oriented design, we use “loosely-
coupled” to mean components that have well-defined inter-
faces with each other and work largely independently of each
other, and “tightly-coupled” to mean the opposite, that is, com-
ponents that need to know each others’ internal data structure
implementations, leading to complicated interfaces and deep
dependencies.

user mode [5], which emulates an OS by re-implementing
system call APIs required by a target user application. In
contrast, QEMU’s system mode runs entire OS binaries and
instead emulates the hardware the OS depends on.

However, emulating the required software component APIs
is not always more practically feasible. Sometimes, the cou-
pling between two components is so tight that it is often
more effort to understand and emulate the required dependen-
cies than it is to reuse the original component and support
all its dependencies instead. This is especially true because
most TrustZone software is closed-source, and often the only
way to determine dependency details is by high-effort binary
reverse-engineering. Intuitively, it is preferable to emulate a
software component if it is loosely coupled with the TZOS,
but tightly coupled with other components itself. Sometimes,
a component is tightly coupled with both the TZOS and other
components. Our approach identifies that this would require
significant emulation effort whether we emulate or reuse the
component. Further, source-code availability makes under-
standing dependencies, and therefore emulation, easier. In
addition, if a software component binary is encrypted, then
the only option is emulating it. Thus, we have two choices for
each component. First, we can reuse the original component
as it is. Second, we can mimic, or emulate the component, that
is, replace the component with a model or stub that sufficiently
mimics the original component to the target.

For hardware components, we can reuse the original hard-
ware component on the device if the component exposes an in-
terface to interact with memory and registers (e.g., JTAG [47]),
or if it is possible to run a custom software proxy on the de-
vice that allows a similar interface to hardware access. How-
ever, for real-world TrustZone environments, neither of these
approaches is possible, since the hardware does not expose
such interfaces, and is it not possible to run a custom soft-
ware proxy for hardware access in the TrustZone because of

mechanisms such as secure boot and code signing. Therefore,
emulating any required hardware is the only possibility. Ta-
ble 1 lists criteria to decide whether to reuse or emulate a
hardware or software component.

6 Case Studies
In this section, we present results from our study of compo-
nents that the TZOSes under consideration (QSEE, Kinibi,
TEEGRIS, and OP-TEE) depend on, and use the criteria in
Table 1 to determine whether to reuse or emulate each com-
ponent. While the definitions of tight and loose coupling are
subjective as in object-oriented design, we identify concrete
patterns that indicate tight or loose coupling between compo-
nents the TZOS depends on. We believe these findings and
patterns would help focus and guide similar future efforts for
other closed-source TZOSes.

6.1 Bootloader
Bootloader and TZOS Coupling. In all our cases, we found
that the bootloader had three well-defined, loosely-coupled
functionality relevant to the TZOS. First, the bootloader set
up the boot information structure with boot-time arguments
for the TZOS. This structure usually contains hardware in-
formation such as the physical address ranges of RAM and
required peripherals. Second, the bootloader loaded the TZOS
into memory. Third, the bootloader handed over execution
control to the TZOS.

Bootloader and Other Component Coupling. All bootload-
ers we studied were tightly coupled with a hardware com-
ponent - the storage controller (e.g., eMMC [26], UFS [27]).
Since bootloaders have to read the TZOS and other images
from storage, this dependency is expected. However, emulat-
ing such hardware faithfully is extremely complicated, and
often requires supporting vendor-specific extensions.

Guiding Pattern. Check if the emulator already emulates
the storage hardware that the bootloader uses. If so, reusing
the bootloader binary is possible. Otherwise, it is preferable
to the emulate the bootloader, as the coupling between the
bootloader and the TZOS is generally much looser than the
coupling between the bootloader and storage hardware.

6.2 Secure Monitor
Secure Monitor and TZOS Coupling. In general, the TZOS
interacts with the secure monitor for two functions. First, the
TZOS relies on the secure monitor for world switches - to
yield control back to the normal world and to upcall into the
TZOS. Second, the secure monitor offers APIs to hardware
for the TZOS. It is usually the secure monitor, and not the
TZOS, that interacts with hardware directly because the secure
monitor is developed by the chip hardware manufacturers.

First, TEEGRIS’s secure monitor was encrypted with a key
derived from hardware. Therefore, our only option was to

emulate its secure monitor by reverse-engineering the TZOS
itself to find dependencies on SMC APIs. Second, in Kinibi’s
case, we found that only a limited number (5) of loosely cou-
pled, well-defined SMC API calls between the TZOS and
the secure monitor were required to get it to boot and run.
These API calls either interact with hardware, store vectors
of callback functions for upcalls, or yield control to the nor-
mal world. Third, QSEE’s interaction with its secure monitor,
however, was much more tightly coupled, involving multiple
SMC calls and shared data structures that were challenging
to reverse-engineer. We suppose this is because QSEE and its
secure monitor are both developed by a single entity: Qual-
comm. Likewise, our 32-bit OP-TEE’s secure monitor and
TZOS were compiled together into one binary, which we
could not decouple.

Secure Monitor and Other Components Coupling. Kinibi’s
secure monitor was tightly coupled with hardware. It inter-
faced with hardware components such as a vendor-specific
crypto co-processor and PRNG, which were challenging to
emulate. In contrast, QSEE’s secure monitor was loosely cou-
pled with hardware; QSEE itself accessed most hardware
directly, and did not go through secure monitor APIs. Again,
we suppose this is because QSEE and the hardware are both
developed by the same entity.

Guiding Pattern. Check if the TZOS and secure monitor are
designed such that only the secure monitor directly interacts
with most hardware. If this is the case, then it is typically
more practical to emulate the monitor’s APIs that the TZOS
uses to access hardware than it is to emulate the hardware
that the secure monitor depends on.

6.3 TEE Driver and TEE Userspace

TEE Driver and TZOS Coupling. The TEE driver in the
normal-world OS (usually, Linux) enables communication
between CAs and TAs. Broadly, the TEE driver interacts with
the TZOS to: (i) start new TAs, (ii) set up shared memory
between the CA and TA, (iii) send commands from the CA to
the TA, and (iv) respond to requests from the TZOS, such as
access to the normal-world filesystem.

We observed two designs of the interaction between TEE
driver and the TZOS - synchronous and asynchronous - that
gave a broad indication of the extent of coupling. In a syn-
chronous design, the TEE driver specifies its request as ar-
guments to an SMC call and blocks until the secure world
completes the request. In an asynchronous design, the TEE
driver and the TZOS set up a shared request-response queue
that they operate in a producer-consumer relationship. Here,
an SMC (or secure interrupt) is used to periodically trans-
fer control to the TZOS. While not necessary, we observed
that the asynchronous design generally correlated with tighter
coupling because of queue synchronization requirements and
because data structures in the queue needed to be consistent
between the TZOS and TEE driver. In our case, QSEE and

OP-TEE followed a synchronous design, whereas Kinibi and
TEEGRIS followed an asynchronous design.

TEE Driver and Other Components Coupling. The
TEE driver optionally depends on the TEE userspace
to handle functionality such as reading a file from the
filesystem (to load persistent objects through the API
TEE_OpenPersistentObject or to load TAs), and access-
ing the RPMB. In our environment, we found that neither
QSEE nor OP-TEE required upcalls to the TEE userspace6,
whereas TEEGRIS and Kinibi did.

TEE Userspace. Kinibi, TEEGRIS, and QSEE images were
extracted from Android smartphones in which userspace bi-
naries were compiled for Android. Given the well-defined
functionality expected of the TEE userspace, we found it
much easier to emulate this functionality instead of introduc-
ing Android emulation to reuse the TEE userspace binaries.

Guiding Pattern. Check if the TEE driver interacts with
the TZOS in an asynchronous manner, or if the TEE driver
depends on the TEE userspace to handle significant function-
ality. In either of these cases, it is usually easier to reuse the
TEE driver.

Table 7 in Appendix A.1 summarizes our choices for each
component across all TZOSes.

7 Hardware Emulation

The TZOS depends on only a limited subset of all hardware
components on a real device, instead relying on the normal
world to interact with most hardware directly. This is a typical
design choice to keep TZOS code as minimal as possible
and not increase the trusted computing base with complicated
hardware drivers. For example, to store data on the disk, the
TZOS cryptographically “wraps” data using a key accessible
only to the TrustZone secure world, and then sends it back
to the normal world to store on the disk. This reduces the
amount of hardware emulation required, since we do not need
hardware models for such devices.

7.1 Ease of Hardware Emulation

For the hardware we need to emulate, we have a key finding:
to get the TZOS to boot up and run in the emulator, we needed
to emulate only simple access patterns for most hardware
it interacts with. The TZOS interacts with hardware using
memory-mapped I/O (MMIO), where hardware registers are
accessed using memory addresses. We describe the patterns
that the TZOS uses to interact with MMIO registers below.

• Constant Read. These MMIO registers return a con-
stant value.

6OP-TEE generally requires upcalls to load a TA, but in our environment,
the TAs were packaged into the OP-TEE binary itself.

Constant read (CONSTANT_READ_REG)
v = read(CONSTANT_READ_REG);
if (v != VALID_VALUE)

fail();

Read-write (READ_WRITE_REG)
write(READ_WRITE_REG, v1);
v2 = read(READ_WRITE_REG);
if (v2 != v1)

fail();

Increment (INCR_REG)
v = read(INCR_REG);
if (read(INCR_REG) < v)

fail();

Poll (POLL_REG)
while (read(POLL_REG) != READY);

Random (RAND_REG)
v1 = read(RAND_REG)
v2 = read(RAND_REG)
if (v1 == v2)

fail();

Shadow (SHADOW_REG1, SHADOW_REG2)
Commit (COMMIT_REG)
Target (TARGET_REG1, TARGET_REG2)
write(SHADOW_REG1, v1)
write(SHADOW_REG2, v2)
write(COMMIT_REG, COMMIT_VALUE)
v3 = read(TARGET_REG1)
v4 = read(TARGET_REG2)
if ((v1 != v3) or (v2 != v4))

fail();

Figure 3: Register patterns we found in the TZOSes binaries.
Variables in the binary are in lower case, and hard-coded con-
stants in the binary are in upper case. Registers are identified
by their MMIO addresses (e.g., RAND_REG).

• Write-Read. These MMIO registers store the value on
a write operation and return the most recently written
value on a read. This is the behavior of normal RAM.

• Increment. These MMIO registers return a monotoni-
cally increasing value each time (e.g., a timer). We found
that the exact increment did not matter as long as it was
non-zero.

• Random. These MMIO registers return a random value
(e.g., a pseudo-random number generator).

• Poll. These MMIO registers are set when a particular
operation is complete.

• Shadow, Commit, and Target. Shadow registers are
used for atomic updates of multiple target registers.
Shadow registers store new values to be written to other
target registers. When a commit register is written to,
all target registers atomically get the value in the cor-
responding shadow registers. For example, this is used
when updating address range registers for access control
in the TZASC or TZPC. Otherwise, there might be a
tiny window during update where address ranges are
configured incorrectly.

Figure 3 lists the corresponding code patterns. Importantly,
we observe that the TZOS binary gives us sufficient infor-
mation to determine both the address and expected values
of particular MMIO registers. Given the simplicity of these
patterns, we believe that it is possible to automate extracting
relevant values from most, if not all, of these patterns.

Locating MMIO Regions. For Kinibi, we control the
MMIO region through the boot information structure defined
in our emulated bootloader. QSEE, TEEGRIS, and OP-TEE
assume specific regions to be MMIO. For QSEE, we deduced
these regions from their page tables in the binary. We assume
that any region corresponding to a page table entry that has

the non-cacheable attribute is MMIO. For TEEGRIS and OP-
TEE, we obtained MMIO regions using the device tree used
by the Linux kernel.

Other Hardware. Beyond these simple register patterns,
the TZOSes required more complex emulation for only three
more devices, and we were able to re-use standard imple-
mentations in all cases. First, all TZOSes required the ARM
standard global interrupt controller (GIC). This hardware is
standard and is already emulated in QEMU. Second, QSEE
required limited emulation of cryptography hardware. QSEE
uses a crypto co-processor, for example, to generate a hash of
the TA binary for authentication before loading. Furthermore,
it expects the hash of the root certificate signing the TA to
be present in a specific memory location [39]. We discuss
this in detail in Section 8.2. In particular, we only needed
to implement the standard SHA-2 hash algorithm. All other
TZOSes used software cryptography. Finally, TEEGRIS re-
quired a standard real-time clock (RTC), which was again
already implemented in QEMU.

Interrupts. All TZOSes used the ARM-standard global
interrupt controller (either GICv2 or GICv3), both of which
are supported by QEMU. We did not have to add anything
beyond these devices to handle interrupts.

8 PARTEMU Implementation

We implemented our design on PARTEMU, a framework that
we built on QEMU [5] and PANDA [17]. We chose QEMU
because it already has support for TrustZone. PANDA gives
us an extensible and modular framework with already imple-
mented modules such as taint analysis.

PARTEMU adds to PANDA a run management API to unify
the process of dynamic analysis (Table 2). The API is meant to
be invoked by “driver” programs running in the emulator. One
or more backend modules can register to receive callbacks
when the driver calls into the API. This API is implemented
using semihosting calls that call directly into QEMU. We have
currently implemented two modules on this run management
API: fuzz testing with AFL, and an LLVM run module that
outputs an LLVM IR representation of a run of the target.
This output could be fed to symbolic analysis engines such as
KLEE, as in S2E [10, 13].

8.1 AFL PARTEMU Module

We integrate feedback-driven fuzz testing using AFL [61] as a
module to PARTEMU. We base our code on TriforceAFL [24],
which adds AFL support to QEMU system emulation and
support for CPU and memory state duplication (forking), with
one important difference. In [24], AFL runs QEMU as it does
any normal process under test. In contrast, we start QEMU
separately and interact with AFL through a proxy that behaves
to AFL like the process under test. Thus, we are able to keep

our modular structure, and allow AFL to be one among many
backend modules for PARTEMU’s run management API.

Our implementation addresses some additional challenges.
First, we need to identify the target being tested. For exam-
ple, we might want to collect coverage feedback information
from a particular TA. However, there are many components
executing in TrustZone - other TAs, the TZOS, and the secure
monitor. How do we identify our target TA so that we collect
only the target’s coverage information? Second, we need to
ensure stability, i.e., that the same input to a component in a
particular state results in the same output. This is non-trivial
in full-system emulation with randomness and interrupts.

Depending on the TZOS implementation, we determined
two different methods to identify the target under test. First,
we found that Kinibi and TEEGRIS switched the address-
space identifier (ASID) in the TTBR0_EL1 register when they
context-switched between TAs. While Kinibi returned the
ASID to the normal-world CA as part of the TA descriptor,
TEEGRIS used monotonically-increasing ASIDs. Thus, in
both cases, we were able to determine the exact ASID to mon-
itor and it to identify the target. Second, in contrast, neither
QSEE nor the version of OP-TEE we ported changed the
ASID when switching between TAs. However, we found we
could identify the target using address ranges. Before loading
a TA, QSEE requires the normal world to donate a region of
physical address to load the TA. OP-TEE hardcodes such a
region in its binary. Thus, for QSEE and OP-TEE, we identify
the target if the program counter falls within this region. Once
we identify that a particular basic block belongs to the target
TA, we use the block’s virtual address to populate AFL’s cov-
erage map. Selectively populating the coverage map using
only the target’s basic blocks can be viewed as an instance of
domain-specific fuzzing [36].

Stability is another challenge. AFL defines stability as the
property that a target returns the same feedback coverage
when fed the same input [60]. We identified four sources of
instability: interrupts, statefulness, randomness, and QEMU
optimizations. First, interrupts cause different program paths
to be executed. We handle this by simply disabling interrupts
to the secure world during a run. Second, prior inputs to a
stateful target program may drive it to a state where it responds
differently to the same input. We solve this issue by forking
PARTEMU just before starting the test, which forks the entire
CPU and memory state.

Randomness is another source of instability. Kinibi, TEE-
GRIS, and OP-TEE call into the secure monitor to obtain
randomness, whereas QSEE accesses hardware PRNG using
MMIO registers. We simply return a constant in response to
these calls. Finally, the QEMU optimization of translation-
block chaining [5] affects stability. When two or more basic
blocks always occur only in the same sequence, QEMU chains
them together into effectively one translation block. There-
fore, if we track each translation block for coverage, we will
miss these chained blocks. A simple way to solve this issue to

API Description
partemu_run_init(id, buffer) Register a client with id and buffer for input
partemu_run_monitor_asid(id, asid) Identify target to monitor with asid
partemu_run_monitor_addr_range(id, range) Identify target to monitor with address range
partemu_fork() Fork a QEMU instance with the same CPU and memory state
partemu_run_read_input(id) Read input from partemu module (e.g., AFL) into registered buffer
partemu_run_start(id) Signal run start; partemu module starts monitoring target
partemu_run_stop(id, ret) Signal run stop with ret value (e.g., crash) ; partemu module stops monitoring target
partemu_exit(ret) Exit forked QEMU child with ret value
partemu_run_debug(id, ret) Pause QEMU and wait for debugger when the target runs next

Table 2: PARTEMU Run Management API.

is to disable chaining, but we found that this reduced perfor-
mance significantly. Instead, just before blocks are chained,
we add an inline QEMU IR callback at the end of each block
to the function that records the block. Therefore, blocks can
still be chained but will call into our function inline.

8.2 TA Authentication

TAs have to pass two TZOS checks before they are loaded:
(i) a signature check and (ii) a version check to prevent roll-
back. We describe below how we handle these checks for our
TZOSes.

To pass QSEE’s TA authentication [39] checks, we required
additional hardware emulation. QSEE TAs contain a signature
and the corresponding certificate chain. QSEE checks that
the hash of the certificate matches what is stored in a specific
memory area. On the device, this memory area is backed by
one-time-programmable fuses that are programmed during
device manufacture by the vendor. We faced the challenge
of obtaining this value. This value can be either read directly
from a real device or parsed from the TA binary. Due to our
inability to modify QSEE, we could not extract this value
directly from a device; neither would such an approach scale
to devices from multiple vendors. Instead, we extracted this
value by parsing the root certificate from the TA binary it-
self. Kinibi, OP-TEE, and TEEGRIS TA authentication, on
the other hand, worked out-of-the-box. They had hardcoded
public keys in the TZOS binary that it used to authenticate
TA signatures.

Our next challenge was overcoming rollback prevention
checks. When TA vulnerabilities are patched, TA version is
increased. The minimum acceptable TA version is typically
stored in secure storage (RPMB). We experimented with two
different approaches to overcome this check. First, for QSEE
and Kinibi, we re-signed the TA binary with a version number
of zero using our own signing key. For Kinibi, we injected
this signing key into the binary. For QSEE, we set the OTP-
fuse memory area with the hash of this signing key. Second,
for TEEGRIS, we emulated the RPMB interface so that it
effectively returned zero as the minimum acceptable TA ver-
sion. Finally, the version of OP-TEE we had did not enforce

rollback checks.
In addition to passing rollback prevention checks, the abil-

ity to sign TA binaries gives other advantages. First, we can
write and sign own custom TAs for testing. Second, it allows
us to test TAs across multiple firmware images and vendors
using the same TZOS image. Third, it allows us to instrument
TA binaries for particular purposes, such as for performance
optimizations.

8.3 Performance Optimizations
TA request processing loops are a potential source of ineffi-
ciency for testing. TA request processing passes through a lot
of components - starting from the CA, to the Linux kernel,
the secure monitor, the TZOS, the TA, and back. A shorter
loop would enable TA fuzz testing to run much faster.

We found that the TA request processing loop for Kinibi
could be optimized across all TAs. TAs in Kinibi have an
infinite loop where they wait for a message from the normal
world, process it, and return to the normal world [18]. Wait-
ing for and returning to the normal world passes through a
common library that we were able to instrument to call into
PARTEMU to start and stop a test run, respectively. Thus, we
were able to entirely cut out all non-TA components from the
request processing loop, speeding up AFL’s executions per
second by 5×.

The TA request processing loop for TEEGRIS, OP-TEE,
and QSEE TAs, however, was different, and could not be eas-
ily optimized without symbols in the TA binaries. In contrast
to Kinibi, these TAs expect the OS to callback into a particular
function to handle a request (e.g., the GlobalPlatform TEE
Internal API [21] uses TA_InvokeCommandEntryPoint).
While we could have instrumented the beginning and end
of this function to indicate the start and stop of a run, finding
the location of this function per-TA from the TA binaries we
had was non-trivial in the absence of symbols.

9 Evaluation

In this section, we: (1) quantify the hardware and software
emulation required to run the TZOSes, showing that it is prac-

Category Difficulty K Q T O
Emulated Boot Information Structure

Constants Low 13 8 2 3
Any value Low 1 3 0 0
Simple value Low 2 1 14 2
Complex values High 2 1[note a] 0 0
Total - 18 13 16 5

Emulated Secure Monitor Calls[note b]

Return simple value Low 0 - 3 -
Return constant Low 1 - 5 -
Store/retrieve values Low 1 - 2 -
Control transfer High 3 - 2 -
Total - 5 - 12 -

Table 3: Table categorizing the number and difficulty of data
fields in the emulated boot information structure, and of em-
ulated secure monitor calls, for Kinibi (K), QSEE (Q), TEE-
GRIS (T), and OP-TEE (O).
[note a] To construct this complex value, we were able to use
an open-source implementation [29].
[note b] Since we reused the secure monitor for QSEE and
OP-TEE, we did not need to emulate them.

tical and feasible, (2) demonstrate the utility of emulation
through the use-cases of finding real-world TrustZone vulner-
abilities using AFL, and (3) evaluate the reproducibility of
results found by emulation on a real device.

9.1 Extent of Emulation Required
In this section, we quantify the extent of software and hard-
ware emulation we required to boot up and run the TZOSes.
Our targets for emulation were QSEE v4.0, Kinibi v400A,
TEEGRIS v3.1, and 32-bit OP-TEE based on v3.1.0. We ob-
tained QSEE, Kinibi, and TEEGRIS binaries from Android
firmware images, and OP-TEE from a leading IoT manufac-
turer’s firmware image. Despite these TZOSes being full-
fledged and real-world, by following our approach to select
components to emulate, we found that the software and hard-
ware emulation required was practically feasible. Across all
these TZOSes, to emulate the required software components,
we only needed to specify 52 data fields, many simple to deter-
mine, and implement 17 SMCs, many again following simple
patterns. Hardware components required emulation of only
235 MMIO registers in 8 patterns (Section 7.1), and more
precise emulation of 3 additional devices. In many cases, we
were even able to re-use open-source components.

9.1.1 Software Emulation

Table 3 quantifies the amount and difficulty of software emula-
tion required for the bootloader and secure monitor. First, we
had to emulate the boot information structure passed in by the
bootloader sufficiently to boot up and run the TZOSes. Table 3
categorizes the fields of this structure based on how difficult it
was to determine their value. In summary, we only needed to

Register Type Total (QSEE) Unique (QSEE) OP-TEE
Constant Read 478 219 3
Increment 1 1 0
Random 1 1 0
Poll 2 1 0
Shadow 54 4 0
Target 54 4 0
Commit 27 2 0
Total 617 232 3

Table 4: Table showing the total and unique number of types
of registers we had to emulate to boot up and run QSEE and
OP-TEE. We set the MMIO region to be write-read by default
and initialized it to zero values unless otherwise specified.

specify 52 data fields, 49 of which were straightforward to de-
termine. First, a majority of these values were constants that
we obtained directly from the corresponding bootloader bina-
ries. Second, some values did not matter - any value worked.
Third, some values were not hardcoded constants but were
straightforward to specify - the extent of RAM and the lo-
cation of the normal-world software to transfer control to.
Finally, the most challenging were complex data structures
that the bootloader needed to setup. For Kinibi, we needed to
setup page tables for a structure describing shared memory
between the TZOS and the secure monitor. For QSEE, we
needed to setup the SMEM data structure, which describes
hardware such as RAM [32]. This task was simplified by the
open-source version available in the Little Kernel project [29].

Second, for Kinibi and TEEGRIS, we had to emulate 17
calls to the secure monitor. Again, we found most of these
values to be simple values (addresses), constants that we ob-
tained from the binaries, or values from the TZOS that simply
needed to be stored on one call and returned on the other.
Most challenging to emulate were calls to either yield con-
trol to the normal world or to store and use TZOS callback
vectors; these required careful saving and restoring of register
contexts. For QSEE and OP-TEE, we did not have to emulate
the secure monitor since we reuse the original secure monitor.

9.1.2 Hardware Emulation

QSEE required the most hardware emulation. QSEE runs
only on phones with a Qualcomm chipset, and hence expects
certain hardware components to exist. In contrast, the other
TZOSes may run on a variety of devices, and makes few
assumptions about hardware. Instead, it is the secure monitor
that interacts directly with most hardware.

Table 4 shows the number of types of registers we had to
emulate to boot up and run QSEE categorized by the access
patterns in Section 7.1. By default, we: (i) set the MMIO
region to behave like normal RAM (write-read) so that a
read gets the most recent value written, and (ii) initialize the
MMIO region to return zeros unless otherwise specified. In
total, there were 617 distinct MMIO addresses that required

emulation beyond these defaults. One observation further
simplified the emulation required. QSEE accessed certain
MMIO regions in the same way across different iterations of
a loop. We believe that these regions correspond to multiple
instances of the same hardware components. We were able
to repeat the same emulation for these regions. Discounting
these duplicates, we get only 232 unique MMIO registers that
we needed to emulate. For OP-TEE, we needed to emulate
only 3 MMIO registers.

Table 8 in Appendix A.2 quantifies the amount of code
added or modified for PARTEMU’s core and for emulated
software and hardware components across all TZOSes. In
total, we had to add or modify around 14.5K lines of code.

9.1.3 Effort to Support TZOS Upgrades

We found that the upgrades we did only required incremental
modifications, and that we were able to re-use most of our
work for the previous version. In general, if there are dras-
tic changes to hardware or software components, we would
need to re-examine dependencies for the changed component.
However, we find that such significant changes are rare for
components that the TZOS depends on; they are more com-
mon for normal-world components. For Kinibi, we upgraded
from version 310B to 400A; the only component we needed
to change was the TEE driver. For QSEE, we upgraded be-
tween minor versions, and we only needed to add support for
3 additional MMIO registers.

9.2 Use Case: Fuzz Testing TAs

We collected TA binaries from 16 images across 12 lead-
ing Android smartphone vendors - Asus, Google, HTC, LG,
LeEco, Motorola, Nokia, OnePlus, Razer, Samsung, Sony, and
Xiaomi, and a leading IoT vendor. These are represented by
Images A to P in a random order in Table 5. These devices
run one of QSEE v4.0, Kinibi v400A, TEEGRIS v3.1, or
OP-TEE v3.1.0 as the TZOS. In total, we collected 273 TAs.
From their names, these TAs appear to encompass a wide
variety of functionality such as key management, authentica-
tion, maintaining device state for purposes such as attestation,
and monitoring device integrity. We found that several TAs
were common among images from different vendors. These
TAs either come bundled with the TZOS image itself, or are
drivers for shared hardware such as fingerprint readers. After
de-duplication, we obtained 194 unique TAs.

TAs should protect themselves even if the normal world
is compromised. Consistent with this threat model, we wrote
simple normal world driver programs to fuzz test TAs. These
programs interact with the PARTEMU AFL module using the
API in Table 2. They run as a Linux kernel driver (TEEGRIS),
in userspace, or as a normal-world stub. The programs request
the TZOS to load a TA and set up shared memory, then fuzz
inputs to the TA, and finally yield control to the TA through

Image Build Date # TAs # Crashing # C # I # A
A Dec 2017 13 1 0 0 1
B Jan 2019 3 0 0 0 0
C Nov 2018 9 3 0 1 2
D Dec 2018 15 3 2 0 1
E Mar 2018 17 4 0 0 4
F May 2018 13 0 0 0 0
G Aug 2018 14 2 2 0 0
H Sep 2018 22 4 2 0 2
I Oct 2018 44 7 2 0 5
J Oct 2018 11 2 2 0 0
K Nov 2018 4 0 0 0 0
L Oct 2018 38 12 1 4 7
M Jun 2018 26 8 2 4 2
N Sep 2018 24 5 2 2 1
O Mar 2019 22 5 2 1 2
P Mar 2019 2 0 0 0 0
Total 273 56 17 12 27
Unique 194 48 9 12 27

Table 5: Number of vulnerabilities found by image, catego-
rized as affecting TA confidentiality (C), integrity (I), or avail-
ability (A). We ran AFL in non-deterministic mode on each
TA for a total of 5 million executions or until we found a
crash, whichever was earlier. We did not seed AFL with any
meaningful input.

an SMC. For Kinibi and QSEE, we set the contents of the
shared memory using fuzzed input from AFL. For OP-TEE
and TEEGRIS, which use the GlobalPlatform TEE Client
API [20]7, we use the first few bytes of AFL’s input to select
the type of the 4 parameters - either a buffer or a value - and
the command, which is a 32-bit value. We then use the rest of
the input to determine the contents of the parameters. Crashes
are detected using return values from the TZOS; all TZOSes
indicate through specific return values that a TA has crashed.

Table 5 shows the results of fuzz testing TAs. AFL found
inputs that crashed 48 out of the 194 unique TAs. Surprisingly,
8 TAs crashed on single-byte inputs. All these single-byte
input crashes, however, were because the TAs were not allo-
cated sufficient shared memory for the command, and the TA
tried to access unmapped pages. The GlobalPlatform TEE
Internal API specification [21] does allow TAs to panic us-
ing a call to TEE_Panic on detecting exceptional conditions.
However, these TAs did not detect exceptional conditions and
relied on the TZOS to crash them if they accessed unmapped
memory. This is a security issue if the address of such mem-
ory is attacker-controlled; however, we did not find this to be
the case. On the other hand, some other TAs required long,
specific sequences of inputs to crash them. For example, AFL
found a specific 40-byte input to crash one TA. Blind fuzz
testing has near-zero probability of finding such an input.

Next, we studied impact. AFL finds crashes which may or
may not be exploitable. For each crash, we manually reverse-
engineered the TA binary to determine how controllable pa-

7Kinibi also supports the GlobalPlatform TEE Client API [52]. However,
the TAs we analyzed used Kinibi’s own API.

Class Vulnerability Types Crashes
Availability Null-pointer dereferences 9

Insufficient shared memory crashes 10
Other[note a] 8

Confidentiality Read from attacker-controlled pointer 8
to shared memory
Read from attacker-controlled 0
OOB buffer length to shared memory

Integrity Write to secure memory using 11
attacker-controlled pointer
Write to secure memory using 2
attacker-controlled OOB buffer length

Table 6: Crash classification. [note a]The “Other” availability
type captures cases where attacker control of pointer or buffer
length was insufficient to be exploitable, or if data read could
not be leaked back through shared memory.

rameters related to the crash were, and classified them ac-
cording to the descriptions in Table 6 as affecting TA confi-
dentiality, integrity, or availability. In general, with vendors
increasingly opening up access to the secure world to Android
apps [25, 57], this could mean that a malicious Android app
could potentially crash or exploit these TAs.

First, the impact of unavailability of a TA depends on
whether each normal-world client gets its own instance of
the TA or not. In QSEE, all normal-world clients share the
same TA: the QSEE Linux kernel TEE driver does not launch
a TA if one with the same name is already running [37]. In
Kinibi, OP-TEE, and TEEGRIS, whether a single instance
of a TA exists or not is controlled by property flags8. In the
single-instance case, the impact of unavailability is potentially
high: a client crashing a TA makes it unavailable to all other
clients. For example, a malicious Android app with access
to the secure world could crash a TA responsible for user
authentication, thus locking users out of their phones [64].
Whether null-pointer dereferences are exploitable depends on
what is mapped at low virtual TA addresses. None of the TAs
that crashed had such mappings, however, so we classified
them as availability issues.

Second, confidentiality and integrity issues can be exploited
to leak or corrupt sensitive TA data depending on TA function-
ality. They can also be used as a step in privilege escalation to
the TZOS [7]. We believe that most, if not all, of the crashes
we found in these classes are exploitable. We were able to
demonstrate three scenarios. First, we could get arbitrary code
execution in a TA that controls access to the replay-protected
memory block (RPMB) [3], which is persistent storage that
increments a counter in hardware during writes to protect
against replay attacks. Security-critical values stored here,
such as minimum-allowed TA versions, are thus compromised.
Second, we were able to leak arbitrary data from a digital-
rights management (DRM) TA, thus compromising its keys.

8The GlobalPlatform TEE Internal API has a property
(gpd.ta.singleInstance [21]) that specifies whether a TA should
be single instance.

Third, we were able to compromise a one-time password TA,
again leaking its keys. One of the arbitrary pointer derefer-
ence vulnerabilities we found was also found in parallel by
another researcher, who developed an exploit to demonstrate
arbitrary TA code execution [8]. Except this vulnerability, all
other issues we found are previously unknown to the best of
our knowledge.

We identified three patterns of developer mistakes specific
to TrustZone development that caused several of these vulner-
abilities. Further, two of these are specific to the TZOS APIs
used. Such patterns highlight the need for TrustZone-specific
and TZOS-API-specific developer education.

Assumptions of Normal-World Call Sequence. To mini-
mize service time, TAs split work into small units; each unit
has a sub-command that clients can call in sequence to achieve
a bigger task. Thus, TAs are usually stateful: a typical session
starts with an initialization call followed by other requests,
and finally a close session call. TAs should not make any as-
sumptions about the order of these calls, since a compromised
normal world may issue these calls in any order. However,
we found several TAs assumed a particular call sequence, re-
sulting in using undefined data when a call was made out
of sequence. While we only found null-pointer dereferences,
confidentiality or integrity compromise is also possible.

Unvalidated Pointers from Normal World. Secure-
world TAs communicate with normal-world client applica-
tions (CAs) using shared memory. In general, the normal-
world CA does not know where such shared memory is
mapped in the TA’s virtual address space. However, Kinibi re-
turns the virtual address of the base of this shared memory in
the TA’s address space to the CA [52], whereas QSEE identity-
maps the shared memory. In both cases, the CA knows the
virtual address of the shared memory in the TA’s address
space. The CA then constructs pointers to specific data in
the shared memory that the TA can use. The TA developer
should validate that these pointers refer only to addresses in
shared memory before using them. However, we found such
validation missing in some TAs. Thus, a normal-world CA
can construct an arbitrary pointer into the TA’s private data,
call the TA, and have the TA either corrupt or leak this data de-
pending on the call’s functionality. While this issue is caused
by developers missing the required security checks, and does
not indicate a weakness in the TZOS itself, we found that this
issue is more common in Kinibi TAs than QSEE TAs. This is
perhaps because Kinibi requires such pointer construction to
shared memory by design, whereas QSEE does not. This issue
did not apply to either OP-TEE or TEEGRIS because they
mapped shared memory buffers at a random virtual address,
and because the GlobalPlatform TEE Client API they imple-
ment do not provide for shared memory pointers between the
CA and TA.

Unvalidated Types. The GlobalPlatform TEE Client
API [20], however, required a different check that was miss-
ing in some TAs. This API allows CAs to specify the type

and content of four arguments for a command to a TA. The
type can broadly be either a value or a buffer. We found that
some TAs using these APIs implicitly assumed the types of
arguments sent by the CAs. Thus, they interpreted a buffer
address as a value, or worse yet, dereferenced a value. This re-
sults in vulnerabilities similar to those caused by unvalidated
pointers from the normal world. We found instances of these
that resulted in both confidentiality and integrity compromise.

9.2.1 Reproducibility and False Positives

We classify a TA crash as a false positive if it is not repro-
ducible on a device. The general cause for false positives is a
lack of fidelity in emulation of hardware or software compo-
nents that TA interacts with. The only software component
the TA interacts with is the TZOS, but this is unlikely to be
a source of false positives since we reuse the original TZOS
binary. Therefore, the most likely cause for false positives is
insufficient hardware emulation. However, we found that only
a few TAs interact with hardware and usually do not crash
even if such hardware is unavailable, and thus PARTEMU’s
results have a high chance of being reproducible.

Our results are consistent with this intuition. We had de-
vices corresponding to 24 out of the 48 unique crashes we
found, and we were able to reproduce all 24 crashes on these
devices. This included two TAs that accessed specialized hard-
ware that we did not emulate. Out of the remaining crashes,
only three other TAs accessed specialized hardware. If we
conservatively assume that these three crashes are false pos-
itives, PARTEMU would have a true positive rate of 45/48
(93%), which we believe is sufficiently high to be useful.

9.3 Use Case: Fuzz Testing TZOS

Our second target for fuzz testing was the SMC API exported
by the TZOS. We performed SMC API tests on one of our four
target TZOSes - QSEE v4.0. Our aim was not to compare the
security of TZOSes, but to show the utility of PARTEMU for
TZOS testing: the reason we chose QSEE was because of
its relatively simple and synchronous SMC calling conven-
tion [37]. In general, the normal world OS calls SMCs to
request services from the secure monitor, TZOS, or TAs. This
API is similar to the system call API: the caller specifies an
SMC number and several arguments in registers.

The TZOS should protect itself from a compromised nor-
mal world that issues arbitrary SMCs. Consistent with this
threat model, we used normal world driver programs to fuzz
test the QSEE SMC API. The driver program gets the fuzz
testing input from AFL, transforms these into SMC argu-
ments, and sends the SMC. Crashes are detected if QEMU
raises an abort. An additional challenge with APIs is that
argument types can either be values or buffers. We use a part
of the AFL input to determine argument types.

In total, AFL identified 124 distinct SMCs, and found

crashes in 3 SMCs. These crashes only affected TZOS avail-
ability, and thus have limited security impact. However, in-
terestingly, all these crashes tested QSEE code paths that
would not normally be exercised on a real device, but those
that could be triggered by an attacker who compromises the
normal world. We discuss two cases below.

Normal-World Checks. One crash we found in QSEE that
was independently fixed was an invalid pointer dereference
triggered when the normal world requested the TZOS to load
a TA that was already loaded. Interestingly, we found that
this particular QSEE path was “shielded” by normal-world
checks: QSEE’s Linux kernel TEE driver [37], before sending
a request to QSEE to load a TA, checked with QSEE if the
TA was already loaded. If it was, the TEE driver did not send
a request to load the TA at all. An attacker who compromises
the Linux kernel itself, however, would not be restricted by
this check, and could trigger this code path.

Assumptions of Normal-World Call Sequence. Another
crash we found in QSEE was an uninitialized pointer derefer-
ence. This pointer was initialized by another SMC call that
the Linux kernel on the device normally issued during boot.
However, a compromised normal world would skip this SMC
altogether, thus triggering this vulnerability. On a device, such
a condition would normally not be triggered because the ini-
tialization would already have happened during boot.

10 Related Work

Closely related to our work are approaches that attempt to
run real-world software in an emulator for dynamic analy-
sis. Avatar [59], PROSPECT [28], Charm [49], and Surro-
gates [31] all attempt to enable dynamic analysis by running
the target in a virtualized or emulated environment and for-
warding accesses to real hardware. While Avatar, PROSPECT,
and Surrogates target embedded device firmware, Charm tar-
gets Linux kernel device drivers running on mobile systems
such as Android. These approaches work when the hardware
exposes ways to interact with it, such as JTAG serial port,
or USB. However, as we have seen, neither does TrustZone
hardware exposes such interfaces, nor is it possible to run a
software proxy for such hardware access in the TrustZone
because of code signing.

Other approaches such as Costin et al. [15] and FIRMA-
DYNE [11] attempt to emulate hardware to test embedded
firmware. Hardware emulation was possible in these cases
because the hardware was well-documented or standard. We
study how to emulate the hardware required to run real-world
TrustZone OSes, which is often non-standard and without
documentation. Further, we show that it is possible to skip
emulation of extremely complicated hardware by emulating
other software components instead.

Firmware re-hosting [23] is the process of migrating
firmware from its original hardware environment into a virtual
environment. Pretender [23] attempts automated firmware

re-hosting by generating hardware models using machine
learning on runtime traces. P2IM [19] uses manually-defined
hardware register patterns and generates hardware models
automatically on-the-fly by fitting different registers to these
patterns at runtime. While these systems were tested on mi-
crocontrollers that are much simpler than our environment,
they show the potential for automation of much of our work.

Concurrently with our work, Komaromy developed
TEEMU [30], an emulator to run TAs for <t-base, an older
version of the Kinibi TZOS. In contrast to our work, TEEMU
does not re-host the <t-base TZOS itself. Instead, TEEMU
emulates the TZOS by manually re-implementing specific
<t-base system calls. This limits TEEMU to testing <t-base
TAs that use only those system calls, and does not allow
testing the <t-base TZOS itself. Furthermore, reproducibil-
ity is dependent on the fidelity of re-implementation of the
TZOS system calls. Similar limitations apply to the Open-
TEE [33, 35] project, which is a virtual TZOS implementing
the GlobalPlatform TEE API [21]. In contrast, PARTEMU sup-
ports full-system emulation by re-hosting unmodified TA and
TZOS binaries, allowing holistic testing of TrustZone and
making it significantly more likely that any issues found are
reproducible on a real device.

PARTEMU enables using advances in dynamic analysis
on real-world TrustZone software. Thus far, the main tech-
nique to analyze real-world TrustZone software has been
static binary reverse-engineering of TAs and the TZOS [7, 8].
Dynamic analysis for TrustZone software has been limited to
blind fuzzing [6] and emulation of particular parts of Trust-
Zone [30]. PARTEMU enables dynamic analysis techniques
such as feedback-driven fuzz testing [9, 12, 40, 61], symbolic
and concolic execution [10, 13, 48], taint analysis [14, 17, 58],
and debugging for real-world TrustZone software.

11 Discussion and Future Work

Dealing with Stateful TAs. On a random sample of 10 TAs,
AFL had basic-block coverage varying from 0.2% to 45.6%
with a median of 17.7%. We found that a major limiting fac-
tor for coverage was TA state: we noticed that several TAs
had internal finite state machines and therefore required a
sequence of multiple inputs to drive them to interesting states
(e.g., connected, authorized, processing). Our driver currently
sends a single message to a newly forked TA instance each
time so that AFL does not have issues with stability (Sec-
tion 8.1). Therefore, we cannot get past state checks, which
require a sequence of inputs. We plan to handle TA state in
future work. Even with such limited coverage, however, as
we have seen, PARTEMU was able to find several non-trivial
real-world vulnerabilities.

Hardware Roots of Trust. PARTEMU does not emulate
hardware roots of trust. An example is the factory-installed
per-device private key signed by the Samsung CA [42] and
used for remote attestation. Thus, code paths in TAs that

depend on remote attestation succeeding may not work. For
example, Samsung Pay uses remote attestation for credit card
enrollment; we cannot successfully enroll a credit card using
a Samsung Pay TA [44] running on PARTEMU because we do
not have access to the attestation key that would be present on
a real device. While such TAs that depend on a valid root of
trust require other techniques to test, they are few in number,
and PARTEMU is able to test the vast majority of TAs.

Performance. Since we ran PARTEMU on an x86 machine,
we could not take advantage of ARMv8 hardware virtualiza-
tion [16]. AFL ran at around 10-25 executions per second
for QSEE, OP-TEE, and TEEGRIS, while our performance
optimizations for Kinibi (Section 8.3) enabled 125 executions
per second. While even this was sufficient to find several
non-trivial vulnerabilities, we believe PARTEMU would be
even more useful if it could run faster. To this end, we plan to
explore running PARTEMU directly on ARMv8 hardware.

12 Conclusion

In this work, we addressed the problem of the lack of dy-
namic analysis for real-world TrustZone software by building
an emulator that runs four widespread, real-world, TZOSes -
QSEE, Kinibi, TEEGRIS, and OP-TEE. We studied the soft-
ware and hardware emulation effort required to run these
TZOSes. We found that emulating the required hardware and
software dependencies was feasible. We implemented our
emulation on PARTEMU, enabling dynamic analysis of real-
world TZOSes. We showed PARTEMU’s utility by finding
48 previously-unknown vulnerabilities across 194 TAs from
12 different Android smartphone vendors and an IoT ven-
dor. We identified patterns of developer mistakes unique to
TrustZone development that cause some of these vulnerabili-
ties, highlighting the need for TrustZone-specific developer
education. This work shows that dynamic analysis of real-
world TrustZone software using emulation is both feasible
and beneficial.

Disclosure

We have notified each vendor of any relevant findings and are
working with their security teams to address the issues.

13 Acknowledgements

We thank Stephen McLaughlin for automating parts of our
analysis and interpreting results. We thank our anonymous re-
viewers for their suggestions that helped significantly improve
the presentation and scope of this work. We thank Peng Ning,
Kunal Patel, Laurent Simon, Luke Deshotels, and Stephen
McLaughlin for helpful discussions and suggestions during
various stages of this work.

References

[1] Apple. iOS Security. https://www.apple.com/
business/site/docs/iOS_Security_Guide.pdf.

[2] ARM. ARM TrustZone. http://www.arm.com/
products/processors/technologies/trustzone/
index.php.

[3] J. S. S. T. Association. Embedded Multimedia
Card eMMC. http://www.jedec.org/standards-
documents/results/JESD84-A.

[4] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar,
G. Ganesh, J. Ma, and W. Shen. Hypervision across
worlds: Real-time kernel protection from the arm trust-
zone secure world. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security, 2014.

[5] F. Bellard. QEMU, a Fast and Portable Dynamic Trans-
lator. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, 2005.

[6] G. Beniamini. FuzzZone. https://github.
com/laginimaineb/fuzz_zone/tree/master/
FuzzZone.

[7] G. Beniamini. TrustZone Kernel Privilege Escalation.
http://bits-please.blogspot.com/2016/06/
trustzone-kernel-privilege-escalation.html.

[8] D. Berard. Kinibi TEE: Trusted Application ex-
ploitation. https://www.synacktiv.com/posts/
exploit/kinibi-tee-trusted-application-
exploitation.html.

[9] M. Böhme, V.-T. Pham, and A. Roychoudhury.
Coverage-based greybox fuzzing as markov chain. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016.

[10] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and
Implementation, 2008.

[11] D. D. Chen, M. Woo, D. Brumley, and M. Egele. To-
wards automated dynamic analysis for linux-based em-
bedded firmware. In NDSS, 2016.

[12] P. Chen and H. Chen. Angora: Efficient Fuzzing by
Principled Search. In 2018 IEEE Symposium on Security
and Privacy (SP), 2018.

[13] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: A
platform for in-vivo multi-path analysis of software sys-
tems. In Proceedings of the Sixteenth International

Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[14] J. Clause, W. Li, and A. Orso. Dytan: A generic dy-
namic taint analysis framework. In Proceedings of the
2007 International Symposium on Software Testing and
Analysis, 2007.

[15] A. Costin, A. Zarras, and A. Francillon. Automated
dynamic firmware analysis at scale: A case study on em-
bedded web interfaces. In Proceedings of the 11th ACM
on Asia Conference on Computer and Communications
Security, 2016.

[16] C. Dall and J. Nieh. Kvm/arm: The design and imple-
mentation of the linux arm hypervisor. In In Proceedings
of the 19th International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2014.

[17] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and
R. Whelan. Repeatable Reverse Engineering with
PANDA. In Proceedings of the 5th Program Protection
and Reverse Engineering Workshop, PPREW, 2015.

[18] J.-E. Ekberg. Trusted Execution Environments
(and Android). https://usmile.at/sites/
default/files/androidsecuritysymposium/
presentations2015/Ekberg_
AndroidAndTrustedExecutionEnvironments.pdf.

[19] B. Feng, A. Mera, and L. Lu. P2IM: Scalable and
hardware-independent firmware testing via automatic
peripheral interface modeling. In Proceedings of the
29th USENIX Security Symposium, 2020.

[20] GlobalPlatform. TEE Client API Specification
v1.0. https://globalplatform.org/specs-
library/tee-client-api-specification/.

[21] GlobalPlatform. TEE Internal Core API Spec-
ification v1.2.1. https://globalplatform.
org/specs-library/tee-internal-core-api-
specification/.

[22] I. GlobalPlatform. GP TEE Certificate: TEEgris 2.5
on MT6737T. https://globalplatform.org/wp-
content/uploads/2018/03/GP-TEE-2017_01_
Certificate_MediaTek_GP170002_20171027_Gil.
pdf.

[23] E. Gustafson, M. Muench, C. Spensky, N. Redini,
A. Machiry, Y. Fratantonio, D. Balzarotti, A. Francil-
lon, Y. R. Choe, C. Kruegel, and G. Vigna. Toward the
analysis of embedded firmware through automated re-
hosting. In 22nd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2019), 2019.

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.jedec.org/standards-documents/results/JESD84-A
http://www.jedec.org/standards-documents/results/JESD84-A
https://github.com/laginimaineb/fuzz_zone/tree/master/FuzzZone
https://github.com/laginimaineb/fuzz_zone/tree/master/FuzzZone
https://github.com/laginimaineb/fuzz_zone/tree/master/FuzzZone
http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
https://www.synacktiv.com/posts/exploit/kinibi-tee-trusted-application-exploitation.html
https://usmile.at/sites/default/files/androidsecuritysymposium/presentations2015/Ekberg_AndroidAndTrustedExecutionEnvironments.pdf
https://usmile.at/sites/default/files/androidsecuritysymposium/presentations2015/Ekberg_AndroidAndTrustedExecutionEnvironments.pdf
https://usmile.at/sites/default/files/androidsecuritysymposium/presentations2015/Ekberg_AndroidAndTrustedExecutionEnvironments.pdf
https://usmile.at/sites/default/files/androidsecuritysymposium/presentations2015/Ekberg_AndroidAndTrustedExecutionEnvironments.pdf
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/wp-content/uploads/2018/03/GP-TEE-2017_01_Certificate_MediaTek_GP170002_20171027_Gil.pdf
https://globalplatform.org/wp-content/uploads/2018/03/GP-TEE-2017_01_Certificate_MediaTek_GP170002_20171027_Gil.pdf
https://globalplatform.org/wp-content/uploads/2018/03/GP-TEE-2017_01_Certificate_MediaTek_GP170002_20171027_Gil.pdf
https://globalplatform.org/wp-content/uploads/2018/03/GP-TEE-2017_01_Certificate_MediaTek_GP170002_20171027_Gil.pdf

[24] J. Hertz and T. Newsham. AFL/QEMU fuzzing with full-
system emulation. https://github.com/nccgroup/
TriforceAFL.

[25] IETF. The Open Trust Protocol (OTrP).
https://www.ietf.org/archive/id/draft-
pei-opentrustprotocol-06.txt.

[26] JEDEC. e.MMC v5.1A. https://www.jedec.
org/standards-documents/technology-focus-
areas/flash-memory-ssds-ufs-emmc/e-mmc.

[27] JEDEC. Universal Flash Storage (UFS) 3.0.
https://www.jedec.org/standards-documents/
focus/flash/universal-flash-storage-ufs.

[28] M. Kammerstetter, C. Platzer, and W. Kastner. Prospect:
peripheral proxying supported embedded code testing.
In 9th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS ’14, Kyoto, Japan
- June 03 - 06, 2014, 2014.

[29] L. Kernel. LK embedded kernel. https://github.
com/littlekernel/lk.

[30] D. Komaromy. Unbox Your Phone - Exploring and
Breaking Samsung’s TrustZone Sandboxes. http://
www.ekoparty.org/charla.php?id=756.

[31] K. Koscher, T. Kohno, and D. Molnar. SURROGATES:
enabling near-real-time dynamic analyses of embedded
systems. In 9th USENIX Workshop on Offensive Tech-
nologies, WOOT ’15, Washington, DC, USA, August 10-
11, 2015., 2015.

[32] Linux. Qualcomm Secure Memory Manager binding.
https://github.com/torvalds/linux/blob/
master/Documentation/devicetree/bindings/
soc/qcom/qcom,smem.txt.

[33] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan.
Open-TEE – an open virtual trusted execution environ-
ment. Technical report, Aalto University, 2015.

[34] OP-TEE. Open Portable Trusted Execution Environ-
ment - OP-TEE. https://www.op-tee.org/.

[35] Open-TEE. Open-TEE. https://open-tee.github.
io/.

[36] R. Padhye, C. Lemieux, K. Sen, L. Simon, and H. Vi-
jayakumar. FuzzFactory: Domain-Specific Fuzzing with
Waypoints. Proceedings of the ACM on Programming
Languages, 3(OOPSLA), Oct. 2019.

[37] Qualcomm Android TEE Driver. https://android.
googlesource.com/platform/hardware/qcom/
keymaster/+/master/QSEEComAPI.h.

[38] Qualcomm. Qualcomm Security for Mobile Com-
puting. https://www.qualcomm.com/solutions/
mobile-computing/features/security.

[39] Qualcomm. Secure Boot and Image Authentication.
https://www.qualcomm.com/media/documents/
files/secure-boot-and-image-authentication-
technical-overview-v2-0.pdf.

[40] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida,
and H. Bos. VUzzer: Application-aware Evolutionary
Fuzzing. In 24th Annual Network and Distributed Sys-
tem Security Symposium, NDSS, 2017.

[41] Samsung. Knox Platform for Enterprise White Paper.
https://docs.samsungknox.com/whitepapers/
knox-platform/samsung-knox.htm.

[42] Samsung. Knox Platform Security. https:
//developer.samsung.com/tech-insights/
knox/platform-security.

[43] Samsung. Samsung TEEGRIS. https://developer.
samsung.com/teegris.

[44] Samsung. Secured Communication with the Payment
Networks. https://developer.samsung.com/tech-
insights/pay/secured-communication-with-
the-payment-networks.

[45] D. Shen. Attacking your “Trusted Core” Ex-
ploiting TrustZone on Android. https:
//www.blackhat.com/docs/us-15/materials/us-
15-Shen-Attacking-Your-Trusted-Core-
Exploiting-Trustzone-On-Android-wp.pdf.

[46] A. Software. Trusted Firmware-A. https://github.
com/ARM-software/arm-trusted-firmware.

[47] I. Standard. IEEE Standard Test Access Port and
Boundary-Scan Architecture 1149.1-1990. https:
//ieeexplore.ieee.org/document/938734, 1990.

[48] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vi-
gna. Driller: Augmenting Fuzzing Through Selective
Symbolic Execution. In 23rd Annual Network and Dis-
tributed System Security Symposium, NDSS, 2016.

[49] S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A.
Sani, and Z. Qian. Charm: Facilitating dynamic analysis
of device drivers of mobile systems. In Proceedings of
the 27th USENIX Security Symposium, 2018.

[50] A. Tarasikov. Reverse Engineering Samsung Exynos.
http://allsoftwaresucks.blogspot.com/2019/
05/reverse-engineering-samsung-exynos-
9820.html.

https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://www.ietf.org/archive/id/draft-pei-opentrustprotocol-06.txt
https://www.ietf.org/archive/id/draft-pei-opentrustprotocol-06.txt
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
https://www.jedec.org/standards-documents/technology-focus-areas/flash-memory-ssds-ufs-emmc/e-mmc
https://www.jedec.org/standards-documents/focus/flash/universal-flash-storage-ufs
https://www.jedec.org/standards-documents/focus/flash/universal-flash-storage-ufs
https://github.com/littlekernel/lk
https://github.com/littlekernel/lk
http://www.ekoparty.org/charla.php?id=756
http://www.ekoparty.org/charla.php?id=756
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/soc/qcom/qcom,smem.txt
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/soc/qcom/qcom,smem.txt
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/soc/qcom/qcom,smem.txt
https://www.op-tee.org/
https://open-tee.github.io/
https://open-tee.github.io/
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/QSEEComAPI.h
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/QSEEComAPI.h
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/QSEEComAPI.h
https://www.qualcomm.com/solutions/mobile-computing/features/security
https://www.qualcomm.com/solutions/mobile-computing/features/security
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-technical-overview-v2-0.pdf
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-technical-overview-v2-0.pdf
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-technical-overview-v2-0.pdf
https://docs.samsungknox.com/whitepapers/knox-platform/samsung-knox.htm
https://docs.samsungknox.com/whitepapers/knox-platform/samsung-knox.htm
https://developer.samsung.com/tech-insights/knox/platform-security
https://developer.samsung.com/tech-insights/knox/platform-security
https://developer.samsung.com/tech-insights/knox/platform-security
https://developer.samsung.com/teegris
https://developer.samsung.com/teegris
https://developer.samsung.com/tech-insights/pay/secured-communication-with-the-payment-networks
https://developer.samsung.com/tech-insights/pay/secured-communication-with-the-payment-networks
https://developer.samsung.com/tech-insights/pay/secured-communication-with-the-payment-networks
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://ieeexplore.ieee.org/document/938734
https://ieeexplore.ieee.org/document/938734
http://allsoftwaresucks.blogspot.com/2019/05/reverse-engineering-samsung-exynos-9820.html
http://allsoftwaresucks.blogspot.com/2019/05/reverse-engineering-samsung-exynos-9820.html
http://allsoftwaresucks.blogspot.com/2019/05/reverse-engineering-samsung-exynos-9820.html

[51] threatpost.com. Android Qualcomm Vul-
nerability Impacts 60 Percent of Devices.
https://threatpost.com/android-qualcomm-
vulnerability-impacts-60-percent-of-
devices/118191/, Visited Aug 2019.

[52] Trustonic. Android Driver for the Trustonic Trusted
Execution Environment. https://github.com/
TrustonicNwd/tee-mobicore-driver.kernel.

[53] Trustonic. Android user space components
for the Trustonic Trusted Execution Environ-
ment. https://github.com/TrustonicNwd/tee-
mobicore-driver.daemon.

[54] Trustonic. Device Coverage: Trustonic Embeds
Hardware Security in 9 of the Top 10 Android
OEMs. https://www.trustonic.com/trustonic-
device-coverage, Visited Aug 2019.

[55] Trustonic. Internet of Things. https://www.
trustonic.com/markets/iot/.

[56] Trustonic. Trustonic Application Protection. https:
//www.trustonic.com/solutions/trustonic-
application-protection-tap/.

[57] Trustonic. Trustonic Secured Platforms. https:
//www.trustonic.com/solutions/trustonic-
secured-platforms-tsp/.

[58] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing system-wide information flow for
malware detection and analysis. In Proceedings of the
14th ACM Conference on Computer and Communica-
tions Security, 2007.

[59] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti.
AVATAR: A framework to support dynamic security

analysis of embedded systems’ firmwares. In 21st An-
nual Network and Distributed System Security Sympo-
sium, NDSS 2014, San Diego, California, USA, February
23-26, 2014, 2014.

[60] M. Zalewski. AFL: Understanding the Sta-
tus Screen. http://lcamtuf.coredump.cx/afl/
status_screen.txt.

[61] M. Zalewski. American Fuzzy Lop. http://lcamtuf.
coredump.cx/afl/.

[62] zdnet.com. Security flaw lets attackers re-
cover private keys from Qualcomm chips.
https://www.zdnet.com/article/security-
flaw-lets-attackers-recover-private-keys-
from-qualcomm-chips/, Visited Aug 2019.

[63] H. Zhang, D. She, and Z. Qian. Android root and its
providers: A double-edged sword. In Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, 2015.

[64] H. Zhang, D. She, and Z. Qian. Android ion hazard: The
curse of customizable memory management system. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016.

A Appendix

A.1 Selecting Components to Emulate
Table 7 shows whether we choose to emulate or reuse each
component that the TZOS depends on, based on the criteria
in Table 1.

A.2 SLOC for Emulated Components
Table 8 quantifies our implementation effort using source lines
of code for core PARTEMU and each emulated component.

https://threatpost.com/android-qualcomm-vulnerability-impacts-60-percent-of-devices/118191/
https://threatpost.com/android-qualcomm-vulnerability-impacts-60-percent-of-devices/118191/
https://threatpost.com/android-qualcomm-vulnerability-impacts-60-percent-of-devices/118191/
https://github.com/TrustonicNwd/tee-mobicore-driver.kernel
https://github.com/TrustonicNwd/tee-mobicore-driver.kernel
https://github.com/TrustonicNwd/tee-mobicore-driver.daemon
https://github.com/TrustonicNwd/tee-mobicore-driver.daemon
https://www.trustonic.com/trustonic-device-coverage
https://www.trustonic.com/trustonic-device-coverage
https://www.trustonic.com/markets/iot/
https://www.trustonic.com/markets/iot/
https://www.trustonic.com/solutions/trustonic-application-protection-tap/
https://www.trustonic.com/solutions/trustonic-application-protection-tap/
https://www.trustonic.com/solutions/trustonic-application-protection-tap/
https://www.trustonic.com/solutions/trustonic-secured-platforms-tsp/
https://www.trustonic.com/solutions/trustonic-secured-platforms-tsp/
https://www.trustonic.com/solutions/trustonic-secured-platforms-tsp/
http://lcamtuf.coredump.cx/afl/status_screen.txt
http://lcamtuf.coredump.cx/afl/status_screen.txt
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://www.zdnet.com/article/security-flaw-lets-attackers-recover-private-keys-from-qualcomm-chips/
https://www.zdnet.com/article/security-flaw-lets-attackers-recover-private-keys-from-qualcomm-chips/
https://www.zdnet.com/article/security-flaw-lets-attackers-recover-private-keys-from-qualcomm-chips/

TZOS Component C
C – TZOS C – Other Source Encrypted? DecisionCoupling Coupling Avail?

QSEE

Bootloader Loose Tight Partial No Emulate
Secure Monitor Tight Loose Closed No Reuse
TEE Driver Loose Loose Open No Emulate[note b]

TEE Userspace N/A N/A Closed No Exclude

Kinibi

Bootloader Loose Tight Partial No Emulate
Secure Monitor Loose Tight Partial No Emulate
TEE Driver Tight Loose Open No Reuse
TEE Userspace Loose Tight Open No Emulate

TEEGRIS

Bootloader Loose Tight Partial No Emulate
Secure Monitor Loose Tight Partial Yes Emulate
TEE Driver Tight Loose Open No Reuse
TEE Userspace Loose Tight Closed No Emulate

OP-TEE

Bootloader Loose Tight Partial No Emulate
Secure Monitor Tight Loose Closed No Reuse
TEE Driver Loose Loose Open No Emulate[note b]

TEE Userspace N/A N/A Closed No Exclude
TAs[note a] - - - - Reuse
TZOSes[note a] - - - - Reuse
Hardware - - - - Emulate

Table 7: Showing components chosen for emulation or reuse for QSEE, Kinibi, TEEGRIS, and OP-TEE.
[note a]Since the TZOS and TAs are the target components we want to analyze, we have to reuse the original binaries.
[note b]We believe both reusing or emulating the TEE drivers in these cases are practically feasible.

Category Component New or Modification SLOC Added
to Existing Code? or Modified

PARTEMU
QEMU (PARTEMU run management API) New 1060
PARTEMU AFL plugin New 846
PARTEMU LLVM run plugin New 147

QSEE
QEMU (hardware emulation) New 4642
Bootloader New 1636
TEE driver+AFL driver New 1379

Kinibi

QEMU (hardware emulation) New 551
Secure Monitor Existing [46] 781
TEE userspace Existing [53] 49
AFL driver New 656

TEEGRIS

QEMU (hardware emulation) New 551
Secure Monitor Existing [53] 677
TEE userspace New 435
AFL driver New 542

OP-TEE
QEMU (hardware emulation) New 310
Bootloader New 2[note a]

AFL driver New 266
Total - - 14530

Table 8: Table with lines of code added or modified for each emulated component. SLOC was calculated using sloccount.
[note a]OP-TEE only required the bootloader to set up two registers, which we did using two assembly instructions.

	Introduction
	Problem
	Goals

	Challenge and Solution Overview
	TZOS Background
	ARM TrustZone Background
	TZOS Dependencies
	Boot-Time Dependencies
	Run-Time Dependencies
	Hardware Dependencies

	Selecting Components to Emulate
	Case Studies
	Bootloader
	Secure Monitor
	TEE Driver and TEE Userspace

	Hardware Emulation
	Ease of Hardware Emulation

	PartEmu Implementation
	AFL PartEmu Module
	TA Authentication
	Performance Optimizations

	Evaluation
	Extent of Emulation Required
	Software Emulation
	Hardware Emulation
	Effort to Support TZOS Upgrades

	Use Case: Fuzz Testing TAs
	Reproducibility and False Positives

	Use Case: Fuzz Testing TZOS

	Related Work
	Discussion and Future Work
	Conclusion
	Acknowledgements
	Appendix
	Selecting Components to Emulate
	SLOC for Emulated Components

