VPriv: Protecting Privacy in Location-Based Vehicular Services

Raluca Ada Popa and Hari Balakrishnan
CSAIL
Massachusetts Institute of Technology
Email: {ralucap,hari}@mit.edu

Abstract

A variety of location-based vehicular services are
currently being woven into the national transportation
infrastructure in many countries. These include usage-
or congestion-based road pricing, traffic law enforce-
ment, traffic monitoring, “pay-as-you-go’ insurance,
and vehicle safety systems. Although such applications
promise clear benefits, there are significant potential
violations of the locational privacy of drivers under
standard implementations (i.e., GPS monitoring of cars
as they drive, surveillance cameras, and toll transpon-
ders).

In this paper, we develop and evaluate VPriv, a
system that can be used by several such applications
without violating the locational privacy of drivers.
The starting point is the observation that in many
applications, some centralized server needs to compute
a function of a car’s or user’s path—a list of time-
position tuples. VPriv provides two components: 1) a
protocol to compute path functions in a way that does
not reveal anything more than the result of the func-
tion to the server, and 2) an out-of-band enforcement
mechanism using random spot checks that allows the
server and application to handle misbehaving cars or
users. Our implementation of VPriv is efficient enough
to be run on inexpensive stock devices. Using analysis
and simulation based on real vehicular data collected
over two months from the CarTel project testbed of 27
taxis running in an urban area, we demonstrate that
our protocol is resistant to a range of possible attacks.

1. Introduction

Over the next few years, location-based vehicular
services using a combination of in-car devices and
roadside surveillance systems will become a standard
feature of the transportation infrastructure in many

Andrew Blumberg
Department of Mathematics
Stanford University
Email: blumberg @math.stanford.edu

countries. Already, there is a burgeoning array of ap-
plications of such technology, including electronic toll
collection, automated traffic law enforcement, traffic
statistic collection, insurance pricing using measured
driving behavior, vehicle safety systems, and so on.

These services promise substantial improvements
to the efficiency of the transportation network as
well as to the daily experience of drivers. Electronic
toll collection reduces bottlenecks at toll plazas, and
more sophisticated forms of congestion tolling and
usage pricing (e.g., the London congestion tolling
system [[14]]) reduce traffic at peak times and generate
revenue for transit improvements. Automated traffic
enforcement (e.g., stop-light cameras) improves com-
pliance with traffic laws and reduces accidents. Rapid
collection and analysis of traffic statistics can guide
drivers to choose optimal routes and allows for ratio-
nal analysis of the benefits of specific allocations of
transportation investments. ‘“Pay-as-you-go” insurance
programs in which insurance premiums are adjusted
using information about driving behavior collected by
GPS-equipped devices are being tested.

Unfortunately, along with the tremendous promise
of these services comes very serious threats to the
locational privacy of drivers (see Section [2] for a pre-
cise definition). For instance, some current implemen-
tations of these services involve pervasive tracking—
license-plate cameras, mandatory in-car GPS [16], toll
transponders, and insurance “black boxes” that mon-
itor location and other driving information—with the
data aggregated centrally by various government and
corporate entities.

Furthermore, as a pragmatic matter, the widespread
deployment and adoption of traffic monitoring is
greatly impaired by public concern about privacy
issues. A sizeable impediment to further electronic
tolling penetration in the San Francisco Bay Area is the
refusal of a significant minority of drivers to install the
devices due to privacy concerns [1]. Privacy worries

also affect the willingness of drivers to participate in
the collection of traffic statistics.

This paper proposes VPriv, a practical system to
protect a user’s locational privacy while efficiently sup-
porting a range of location-based vehicular services.
VPriv supports applications that compute functions
over the paths traveled by individual cars. A path
is simply a sequence of points, where each point
has a random time-varying identifier, a timestamp,
and a position. Usage-based tolling, delay and speed
estimation, and pay-as-you-go calculations can all be
computed given the paths of each driver.

VPriv has two components. The first component
uses secure multi-party computations to develop proto-
cols for tolling and speed/delay estimation that do not
compromise the locational privacy of the drivers. These
cryptographic tools guarantee that a joint computation
can proceed correctly without revealing the private data
of the parties involved. The result is that each driver
(car) is guaranteed that no other information about
its paths can be inferred from the computation, other
than what is revealed by the result of the computed
function. We build on previous work which has pro-
posed high-level protocols based on the use of such
tools for preserving driver privacy [2], [3l], [5]. Our
main contribution here is the first implementation and
experimental evaluation of multi-party secure protocols
for specific functions computed over driving paths. Our
approach is similar to the efficient protocol introduced
in [[17] for solving the problem of alerting an individual
to nearby friends. More generally, this aspect of our
work fits into the large body of efforts to devise
practical multi-party secure protocols for particular
problems.

The second component addresses a significant con-
cern: making VPriv robust to attacks. Although we
can prove security against “cryptographic attacks” as
a consequence of the properties of the mathematical
aspects of our protocols, it is very difficult to protect
against physical attacks in this fashion (e.g., drivers
turning off their devices). However, one of the inter-
esting aspects of the problem is that the embedding
in a social and physical context provides a framework
for discovering misbehavior. We propose and analyze a
method using sporadic random spot-checks of vehicle
locations that are linked to the actual identity of the
driver. By identifying cars that incorrectly upload path
information with high probability, the method ensures
that the argument to the secure two-party protocol is
highly likely to be correct. Our analysis shows that
this goal can be achieved with a relatively small num-
ber of such checks, making this enforcement method
inexpensive and minimally invasive.

2. Model

In this section, we describe the framework under-
lying our scheme, our goals, and threat model. The
framework captures a broad class of vehicular location-
based services.

2.1. Framework

The participants in the system are cars and a server.
For any given problem (tolling, traffic statistics estima-
tion, insurance calculations, etc.), there is one logical
server and many cars. The server wishes to compute
some function f for any given car; f takes the path
of the car generated during an inferaction interval as
its argument. The interaction interval is the time range
over which the server wants to compute the function.

To compute f, the server must collect the set of
points corresponding to the path traveled by the car
over the desired interaction interval. Each point is a
tuple with three fields:

(tag, time, location)

Each car provides a sequence of such tuples to
the server. The server computes f using the set of
(time, location) pairs. If locational privacy were
not a concern, the tag could uniquely identify the car.
In our case, however, these tags should be chosen in a
way that cannot be connected to an individual car.

We are interested in developing protocols that pre-
serve locational privacy for three important functions:

1) Usage-based tolls: The server wishes to assess a
path-dependent toll on the car. The toll is some
function of the time and positions of the car,
known to both the car and server. For example,
we might have a toll that sets a particular price
per mile on any given road, changing that price
with time of day.

2) Automated speeding tickets: The server wishes
to detect violations of speed restrictions: for
instance, did the car ever travel at greater than
65 MPH? More generally, the server may wish
to detect violations of speed limits which vary
across roads and are time-dependent.

3) “Pay-as-you-go” insurance premiums: The
server wishes to compute a “safety score”
based on the car’s path to determine insurance
premiums. Specifically, the server wishes to
compute some function of the time, positions,
speed, and acceleration of the car. For example,
we might wish to assess higher premiums on
cars which persistently drive close to the speed
limit, or have frequent rapid acceleration events.

We regard all of these applications as essentially sim-
ilar examples of the basic problem of computing a
localized cost function of the car’s path represented
as points. Here by localized we mean that the function
can be decomposed as a sum of costs associated to a
specific point or small number of specific points that
are close together in space-time. This general frame-
work can in fact be applied very broadly because of
the general result that every polynomially-computable
function has a secure multi-party protocol [12], [20].
However, the general reduction is not practical, and
so by exploiting specifics of the problem we devise
efficient protocols.

Our model is that each car has some way of obtain-
ing the point tuples as it drives and delivering them
to the server. Conceptually, imagine a node on the
car gathering GPS information periodically (e.g., every
second) and delivering it over some network. The de-
livery of this information need not be done in real-time
and could happen sporadically, as long as it happens
before the server computes the function. Moreover, the
car may not actually carry a node; roadside devices
could infer the presence of a car (e.g., cameras, RFID,
etc.) and act as a proxy for this information. Thus,
this abstract model covers many practical systems,
including in-car device systems (such as CarTel [13]),
toll transponder systems such as E-ZPass [19], and
roadside surveillance systems.

2.2. Design goals

We have the following goals for the protocol be-
tween the car and the server, which allows the server
to compute a function over a path.

Correctness. For the car C' with path P¢, the server
computes the correct value of f(Pc).

Locational privacy. We want to ensure that the
computation of f does not reveal the path of the car.
We formalize our notion of locational privacy in this
paper as follows:

Definition 1: (Locational privacy) Let

o S denote the server’s database consisting of tuples
(tag, time, location).

e S’ denote the database generated from S by
removing the tag associated to each tuple: for
every tuple (tag, location, time) € S there is a
tuple (location, time) € S'.

o C be an arbitrary car.

o V denote the information sent by C' to the server
while executing the protocol, together with any
other information owned or computed by the
server during the computation of f(path of C).

Then we say that the computation of f(path of C) pre-
serves the locational privacy of C' if the server gains an
insignificant amount of additional information about
which tuples belong to C from S, V and f(path of C)
than from S’ and f(path of C).

Here the “insignificant amount” refers to an amount
of information that cannot be exploited by a computa-
tionally bounded machine. For instance, the encryption
of a text typically offers some insignificant amount
of information about the text. This notion can be
formalized using simulators, as is standard for this kind
of cryptographic guarantee.

Informally, this definition says that the privacy guar-
antees of VPriv are the same as those of a system in
which the server stores only tag-free path points

(time, location)

without any identifying information. Note that this
definition means that any covert channels present in
the raw data of S itself will remain in our protocols; for
instance, if one somehow knows that only a single car
drives on a certain roads at a particular time, then that
car’s privacy will be violated. Furthermore, observe
that this definition requires that in general the tags be
indistinguishable to the server from randomly drawn
tags.

Efficiency. The protocol must be sufficiently effi-
cient so as to be feasible to run even on inexpensive in-
car devices. This goal can be hard to achieve; modern
cryptographic protocols can be computationally inten-
sive.

2.3. Threats

We assume that a car cannot trust the server with its
locational privacy, the server does not trust the car or
its user to compute any operation correctly, the server
assumes that any device or software running on the
car may have been tampered with, and there may be
intermediate untrusted devices (e.g., roadside nodes,
wireless access points, etc.) that lie between the car
and the server. Both the car and server may have strong
financial incentives to misbehave. The following (non-
exhaustive) list mentions the kinds of attacks we are
concerned with:

o The driver turns off or selectively disables the in-
car node, so the car uploads no data or only a
subset of the actual path data.

o The car or driver uploads synthetic data.

o The car eavesdrops on another car and attempts
to masquerade as that car.

« Some intermediate router synthesizes false pack-
ets or systematically changes packets.

Server
(Tag=11, T=1, 81)
(Tag = 79, T=2, S2)

(Tag=11, T=1, S1
(Tag=79, T=2, S2)

L1

Location S1 L1
Location S2
/ Spot check:

(L1, T=2, S2)

Figure 1: VPriv’s system overview. A car with license plate
L1 is traveling from Location S1 at time 1 to Location S2
at time 2 when it undergoes a spot check. It uploads path
tuples to the server.

o The server inserts synthetic data claiming it has

come from a particular car.

Thus, we are concerned not only with making sure
that the protocol achieves our privacy and correctness
goals when successfully carried out, but also with
assuring that the car and server participate honestly
in the protocol.

3. Architecture

This section gives an overview of the VPriv system
and its components. As explained in the previous sec-
tion, the abstract model consists of in-car nodes gather-
ing periodic time-location tuples. To protect locational
privacy, the server must not be able to associate the tags
in the path tuples to a specific car or driver; otherwise
the server could aggregate the tuples based on the
tags and deduce the paths of individual cars. Thus, we
require that the car chooses tags at random to prevent
the server from knowing which points belong to the
same path. However, these random tags will still be
cryptographically bound to the car, as we will discuss.
The car will not be able to disavow having produced
a particular tuple and the server will not be able to
match tags with specific cars.

VPriv consists of three key steps:

1) Registration. From time to time—say, upon
renewing a car’s registration or driver license—
the driver must identify herself to the server by
presenting a license or registration information.
At that time, the car’s node (aka “car’) generates
a set of random tags that will be used in the
protocol. We assume that these are indistinguish-
able from random by a computationally bounded
adversary. The car then engages in a crypto-
graphic commitment scheme with the server to
commit the selected random tags. We describe

the details of the commitment scheme we use in
Section 311

2) Driving. As the car drives, it gathers times-
tamped locations and uploads them to the server.
Each path tuple is unique because the random
tag is never reused (or reused only in a precisely
constrained fashion, see Section EI) In addition,
VPriv relies on sporadic random spot checks
to observe the physical locations of cars. This
process generates tuples consisting of the actual
license plate number, time, and location of obser-
vation. This information is cross-checked (during
reconciliation) against the randomly tagged in-
formation sent by cars to determine misbehavior.

3) Reconciliation. This stage computes the func-
tion f, and happens at the end of each interaction
interval. The server and the car engage in a
secure two-party protocol in which:

e They compute the desired function of the
car’s path, with the car providing its path as
private input.

e The car proves to the server in zero knowl-
edge that its private input to the computation
of the function is precisely the tuples that
appeared in the database.

Optionally, the server may challenge the driver
to verify that the private input to the computation
above is consistent with the spot check tuples.

This framework is analogous to the setup of [2],
[3]. To implement this protocol, VPriv uses a set of
modern cryptographic tools: secure two-party com-
putations, a homomorphic commitment scheme, and
random function families. We provide a brief overview
of these tools below. The experienced reader may skip
to Section 4 where we provide efficient realizations
that exploit details of our restricted problem setting.

3.1. Overview of cryptographic mechanisms

A commitment scheme [27] consists of two al-
gorithms, COMMIT and REVEAL. Assume that Alice
wants to commit to a value v to Bob. In general
terms, Alice wants to provide a ciphertext to Bob
from which he cannot gain any information about v.
However, Alice needs to be bound to the value of v.
This means that, later when she wants to reveal v to
Bob, she cannot provide a different value, v/ # wv,
which matches the same ciphertext. Specifically, she
computes COMMIT(v) — (¢, d), where ¢ is the result-
ing ciphertext and d is a decommitment key with the
following properties:

« Bob cannot feasibly gain any information from c.

CcOoST Tolling cost computed by the client and reported to
the server.

c(z),d(z)| The ciphertext and decommitment value resulting
from committing to value x. That is COMMIT(x) =

(c(z),d(x)).

V5 The random tags used by the vehicle’s transponder.
A subset of these will be used while driving.
(si,t4) A pair of a random tag uploaded at the server and

the toll cost the server associates with it. {s;} is the
set of all random tags the server received within a
tolling period with ¢; > 0.

Table 1: Notation.

e Alice cannot feasibly provide v’ # v such that
ComMIT(v') — (e, d"), for some d'.

We say that Alice reveals v to Bob if she provides v
and d(v) to Bob, who already holds c(v).

We use a homomorphic commitment scheme due
to Pedersen [21], in which performing some operation
on the ciphertexts corresponds to some (other or the
same) operation on the plaintext. For instance, a com-
mitment scheme that has the property that ¢(v)-c(v') =
¢(v + v') is homomorphic. Here, the decommitment
key of the sum of the plaintexts is the sum of the
decommitment keys d(v + v') = d(v) + d(v').

A Secure multi-party computation [20] is a pro-
tocol in which several parties hold private data and
engage in a protocol in which they compute the result
of a function on their private data. At the end of
the protocol, the correct result is obtained and none
of them managed to learn the private information of
another one other than what can be inferred from the
result of the function. In the case of our paper, we
designed a variant of a secure two-party protocol. One
party is the car/driver whose private data is the driving
path, and the other is the server with no private data
with respect for this protocol. The driver is malicious
because she would like to lower the tolling cost; the
server will behave correctly, though it may attempt
to gain information about the driver’s path. A zero-
knowledge proof [12] is a related concept that involves
proving the truth of a statement without revealing any
other information.

A random function family[22] is a collection of
functions {fx} : D — R with domain D and range R,
indexed by k. If one chooses k at random,

e Forall v € D, fx(v) can be computed efficiently

(that is, in polynomial time).

e fi is indistinguishable from a function with ran-

dom output for each input.

4. Protocols

This section presents a detailed description of the
specific interactive protocol for our applications, mak-

ing precise the preceding informal description. We
present the interaction between the server and the client
only within one round because all the other rounds
are similar. For concreteness, we describe the protocol
first in the case of the tolling application; the minor
variations necessary to implement the speeding ticket
and insurance premium applications are presented sub-
sequently.

4.1. Tolling protocol

We first introduce the notation in Table E} For clarity,
we present the protocol in a schematic manner in
Figure 2| This protocol is a case of two party-secure
computation (the car is a malicious party with private
data and the server is an honest but curious party) that
takes the form of zero-knowledge proof: the car first
computes the tolling cost and then it proves to the
server that the result is correct. Intuitively, the idea of
the protocol is that the client provides the server an
obfuscated version of her tags on which the server can
compute the tolling cost in ciphertext. The server has a
way of verifying that the obfuscations provided by the
client are correct. The privacy property comes from
the fact that the server can perform only one of the
two operations at the same time: either check that the
obfuscations are computed correctly, or compute the
tolling cost on the vehicle tags using the obfuscations.

Note that this protocol also reveals the number of
tolling tuples of the car because the server knows the
size of the intersection. This can be seen from the
number of fi(v;) = fi(s;) in iv). The protocol can be
amended to avoid this by having the motorist upload
a random number of padding tuples along with each
real tuple: these tuples have the same time and location,
but a different tag. The server assigns a nonzero cost
to only one of the tuples from that time and location,
and the protocol otherwise proceeds as above.

First, it is clear that if the client is honest, the server
will accept the tolling cost.

Theorem 1: If the server responds with “ACCEPT”,
the protocol in Figure [2] results in the correct tolling
cost and respects the driver’s locational privacy.

Proof: Assume that the car has provided an in-
correct tolling cost in step Note first that it must
have provided correct decommitment keys; otherwise
the server would have detected this when checking that
the commitment was computed correctly. Then, at least
one of the following data the car provides has to be
incorrect:

o The obfuscation of the pairs (s;, t;) obtained
from the server. For instance, the car could have

Privacy-Preserving Computation of the Tolling Cost

1) Registration phase:

a) For each car choose random vehicle tags, v;, and a random function, fi, by choosing %k at random.
b) Obfuscate the selected vehicle tags by computing fx(v;),Vi, commits to the random function by
computing ¢(k), commits to the obfuscated vehicle tags by computing ¢(f(v;)), and stores the associated

decommitment keys, (d(k), d(fx(v;))).

¢) Send c¢(k) and c(fx(v;)), Vi to the server. This will prevent the car from using different vehicle tags.

2) Driving phase: The car produces path tuples using the random tags, v;, and sends them to the server.

3) Reconciliation phase:

a) The server computes the associated tolling cost, ¢;, for each random tags s; observed in the last period
based on the location and time where it was observed and sends (s;, ;) to the client only if ¢; > 0.

b) The client computes the tolling cost COST =3

¢) The round protocol begins:
Client

Vi=8j

t; and sends it to the server.

Server

(i) Shuffle at random the pairs (s;,¢;) obtained from the
server. Obfuscate s; according to the chosen f;, random
function by computing f(s;),Vj. Compute ¢(t;) and store

the associated decommitments.
Send to server fi(s;) and c(t;) ,Vj —

(iii) If b = 0, the client sends k and all ¢; to the server and
proves that these are the values the client committed to in

(ii) The server picks a bit b at random. If b = 0,
challenge the client to verify that the ciphertext
provided is correct; else, challenge the client to
verify that the total cost based on the received

ciphertext matches COST.
«— Challenge random bit b

step (i) by providing d(k) and d(t;). If b = 1, the client
sends the obfuscations to v; ({fx(v;)}) and proves that
these are the values she committed to during registration
by providing d(fx(v;)). The client also computes the
intersection of her and the server’s tags, I = {v;} N {s;}.
Let T = {t; : s; € I} be the set of associated tolls to s; in
the intersection. Note that) . ¢; represents the total tolling
cost the client has to pay. By the homomorphic property
discussed in Section 3.1] the product of the commitments
to these tolls ¢;, HtjeT c(t;), is a ciphertext of the total
tolling cost whose decommitmentkey is D =3, 1 d(t;) .
The server will compute the sum of these costs in ciphertext
in order to verify that COST is correct; the client needs
to provide D for this verification.

If b=0, d(k),d(t;) else D,d(fi(vi)) —

(iv) If b = 0, the server verifies that all pairs (s;, ;)
have been correctly shuffled, obfuscated with fj,
and committed. This verifies that the client com-
puted the ciphertext correctly. If b = 1, the server
computes [[; 5, Fo(vi)=Fu(s;) c(tj). As discussed,
this yields a ciphertext of the total tolling cost and
the server verifies if it is a commitment to COST
using D. If all checks succeed, the server accepts
the tolling cost, else it denies it.

Figure 2: VPriv’s protocol for computing the tolling cost. The arrows indicate data flow.

removed some entries with high cost so that the
server computes a lower total cost in step iv).
The computation of the total toll COST. That is,
COST # 3, _, t;. For example, the car may
have reported a smaller cost.

detect the misbehavior with a probability of at least
1/2. As discussed, the detection probability increases
exponentially in the number of rounds.

For locational privacy, we prove that the server gains
no significant additional information about the car’s

For if both are correct, the tolling cost computed must
be correct.

During each round, the server chooses to test one
of these two conditions with a probability of 1/2.
Thus, if the tolling cost is incorrect, the server will

data other than the tolling cost and the number of tuples
involved in the cost (and see above for how to avoid
the latter). Let us examine the information the server
receives from the client:

Step (Id): The commitments c(k) and c(fx(v;)) do

not reveal information by the definition of a commit-
ment scheme.

Step (i): c(t;) does not reveal information by the
definition of a commitment scheme. By the definition
of the random function, fj(s;) looks random.

Step (iii): If b = 0, the client will reveal k£ and
t; and no further information from the client will be
sent to the server in this round. However, the values
of fr(v;) remain committed so the server has no
other information about v; other than these committed
values, which do not leak information. If b = 1, the
client reveals fx(v;). However, since k is not revealed,
the server does not know which random function was
used and due to the random function property, these
numbers look random. Providing D only provides de-
commitment to the sum of the tolls which is the result
of the function. One needs to choose a homomorphic
commitment or encryption with the property that D
will not reveal any significant information about the
any v;.

Information across rounds: A different random func-
tion is used during every round so the information
from one round cannot be used in the next round.
Furthermore, the commitment to the same value in
different rounds will be different and look like random
numbers.

Therefore, we support our definition of locational
privacy because the road pricing protocol does not leak
any additional information about whom the tuple tags
belong to and the cars generated the tags randomly;
therefore, our database is indistinguishable from a
database without tags. O

The protocol is linear in the number of tuples the
car commits to during registration and the number of
tuples received from the server in step We believe
the latter is manageable in size because the server
sends tuples whose costs are nonzero and the number
of tolling roads is much smaller than the number of
roads. Furthermore, the only tuples of interest are
those from the last tolling period. If this number is
still considered large, clients can exchange privacy for
performance and constrain the download via statements
such as “I have only been in Boston”, subject to the
enforcement protocol discussed in Section [5

Notice that an algorithm that requires a time sublin-
ear in the number of tuples at the server with nonzero
cost has decreased privacy guarantees: this is because
the server excludes from consideration some tuples,
which means that the server knows or is being told
that those tuples do not belong to the car.

4.2. Speeding tickets

In this application, we wish to detect and charge a
driver who travels above some fixed speed limit L. For
simplicity, we will initially assume that the speed limit
is the same for all roads, but this is not required by our
protocol and we will discuss at the end how to relax
this constraint. The idea is to cast speed detection as
a tolling problem, as follows.

We modify the driving phase to require that the car
use each random vehicle tag v; twice in succession;
thus the car will upload pairs of linked path tuples.
The server can compute the speed from a pair of
linked tuples, and so during the reconciliation phase,
the server assigns a cost t; to each linked pair: if the
speed computed from the pair is > L, the cost is non-
zero, and it is zero otherwise. Now the reconciliation
phase proceeds as discussed above. The spot check
challenge during the reconciliation phase now requires
verification that a consistent pair of tuples was gener-
ated, but is otherwise the same. If it deemed useful that
the car reveal information about where the speeding
violation occurred, the server can set the cost ¢; for a
violating pair to be a unique identifier for that speeding
incident.

Since the number of linked tuples is half the total
size of the database, the computational costs of this
protocol are analogous to the costs of the tolling
protocol and so the experimental analysis of that pro-
tocol applies in this case as well. There is a potential
concern about additional covert channels in the server’s
database associated with the use of linked tuples.
Although the driver has the same guarantees as in the
tolling application that her participation in the protocol
does not reveal any information beyond the value of
the function, the server has additional raw information
in the form of the linkage. The positional information
leaked in the linked tuple model is roughly the same
as in the tolling model with twice the time interval
between successive path tuples.

Clearly, varying speed limits on different roads can
be accommodated by having the prices ¢; incorporate
location. A more subtle question is to try and detect
distinct “instances” of speeding. To some degree, this
can be handled by appropriate assignment of costs, but
in general we leave the problem of formally specifying
such a definition and constructing a protocol for it to
future work.

In Section] we explained how to avoid leaking
the number of tolling tuples by uploading a varying
number of tuples instead of one at a time. The same
solution can be applied here by uploading the same
number of additional tuples for each of the two tuples

with the same tag.
4.3. Insurance premium computation

In this application, we wish to assign a “safety
score” to a driver based on some function of their
path which assesses their accident risk for purposes of
setting insurance premiums. For example, the safety
score might reflect the fraction of total driving time
that is spent driving above 45 MPH at night. Or the
safety score might be a count of incidents of rapid
deceleration.

As in the speeding ticket example, it is straight-
forward to compute these sorts of quantities from the
variant of the protocol in which we require repeated
use of a vehicle identifier v; on successive tuples.
If only a function of speed and position is required,
the exact framework of the speeding ticket example
will suffice. In order to accommodate detection of
acceleration, we need to adjust the driving phase of
the protocol again to now require that each tag be
used on k successive tuples; local acceleration can be
estimated from such a sequence. There is some possi-
bility that acceleration events will fall across sequence
boundaries and be missed using this methodology. If
accuracy is at a premium, at the cost of a small increase
in total database size we can require that the car upload
overlapping tuples around the boundaries, where a
given time-location pair would be uploaded with a
pair of different tags corresponding to the different
overlapping sequences.

5. Enforcement

The cryptographic protocol described in Section
[ensures that a driver cannot lie about the result
of the function to be computed given some private
inputs to the function (the path tuples). However, when
implementing such a protocol in a real setting, we need
to ensure that the inputs to the function are correct. For
example, the driver can turn off the transponder device
on a toll road. The server will have no path tuples from
that car on this road. The driver can then successfully
participate in the protocol and compute the tolling cost
only for the roads where the transponder was on and
prove to the server that the cost was “correct”.

In this section, we present a general enforcement
scheme that deals with security problems of this na-
ture. The enforcement scheme applies to any function
computed over a car’s path data. The idea is that the
enforcement scheme is verifies the correctness of the
inputs to the protocol, namely the path.

The enforcement scheme needs to be able to detect
a variety of driver misbehaviors such as using tags
other than the ones committed to during registration,
sending incorrect path tuples by modifying the time
and location fields, failing to send path tuples, etc.
To this end, we employ an end-to-end approach using
sporadic, random spot checks. We assume that at
random places on the road, unknown to the drivers,
there will be physical observations of a path tuple

(license plate, time, location)

The essential point is that the spot check tuples are
connected to the car’s physical identifier, the license
plate. For instance, such a spot check could be carried
out by roving police cars that secretly record this
information (perhaps similar to today’s “speed traps”).

The data from the spot check is then used to validate
the entries in the server database. The reconciliation
phase of the protocol from Section [is augmented
with an additional challenge in which the driver is
required to prove that she generated a path tuple that
is sufficiently close to one observed during the spot
check (and verify that the tag used in this tuple was
one of the tags committed to during registration). This
proof can be performed in zero knowledge, although
since the spot check reveals the car’s location at that
point, this is not necessary. The driver can just present
as a proof the tuple it uploaded at that location. If
the driver did not upload such a tuple at the server
around the observation time and place, she will not be
able to forge one due to the commitment during the
registration phase. The server may allow a threshold
number of tuples to be missing in the database to make
up for accidental errors.

Intuitively, we consider that the risk of begin caught
tampering with the protocol is akin to the current
risk of being caught driving without a license plate
or speeding. It is also from this perspective that we
regard the privacy violation associated with the spot
check method: the augmented protocol by construction
reveals the location of the car at the spot check points.
However, as we will show in Section [6] the number
of spot checks needed to detect misbehaving drivers
with high probability is very small. This means that
the privacy violation is limited, and the burden on the
server (or rather, whoever runs the server) of doing the
spot checks is manageable.

6. Evaluation

In this section we evaluate the protocols proposed.
We implemented the road pricing protocol, which we

20

18

16

14

ry
18]

Running time (s)
« B

0 I ! !
0 0.5 1 1.5 2

Number of tags x 10

Figure 3: The running time of the road pricing protocol as a
function of the number of tags generated during registration
for one round.

evaluate in Section [6.1] We then analyze the effec-
tiveness of the enforcement scheme using theoretical
analysis in Section as well as real data traces in
Section

6.1. Implementation

We implemented the road pricing protocol in C++. It
consists of two modules, the car and the server, which
interact according to the protocol described in Section
4l

We evaluated the protocol by varying the number
of random vehicle tags, the total number of tags seen
at the server, and the number of rounds. In a real
setting, these numbers will depend on the duration of
the reconciliation period and the desired probability
of detecting a misbehaving client. We pick random
tags seen by the server and associate random costs
with them. In our experiments, the server and the
clients are located on the same computer, so network
delays are not considered or evaluated. We believe that
the network delay should not be an overhead because
we can see that there are about two rounds trips per
round. Also, the number of tuples downloaded by a
client from the server should be small because the
client only considers tuples with nonzero tolling cost
from a certain region. We are concerned primarily with
measuring the cryptographic overhead.

6.2. Execution time

We implemented the commitment scheme from
scratch according to [21] and the random function
according to [22]. We used a key size of 128 bits.

60

S50+ B

40t .

Time (s)

10t .

0
0 1 4 5

2 3
Number of tags downloaded from the server ¢*
Figure 4: The running time of the road pricing protocol as a
function of the number of tuples downloaded from the server
during the reconciliation phase for one round.
140

100 B

80 g

Time (s)

60 4

40 1

20 R

0 . .
0 5 10 15
Number of rounds

Figure 5: The running time of the road pricing protocol as
a function of the number of rounds used in the protocol. The
number of tags the car uses is 2000 and the number of tuples
downloaded from the server is 10000.

Figures 5] show the performance results on a dual-
core processor with 2.0 GHz and 1 GByte of RAM.
Memory usage was rarely above 1%. The execution
time for a challenge bit of 0 was typically twice
as long as the one for a challenge type of 1. The
running time reported is the total of the registration and
reconciliation times for the server and client, averaged
over multiple runs. The graphs show an approximately
linear dependency of the execution time on the param-
eters chosen. This result makes sense because all the
steps of the protocol have linear complexity in these
parameters.

In our experiments, we generated a random tag on
average once every minute, using that tag for all the
tuples collected during that epoch. We choose that time
because the average speed of a car traveling in urban
and suburban areas in the US is about 25MPH. The

average number of miles per car per year in the US
is 12,000 miles, which means that each month sees
about 40 hours of driving per car. Picking a new tag
once per minute leads to 40 x 60 = 2400 tags per car
per month, the reconciliation period that makes sense
for our applications.

We propose that a car downloads 10,000 tuples
from the server for the tolling protocol (note that these
are only tuples with non-zero tolling cost). Assume
a person roughly drives through 50 toll roads per
month. Assuming no covert channels, the probability
of guessing which tuples belong to a car in this setting
is 1/(*%%"), which is very small. Even if some of the
traffic patterns of some drivers are known, the 50 tuples
of the driver would be mixed in other 10000. If the
protocol uses 10 rounds (corresponding to a detection
probability of 99.9%), the running time will be about
10-10 = 100 seconds, according to Figure E], which is
an acceptable latency for a task done once per month.

6.3. Enforcement effectiveness

We now analyze the effectiveness of the enforce-
ment scheme both analytically and using trace-driven
experiments. We would like to show that the time a
motorist can drive illegally and the number of required
spot checks are small. We will see that the probability
to detect a misbehaving driver grows exponentially in
the number of spot checks, making the number of spot
checks logarithmic in the desired detection probability.
This result is attractive from the dual perspectives of
implementation cost and privacy preservation.

6.3.1. Analytical evaluation. We perform a prob-
abilistic analysis of the time a motorist can drive
illegally as well as the number of spot checks required.
Let p be the probability that a driver undergoes a
spot check in a one-minute interval. Let m be the
number of minutes until a driver is detected with
a desired probability. The number of spot checks a
driver undergoes is a binomial random variable with
parameters (p, m), pm being its expected value.

The probability that a misbehaving driver undergoes
at least one spot check in m minutes is

Prispot check] =1 — (1 —p)™. (1)

Figure [6] shows the number of minutes a misbe-
having driver will be able to drive before it will be
observed with high probability. This time decreases
exponentially in the probability of a spot check in
each minute. Take the example of p = 1/100. In this
case, each car will be observed with 95% probability
after about 8 hours of driving, which means that

10

300

50

Number of minutes driven before observed
o
(=]

0 . . . ‘ .
0 0.02 0.04 0.06 0.08 0.1
Probability of a spot check in a minute

0.12

Figure 6: The time a motorist can drive illegally before it
undergoes a spot check with a probability 95% for various
values of p, the probability a driver undergoes a spot check
in a minute.

overwhelmingly likely the driver will not be able to
complete a driving period of a month without being
detected.

However, a practical application does not need to
ensure that the cars upload tuples on all the roads. In
the road pricing example, it is only necessary to ensure
that cars upload tuples on toll roads. Since the number
of toll points is usually only a fraction of all the roads,
a relatively small number of spot checks will increase
the probability of detection considerably. For example,
if we have a spot check at one tenth of the tolling roads,
after 29 minutes, each driver will undergo a spot check
with 95% probability. Furthermore, if the penalty for
failing the spot check test is high, a small number
of spot checks would suffice because even a small
probability of detecting each driver would eliminate the
incentive to cheat for many drivers. In order to ensure
compliance by rational agents, we simply need to
ensure that the penalty associated with noncompliance,
B, is such that B(Pr[penalization]) > «, where « is
the total toll that could possibly be accumulated over
the time period. Of course, evidence with randomized
law enforcement suggests strongly that independent of
3, Pr[penalization] needs to be appreciable (that is, a
driver must have confidence that they will be caught if
they persist in flouting the compliance requirements).

If some tuples are lost in transit from client to server,
the client can be given the choice of checking if all
her tuples are included in the server’s database and,
if not, to make amendments before the protocol for
the desired function begins. Only after the client has
confirmed the tuples, will the information gathered
from the spot check be verified for consistency with
the server’s database, after which the protocol for the

desired function will proceed.

Nevertheless, even if we allow for a threshold ¢
of tuples to be lost before penalizing a driver, the
probability of detection is still exponential in the
driving time as follows.

t
Pr[penalization] = 1-— Z <m> pPL—pm
i=o '
—(t—mp)?
2mp

> 1l-—e

where the last inequality uses Chernoff bounds.

6.3.2. Experimental evaluation. We now evaluate the
effectiveness of the enforcement scheme using a trace-
driven experimental evaluation. We obtained real traces
from the CarTel project testbed [13], containing the
paths of 27 limousine drivers mostly in the Boston
area, though extending to other MA, NH, RI, and
CT areas, during a two-month period (January and
February 2008). Each car drives many hours every
day. The cars carry GPS sensors that record location
and time. We match the locations against the Navteq
map database. The traces consist of tuples of the form
(car tag, segment tag, time) generated at periods with
a mean of 20 seconds. Each segment represents a
continuous piece of road between two intersections
(one road usually consists of many segments).

We model each spot check as being performed by
a police car standing by the side of a road segment.
The idea is to place such police cars on certain road
segments, to replay the traces, and verify how many
cars would be spot-checked, assuming these motorists
drive illegally.

We do not claim that our data is representative of
the driving patterns of most motorists. However, this
is the best real data traces we could obtain with driver,
time, and location information. We believe that such
data is still informative. One argument can be that a
limousine’s path is an aggregation of the paths of the
different individuals that took the vehicles in one day.

It is important to place spot checks non-
deterministically to prevent misbehaving drivers from
knowing the location of the spot checks and conse-
quently to behave correctly only in that area. One
solution is to examine traffic patterns and to determine
the most popular places. Then, spot checks would be
placed with higher probability on popular roads and
with lower probability on less popular roads.

Consider the following experiment: we use the traces
from January 2008 as a training phase used to deter-
mine the first 1% (= 300) popular sites. We choose an
increasing number of police cars to be placed randomly
at some of these sites. Then, in the testing phase we

11

-

Fraction of one—day paths observed
o © ©o o o o o o
) w B (4] (=] ~l @ w

o
.

. . .
0 5 10 15 20 25 30
Number of spot checks

0 L

Figure 7: The fraction of one-day paths observed out of a
total of 443 one-day paths as a function of the total number
of police cars placed.

examine how many drivers are observed in February.
We perform this experiment for an increasing number
of police cars and for each experiment we average the
results over fifty runs. In order to have a large sample,
we consider the paths of a driver in two different days
as the paths of two different drivers. This yields 443
different one-day traces.

Figure [7] illustrates the data obtained. We can see
that the fraction of paths observed increases very fast
at the beginning; this is explained by the exponential
behavior discussed in Section After 10 spot
checks have been placed, the fraction of paths observed
grows much slower. This is because we are only con-
sidering 1% of the segments traveled by the limousine
drivers. Some one-day paths may not be included at
all in this set of paths. Overall, we can see that this
algorithm requires a relatively small number of police
cars, namely 20, to observe ~ 90% of the 443 one-day
paths.

Our data unfortunately does not reflect the paths of
the entire population of a city and we could not find
such extensive trace data. A natural question to ask
would be how many police cars would be needed for
a large city. We speculate that this number is larger
than the number of drivers by a sublinear factor in
the size of the population; according to the discussion
in Section [6.3.1] the number of spot checks increases
logarithmically in the probability of detection of each
driver and thus the percentage of drivers observed.

7. Security analysis

In this section, we discuss the resistance of our
protocol above to a selection of common attacks on the
part of the driver, the intermediate routers (or monitor-

ing devices), and the server. As a first step, in order to
prevent malicious intermediaries from modifying the
tuples sent by a car to the server, we assume that the
tuples are encrypted with the public key of the server.

In concert with the “spot check” methodology, this
provides a remarkably powerful means of thwarting
common attacks by the driver, particularly when paired
with a legal penalty. One of the attractive features of
this technique is that it is very general. For instance, it
protects against cases when the driver does not upload
data or uploads tuples with tags other than the ones
obtained during registration.

The router can also claim it uploaded the tuples but
instead maliciously delete them. If this is a concern,
the server gives a chance to the driver to check which
tuples were received and upload any missing ones
before the payment protocol.

A more serious potential problem is that malicious
routers in collusion with the server may attempt to
track the tuples a car sends in the network in order to
infer the path of a car. This is a particular concern when
the driver wants to upload a large quantity of tuples at
once. There is extensive literature on anonymizers that
attempt to prevent this problem; for example Tor [25]
is a known example.

A final issue is the presence of covert channels in
the raw database, which the server can use to infer
information about the clients. For example, the server
can make obvious deductions upon receives a tuple
from a street where only Bob lives. As discussed in
Definition [T} our goal in this paper is simply to avoid
leaking any additional information beyond what the
server already knows.

8. Related work

Electronic tolling and public transit fare collection
was one of the early application areas for anonymous
electronic cash. Satisfactory solutions to certain classes
of road-pricing problems (e.g., cordon-based tolling)
can be developed using electronic cash algorithms
in concert with anonymous credentials [8[], [9], [18]].
There has been a substantial amount of work on
practical protocols for these problems that can run
efficiently on small devices (e.g., [4]). Physical attacks
based on the details of the implementation and the
associated bureaucratic structures remain a persistent
problem, however [10]. Unlike VPriv, the electronic
cash approach is significantly less suitable for more
fine-grained road pricing applications, and does not
apply at all to the broader class of vehicular location-
based services such as “pay-as-you-go” insurance,

12

automated traffic law enforcement, aggregate traffic
statistic collection.

There has been recent work on designing crypto-
graphic protocols for vehicular applications [2], [3],
[S]. These works also discuss using random vehicle
identifiers combined with secure multi-party compu-
tation or zero-knowledge proofs. However, these pa-
pers use multi-party computations and zero-knowledge
proofs as a black box and refer to the literature for
implemeting such protocols. Whereas the literature
provides general guidelines on building such protocols,
the resulting protocols are usually inefficient. Here,
we exploit the specifics of locational privacy to de-
sign an efficient solution. On the other hand, in the
social area of locational privacy there has been some
recent work on efficient protocols for the problem of
determining when friends are nearby [17]. A further
issue with all of these protocols is the handling of
noncompliance and physical attacks. The application
constraints in [17] mostly obviate these concerns, and
the traffic application papers either ignore the issue
or impose stringent requirements on the monitoring
infrastructure: notably, that the car’s tuples are trans-
mitted by trusted devices which can reliably know
their own location, and are equipped with the ability
to detect vehicles passing physically. We believe that
our “spot check” methodology for comprehensively
handling this problem is the proper solution, as it is
efficient, flexible, and compatible with a wide range of
implementation choices and problems.

Finally, there has been a good deal of work on the
general question of maintaining the anonynimity and
personal privacy of individuals who contribute to cen-
tralized databases, notably the work on k-anonynimity
[6] and differential privacy [7]. In this paper we have
not addressed these questions — our notion of loca-
tional privacy is independent of the issue of whether
or not the mere collection of anonymized traffic data
violates the privacy of drivers. We regard this as a
fundamental avenue for future work.

9. Conclusion

In this paper, we presented VPriv, a practical system
to protect a driver’s locational privacy while effi-
ciently supporting a range of location-based vehicular
services. VPriv combined cryptographic protocols to
protect the locational privacy of the driver with a spot
check methodology to ensure compliance. A central
focus of our work was to ensure that VPriv satisfies
pragmatic goals: we wanted VPriv to be efficient
enough to run on stock hardware, to be sufficiently
flexible so as to support a variety of location-based

applications, and to be implementable with many dif-
ferent physical setups. We verified through analytical
results and simulation using real vehicular data that
VPriv realized these goals. Furthermore, we showed
that the spot check methodology makes VPriv resistant
to a wide array of common physical attacks.

Acknowledgment

We thank the members of the CarTel project, espe-
cially Jakob Eriksson, Sejoon Lim, and Sam Madden
for helping collect and manage the vehicular traces
used in our evaluation, and Seth Riney of PlanetTran.
We thank Robin Chase and Roy Russell for helpful
discussions. This work was supported in part by the
National Science Foundation under grants 0205445,
0716273, and 0520032.

References

[1] PE Riley, The Tolls of Privacy: An Underestimated
Roadblock for Electronic Toll Collection Usage, Pro-
ceedings of the Third International Conference on Legal,
Security + Privacy Issues in IT, 2008.

[2] A.J. Blumberg and R. Chase, Congestion Pricing That
Respects “Driver Privacy”, Proc. ITSC 2005.

[3] A.J. Blumberg, L.S. Keeler, and a. shelat, Automated
traffic enforcement which respects “driver privacy”,
Proc. ITSC 2004.

[4] J. Camenisch, S. Hohenberger, and A. Lysyanskaya.
Balancing Accountability and Privacy Using E-Cash.
Security and Cryptography for Networks (SCN) 2006.

[5]1 S. Rass, S. Fuchs, M. Schaffer, and K. Kyamakya,
How To Protect Privacy In Floating Car Data Systems,
Proceedings of the fifth ACM international workshop on
VehiculAr Inter-NETworking, 2008.

[6] L. Sweeney, k-anonymity: a model for protecting pri-
vacy, International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, v.10 n.5, 2002.

[7] C. Dwork, Differential Privacy: A Survey of Results,
TAMC 2008: 1-19.

[8] D. Chaum, Security without identification: transaction
systems to make big brother obsolete, Communications
of the ACM 28(10), 1985.

[9] A. Lysyanskaya, R.L. Rivest, A. Sahai, and S. Wolf,
Pseudonym systems, Selected Areas in Cryptography
(Howard M. Heys and Carlisle M. Adams, eds.), Lecture
Notes in Computer Science, vol. 1758, Springer, 2000

[10] D. Goodin, Microscope-wielding boffins crack tube
smartcard, http://www.theregister.co.uk/2008/03/12/
mifare_classic_smartcard_crack/.

13

[11] O. Goldreich, S. Micali, and A. Wigderson, Proofs That
Yield Nothing but Their validity or All Languages in
NP Have Zero-knowledge Proof Systems, Journal of the
ACM, Volume 38, Issue 3, p.690-728, July 1991.

[12] S. Goldwasser, S. Micali, and C. Rackoff. The knowl-
edge complexity of interactive proof-systems, Proceed-
ings of 17th Symposium on the Theory of Computation,
Providence, Rhode Island. 1985.

[13] B. Hull, V. Bychkovsky, K. Chen, M. Goraczko, A.
Miu, E. Shih, Y. Zhang, H. Balakrishnan, and S. Madden,
CarTel: A Distributed Mobile Sensor Computing System,
http://cartel.csail.mit.edu/doku.php, in Proc. ACM Sen-
Sys, 2006.

[14] T. Litman, London Congestion Pricing, 2006.

[15] J. Miller, With Cameras on Every Corner, Your Ticket
Is in the Mail, New York Times, January 6, 2005.

[16] R. Salladay, DMV Chief Backs Tax by Mile, Los An-
geles Times, November 16, 2004.

[17] G.Zhong, I. Goldberg, and U. Hengartner, Louis, Lester
and Pierre: Three Protocols for Location Privacy, Tth
Privacy Enhancing Technologies Symposium, June 2007.

[18] E. Bangerter, J. Camenisch, and A. Lysyanskaya. A
Cryptographic Framework for the Controlled Release of
Certified Data, Security Protocols Workshop 2004.

[19] E-ZPass, http://www.ezpass.com/index.html,

[20] A. C. Yao, Protocols for Secure Computations (Ex-
tended Abstract), FOCS 1982: 160-164.

[21] T. P. Pedersen, Non-Interactive and Information-
Theoretic Secure Verifiable Secret Sharing, Springer-
Verlag, 1998.

[22] M. Naor and O. Reingold, Number-Theoretic Construc-
tions of Efficient Pseudo-Random Functions, Journal of
the ACM, Volume 51, Issue 2, p. 231-262, March 2004.

[23] Environmental Defense Fund, Pay-As-You-Drive
(PAYD) Auto Insurance, http://www.edf.org/article.cfm?
ContentID=2205.

[24] A. Yao, Protocols for secure communications. Proc.
23rd IEEE Symposium on Foundations of Computer
Science (FOCS ’82), p. 160-164.

[25] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The Second-Generation Onion Router, USENIX Sec.
Symp., USENIX Association 2004.

[26] U.S. Department of Transportation, National
Transportation Statistics, http://www.bts.gov/
publications/national_transportation_statistics/,

[27] G. Brassard, D. Chaum, and C. Crepeau, Minimum
Disclosure Proofs of Knowledge, Journal of Computer
and System Sciences, vol. 37, pp. 156-189, 1988.

http://www.theregister.co.uk/2008/03/12/mifare_classic_smartcard_crack/.
http://www.theregister.co.uk/2008/03/12/mifare_classic_smartcard_crack/.
http://cartel.csail.mit.edu/doku.php
http://www.ezpass.com/index.html
http://www.edf.org/article.cfm?ContentID=2205
http://www.edf.org/article.cfm?ContentID=2205
http://www.bts.gov/publications/national_transportation_statistics/
http://www.bts.gov/publications/national_transportation_statistics/

	Introduction
	Model
	Framework
	Design goals
	Threats

	Architecture
	Overview of cryptographic mechanisms

	Protocols
	Tolling protocol
	Speeding tickets
	Insurance premium computation

	Enforcement
	Evaluation
	Implementation
	Execution time
	Enforcement effectiveness
	Analytical evaluation
	Experimental evaluation

	Security analysis
	Related work
	Conclusion
	References

