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Abstract

In recent years, there has been a rapid evolution of location-based vehicular and mobile ser-
vices (e.g., electronic tolling, congestion pricing, traffic statistics, insurance pricing, location-
based social applications), which promise tremendous benefits to users. Unfortunately, most
such systems pose a serious threat to the location privacy of users because they track each
individual’s path.

A question that arises naturally is how can we preserve location privacy of users while
maintaining the benefits of such services? In this thesis, we address this question by tackling
two general problems that are the foundation of many of the aforementioned services. The
first problem is how to enable an untrusted server to compute agreed-upon functions on
a specific user’s path without learning the user’s path. We address this problem in a
system called VPriv. VPriv supports a variety of applications including electronic tolling,
congestion pricing, insurance premium computation, and some kinds of social applications.
The second problem is how to enable an untrusted server to compute aggregate statistics
over all users’ paths without learning any specific user’s path. We tackle this problem
in a system called PrivStats. With PrivStats, one can compute statistics such as traffic
statistics (e.g., average speed at an intersection, average delay on a road, number of drivers
at a location) or average ratings of a location in a social application. The computation
and threat models for VPriv and PrivStats are different, and required markedly different
solutions. For both systems, we provide formal definitions of location privacy and prove
that our protocols achieve these definitions. We implemented and evaluated both systems,
and concluded that they are practical on commodity hardware and smartphones.

Thesis Supervisor: Hari Balakrishnan
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The price tag for technology should not include
a loss of privacy.

- James Dempsey,
Scottish politician.

In recent years, there has been a rapid growth of location-based vehicular and mobile
services. These applications promise to improve driver experience, raise revenue for road
transportation, reduce traffic congestion, as well as provide new opportunities for social
networking. In particular, over the next few years, location-based vehicular services us-
ing a combination of in-car devices and roadside surveillance systems will likely become a
standard feature of the transportation infrastructure in many countries. Already, there is a
burgeoning array of applications of such technology, including electronic toll collection [32]
(to reduce bottlenecks at toll plazas), congestion pricing [43](to generate revenue for transit
improvements), automated traffic law enforcement, traffic statistics collection [38, 47, 42, 48]
(for traffic prediction and optimization), “pay-as-you-go” insurance [39] (to adjust premi-
ums based on driver behavior), and so on. Moreover, location-based social applications (of
which there are currently more than a hundred [59]) enable users to select restaurants and
stores that have good reviews [20] or play games in which users collect points [23].

Unfortunately, the tremendous promise of these services comes with serious threats to
the location privacy of the participants. Some current implementations of these services
involve pervasive tracking: clients upload their identifier together with location data. For
instance, in the E-ZPass system [32], drivers upload their account ID every time they pass
by a toll booth. As another example, in smartphone social applications, clients send their
identifier or username to a centralized server with location updates. As a consequence, a
centralized server belonging to these services can put together into a path all the location-
time pairs received from each user, thus violating privacy. Any service that maintains all
this information can easily be subject to abuse by people inside the organization running the
service, attackers who break in the system, or by government edicts or legal subpoenas [1].
Such privacy concerns also reduce the willingness of individuals to adopt such systems
(e.g., [58]).

In this thesis, we attempt to provide protocols that provably protect user location privacy
while maintaining the practical functionality and benefits of such services. The contributions

17



18 CHAPTER 1. INTRODUCTION

Figure 1-1: Overall diagram of the roles of VPriv and PrivStats exemplified using the
average speed case.

of this thesis are two systems, VPriv and PrivStats; they address two general problems
that form the basis of most applications mentioned:

• VPriv enables an untrusted server to compute an agreed-upon function on a user’s
path without being able to learn the user’s private path. Applications such as elec-
tronic tolling, congestion pricing, pay-as-you-go insurance, law enforcement, and some
kinds of social networking games fall in this category.

• PrivStats enables an untrusted server to compute aggregate statistics over the paths of
all the users, without being able to learn individual statistics or paths. Such statistics
can be average speed at an intersection, average delays on certain roads, the number
of drivers passing through an intersection (for congestion estimation purposes), or the
average rating in a social network of a place.

Each of the two systems provides novel contributions as compared to related work.
We overview these contributions in the following two subsections. Figure 1-1 provides an
example of the usage of VPriv and PrivStats.

The goals for both VPriv and PrivStats seem paradoxical: how can one perform com-
putation on data he does not know? The idea behind both systems is to combine the power
of modern cryptographic notions such as zero-knowledge protocols (explained in Chapter
3 along with other tools we used) with engineering effort to construct new protocols and
systems that are secure and practical.

We first designed VPriv to solve the problem of function computation on private paths.
While working on VPriv, we realized that the problem of private statistics computation
was also very important for many applications and was not properly addressed by VPriv
or related work; VPriv was not applicable to the threat model and goals of a statistics
computation application (as discussed in Section 2.3), so we required markedly different
protocols. Moreover, we realized that neither our model nor related work addressed an
important avenue for privacy leakage, side information, which we will describe below. This
is what led to our second research project, PrivStats. Besides addressing a different problem
than VPriv, PrivStats also enhances VPriv by providing stronger privacy definitions and
protocols that resist to general side information leaks.

VPriv and PrivStats can support a wide range of applications. At a high level, they
rely on a reasonably unrestrictive model: mobile nodes (smartphones, in-car devices, etc.)
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equipped with GPS or other position sensors (and some reasonable computing and storage
resources) periodically upload timestamped location coordinates and can communicate with
a server. We present the precise model in Chapter 4. As such, VPriv and PrivStats can be
applied to any applications that support this model. As discussed, a wide range of location-
based vehicular applications falls within this model; this class of applications seems to be
the most relevant for our systems and thus constitutes our running example. We designed
VPriv with mostly the vehicular applications in mind, whereas we designed PrivStats to be
more general. Nevertheless, certain social applications and some mobile systems can benefit
from both systems as we explain in Chapter 7.

Code and more information about these projects can be found on the project’s website,
http://nms.csail.mit.edu/projects/privacy/.

1.1 VPriv Overview

VPriv is a practical system to protect a user’s location privacy while efficiently supporting
a range of location-based vehicular services. VPriv supports applications that compute
functions over the paths traveled by individual clients. A path is simply a sequence of
points, where each point has a random time-varying identifier, a timestamp, and a position.
Usage-based tolling, delay and speed estimation, as well as pay-as-you-go calculations can
all be computed given the paths of each driver.

VPriv has two components. The first component is an efficient protocol for computing
sum of costs functions (tolling, speed or delay estimation) that protects the location privacy
of the clients. This protocol, which belongs to the general family of secure multi-party
computations, guarantees that a joint computation between a server and a client can proceed
correctly without revealing the private data of the parties involved. The result is that
each driver is guaranteed that no other information about his paths can be inferred from
the computation, other than what is revealed by the result of the computed function.
The idea of using multi-party secure computation in the vehicular setting is inspired from
previous work [7, 8, 57]; however, these papers use multi-party computations as a black
box, relying on general reductions from the literature. Unfortunately, these are extremely
slow and complex, at least three orders of magnitude slower than our implementation in
our experiments (see Section 5.5.2), which makes them impractical.

Our main contribution here is the first practically efficient design, software implemen-
tation, and experimental evaluation of secure multi-party protocols for functions computed
over driving paths. Our protocols exploit the specificity of cost functions over path time-
location tuples: the path functions we are interested in consist of sums of costs of tuples,
and we use homomorphic encryption [53] to allow the server to compute such sums using
encrypted data.

The second component of VPriv addresses a significant concern: making VPriv robust
to physical attacks. Although we can prove security against “cryptographic attacks” using
the mathematical properties of our protocols, it is very difficult to protect against physical
attacks in this fashion (e.g., drivers turning off their devices). However, one of the interesting
aspects of the problem is that the embedding in a social and physical context provides a
framework for discovering misbehavior. We propose and analyze a method using sporadic
random spot-checks of vehicle locations that are linked to the actual identity of the driver.

http://nms.csail.mit.edu/projects/privacy/
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This scheme is general and independent of the function to be computed because it checks
that the argument (driver paths) to the secure two-party protocol is highly likely to be
correct. Our analysis shows that this goal can be achieved with a small number of such
checks, making this enforcement method inexpensive and minimally invasive.

We have implemented VPriv in C++ (and also Javascript for a browser-based demon-
stration). Our measurements show that the protocol runs in 100 seconds per car on a
standard computer. We estimate that 30 cores of 2.4GHz speed, connected over a 100
Megabits/s link, can easily handle 1 million cars. Thus, the infrastructure required to
handle an entire state’s vehicular population is relatively modest.

1.2 PrivStats Overview

PrivStats aims to preserve privacy while allowing an aggregator to compute aggregate statis-
tics over the paths of clients. An aggregate statistics is any function that can be computed
on all the values received from participating clients. Our motivating examples are traffic
applications which collect GPS position and/or speed samples along vehicle trajectories to
determine current traffic delays (average speed, average delay) on road segments. Between
nascent government efforts (e.g., the DOT “Intellidrive” initiative [51]), research efforts
(e.g., CarTel [38], MobileMillenium [47], CommuteAtlanta [42]), and commercial systems,
there is now a diverse array of systems that aim to provide such services.

A first attempt at a solution is to anonymize the time-location uploads by clients by
removing any client identifier, leaving only the time and the location information. However,
this solution has a number of serious deficiencies, including: location privacy violations via
inference, lack of resilience to side information, and lack of accountability. It is possible to
recover a surprising amount of information about the individuals paths of specific mobile
clients from such time-location information [40, 34, 55] using simple inference algorithms.
Side information (any out-of-bound information available at the server about a client),
denoted SI, is problematic in many scenarios; as a simple example, if the aggregator knows
that Alice is the only person living on a street, then speed updates on that street can easily
be linked to Alice. In the presence of anonymous uploads, clients can now upload a high
volume of fake data to bias the statistics in a desired direction.

In fact, any solution that has strong anonymity guarantees would seem to have even
worse problems with accountability. Nonetheless, it turns out to be possible to balance
accountability and location privacy. We designed, implemented, and evaluated PrivStats,
the first system for computing aggregate statistics in the context of mobile, location-based
applications that simultaneously achieves quantifiable accountability and provable protec-
tion of location privacy. In addition, PrivStats is specifically designed to work in settings
where no compliance assumptions about the participants can be made.

PrivStats can be used to provide either plausible deniability, using our plausible deni-
ability protocol (denoted PD), or strict location privacy, using our strict location privacy
protocol (denoted SLP). PD does not have the strong security properties of SLP, but it
is a very simple protocol; SLP provides strong privacy guarantees, but it has higher (yet
reasonable) overhead.

Both protocols support a wide range of statistics. PD supports virtually any statistics
that can be computed on the values uploaded by clients, while SLP supports most statis-



1.2. PRIVSTATS OVERVIEW 21

tics needed in practice including count, average, sum, product, standard deviation, and
conditional aggregations of all of these. Section 6.3 characterizes the statistics supported.

PrivStats makes two central contributions:

1. Aggregate statistics protocols allowing provable guarantees of location privacy: Unlike
previous efforts, we treat the presence of side information as a first-order problem, and
provide the first definition of what it means to have location privacy in the presence of
any general side information. For example, previous work [55, 35, 33, 24] suggests that
clients should not upload data in sensitive or low-density areas or offers other heuristics,
but provides no provable security guarantees and considers just specific side information.
In contrast, we present two protocols (PD and SLP) that provide successively stronger
privacy guarantees. With PD, clients can deny that they went on a certain path in
a plausible way: with high probability, no one can prove that they actually followed
a certain path unless the clients were physically observed. SLP achieves our location
privacy definition: the aggregator gains no more information about the clients other than
that provided by the aggregate result in the presence of any general SI. SLP requires the
existence of a partially trusted lightweight intermediary (the auxiliary): even if malicious,
it cannot change the statistics result; at worst, we do not have strict location privacy,
but we fall back to plausible deniability. We will argue in section 6.2 that it is unlikely
to be possible to provide strict location privacy without an auxiliary in our model.

2. A protocol for accountability: We describe in section 6.4 a solution to the problem of
protecting against attempts by malicious participants to significantly bias the statistics
by repeated false uploads. Our protocol allows the aggregator to enforce a quota on
how much each client can upload at each path segment without knowing the identities
of the clients and without using a trusted party. We introduce a novel cryptographic
protocol that provides a decentralized solution to limited anonymous upload, based on an
efficient zero-knowledge proof of knowledge that we design from scratch. This advance is
significant because previous work either required clients to upload their id with the data
[35], required impractical trusted parties [35] or simply offered no accountability [55] at
all.

To validate our protocol and system design, we implemented the protocols and measured
the performance of PrivStats. For the client, we used commodity hardware comparable to
smartphone platforms. Both the upload protocols and the accountability protocols are fast,
taking about 0.3 seconds to run. We also show that bandwidth usage and storage are
reasonable and estimate that one commodity aggregator node could support the population
of a large city. We conclude that PrivStats is easily practical with today’s commodity
smartphones and server hardware.
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Chapter 2

Related Work

There has been a variety of related work in the area of protecting privacy in location-based
mobile systems (vehicular or social). To illustrate clearly the contribution of each of our
two systems, we present the related work individually for each and then compare them to
each other.

2.1 VPriv’s related work

VPriv is inspired by recent work on designing cryptographic protocols for vehicular ap-
plications [7, 8, 57]. These papers also discuss using random vehicle identifiers combined
with secure multi-party computation or zero-knowledge proofs to perform various vehicular
computations. However, these papers employ secure multi-party computation as a black
box, relying on general results from the literature for reducing arbitrary functions to secure
protocols [63]. They do not provide actual protocols for the problems in question, and use
the general result [26] that one can construct a secure multi-party protocol for any feasible
function. However, if one follows the constructions from the literature, such protocols end
up being very complex and slow. The state-of-the-art “general purpose” compiler for secure
function evaluation, Fairplay [45], produces implementations which run more than three or-
ders of magnitude slower than the VPriv protocol, and scale very poorly with the number
of participating drivers (see Section 5.5.2). Given present hardware constraints, general
purpose solutions for implementing secure computations are simply not viable for this kind
of application. A key contribution of VPriv is to present a protocol for the specific class of
cost functions on time-location pairs, which maintains privacy and is efficient enough to be
run on practical devices and suitable for deployment.

Secure multi-party computation has also been used for maintaining privacy in location-
based social applications [64]. This work solves the problem of determining if your friends
are nearby without learning more information about their path. These protocols have been
designed for the specific friend-finding problem, so they are practical. However, they are not
applicable to the wider range of vehicular applications we are considering or, for example,
to social games in which users collect points based on their path [23].

Electronic tolling and public transit fare collection were some of the early application
areas for anonymous electronic cash. Satisfactory solutions to certain classes of road-pricing
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problems (e.g., cordon-based tolling) can be developed using electronic cash algorithms in
concert with anonymous credentials [15, 44, 4]. There has been a substantial amount of work
on practical protocols for these problems so that they run efficiently on small devices (e.g.,
[12]). However, unlike VPriv, the electronic cash approach is significantly less suitable for
more sophisticated road pricing applications, and does not apply at all to the broader class of
vehicular location-based services such as “pay-as-you-go” insurance, automated traffic law
enforcement, and more complicated congestion pricing. Moreover, physical attacks based
on the details of the implementation and the associated bureaucratic structures remain
a persistent problem [31]. We explicitly attempt to address such attacks in VPriv. Our
“spot check” methodology provides a novel approach to validating user participation in the
cryptographic protocols, and we prove its efficiency empirically in Section 5.5.

There has also been a great deal of related work on protecting location privacy and
anonymity while collecting vehicular data (e.g., traffic flow data) [36, 40, 34]. The focus
of this work is different from ours, although it can be used in conjunction with our work.
These papers mostly attempt to compute traffic statistics while preserving privacy. They
also analyze potential privacy violations associated with some specific side information at
the server. VPriv does not prevent against side information leakage; it just ensures that
the function computation does not leak any additional information besides what the server
can gain from an anonymized database. These works conclude that it is possible to infer to
what driver some GPS traces belong in regions of low density. In fact, PrivStats’ goals are
more similar to the goals of such work, and we present a comparison in the next subsection.

Using spatial analogues of the notion of k-anonymity [61], some work focused on using
a trusted server to spatially and temporally distort locational services [33, 24]. In addition,
there has been a good deal of work on using a trusted server to distort or degrade data before
releasing it. An interesting class of solutions to these problems were presented in the papers
[37, 35], involving “cloaking” the data using spatial and temporal subsampling techniques.
In addition, these papers [35, 37] developed tools to quantify the degree of mixing of cars
on a road needed to assure anonymity (notably the “time to confusion” metric). However,
these solutions treat a different problem than VPriv, because most of them assume a trusted
server and a non-adversarial setting, in which the user and server do not deviate from the
protocol, unlike in the case of tolling or law enforcement. Furthermore, for many of the
protocols we are interested in, it is not always possible to provide time-location tuples for
only a subset of the space. Nonetheless, the work in these papers complements our protocol
nicely. Since VPriv does produce an anonymized location database, the analysis in [35]
about designing “path upload” points that adequately preserve privacy provides a method
for placing tolling regions and “spot checks” which do not violate the location privacy of
users. See Section 5.6 for further discussion of this point.

2.2 PrivStats’ Related Work

Because the problem of protecting location privacy when computing aggregate statistics in
mobile systems is a fundamental issue, there has been a substantial amount of prior work
on this problem. As mentioned, early work focused on using a trusted server to spatially
and temporarily alter location updates from clients [33, 24] or remove client identifier [35].
Some other approaches modify the data from the clients before releasing it [37].
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One difficulty with these solutions is their reliance on fully trusted servers or intermedi-
aries between the drivers and the aggregator. If these get compromised, so do the paths of
the drivers (because the intermediaries have access to driver identifiers). Another problem
is that simple inference algorithms can be used to recover detailed path information even
from an anonymized database consisting of (time, location) pairs. Furthermore, such works
either do not provide guarantees in the presence of side information attacks or they provide
guarantees when treating only a subset of side information types and/or when assuming
trusted parties. For example, in [37, 35], a trusted party aggregates the upload of each
driver on a piece of road with the uploads of other k − 1 drivers close in time and location
to provide k-anonymity. While one individual tuple has k-anonymity, there is no proof that
the driver is k-anonymous among other drivers over longer periods or that the driver’s path
is k-anonymous among other paths. The privacy guarantees are essentially heuristic and
empirical in nature.

Our plausible deniability protocol provides a useful security property when there are no
trusted parties. Even with trusted parties, none of the preceding work achieves the strong
level of privacy we achieve in our strict privacy protocol. Moreover, the trusted party from
the SLP protocol is just partially trusted: even when these parties are malicious, they
cannot change the result of the statistics to be computed and the privacy will default to
plausible deniability. In previous work, if one trusted party becomes malicious, the server
will know mappings of client identifier to location and time (which essentially gives away a
client’s path) or will compute incorrect statistics; in our SLP protocol, in the worst case,
the server will see only the anonymized database (with plausible deniability, in addition).

Moreover, accountability has previously either been ignored (allowing drivers to bias
significantly the statistics), handled by having tuples contain driver identifiers (jeopardizing
privacy), or relying on fully trusted parties. For instance, in [35], users upload tuples
containing their unique ids to a trusted party that checks if clients have uploaded too
much.

Work on e-cash [13] is related to our accountability protocol (Section 6.4): one might
envision giving each client a number of e-coins that they can spend for every road. This
approach is used with success in spam control applications [3, 62]. However, it is not
practical in our setting: the coins must be tied to the particular statistics, location, and
interval, which requires a prohibitively large number of coins. Moreover, e-cash adds a
lot of complexity and overhead for identifying double-spenders, which is not needed in our
setting.

Finally, we remark as with VPriv, that our approach is complementary to the work on
differential privacy [18]. Such work can guide PrivStats in deciding what aggregate statistics
should not be known to the aggregator (e.g., statistics in low-density areas).

2.3 VPriv versus PrivStats

VPriv and PrivStats address different problems in location privacy: how to compute func-
tions over a particular individual’s path versus how to compute privately aggregate statistics
over all the clients. VPriv associates the result of a function to a client’s id, whereas PrivS-
tats keeps each client’s contribution to the statistics anonymous from the aggregator (in
addition to the client’s path). In VPriv, clients can upload as many tuples as they wish,



26 CHAPTER 2. RELATED WORK

but they are not allowed to not upload; in PrivStats, clients can decide not to upload, but
they must be prevented from uploading too much. Because of these sets of different goals,
VPriv did not seem applicable to the aggregate statistics problem in PrivStats; PrivStats
necessitated markedly different cryptographic protocol designs.

Besides solving a different problem, PrivStats also furthers VPriv by providing solutions
to problems that were open in VPriv (and related work) such as side information. As
discussed, PrivStats provides a definition of privacy for general side information attacks
and a protocol that delivers to this definition (as well as the plausible deniability protocol
which provides a useful security property). VPriv can also be adapted to benefit from our
protocols against side information attacks.



Chapter 3

Cryptographic Background

The work in this thesis employs various cryptographic concepts and tools. Unless otherwise
noted, the notation and formal definitions in this section are based on [25], which is also
an excellent source of further details and related notions. In this thesis, we make standard
cryptographic assumptions that have been widely used in the literature (e.g., the strong-
RSA assumption).

3.1 Basics

Encryption and signature schemes lie at the foundations of our protocols.

3.1.1 Encryption Schemes

Encryption allows private information exchange between two parties, a sender (called Alice)
and a receiver (called Bob). The channel of communication between these two parties is
unreliable and may allow a malicious adversary to eavesdrop messages exchanged. Encrypt-
ing messages sent over this channel prevents the adversary from learning their content. The
following is a formal definition:

Definition 1 (Encryption Scheme). An encryption scheme is a triple, (G, E, D), of prob-
abilistic polynomial time algorithms satisfying the following two conditions:

1. (Key generation.) On input 1n, algorithm G (called the key-generator), outputs a pair
of bit strings.

2. (Encryption/Decryption.) For every pair (e, d) in the range of G(1n), and for every
α ∈ {0, 1}∗, algorithms E(encryption) and D(decryption) satisfy Pr[D(d,E(e, α)) =
α] = 1, where the probability is taken over the internal coin tosses of algorithms E
and D.

The standard desired security property of encryption schemes is semantic security (see [25]
for more details).

A private-key encryption scheme (symmetric encryption) is an encryption scheme
in which the sender and the receiver previously agreed upon a secret key, which they use
for encryption and decryption.

27
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A public-key encryption scheme (asymmetric encryption) is an encryption scheme
in which the encryption key differs from the decryption key. Moreover, the encryption
key is publicly known to everyone and it is infeasible to find the decryption key from the
encryption key.

3.1.2 Signature Schemes

A signature scheme is a method for verifying that the data is authentic; that is, it comes
from an approved party. Alice can sign any messages she sends to Bob and Bob can verify
whether a message he receives is indeed from Alice by verifying the signature.

Definition 2 (Signature Scheme). A signature scheme is a triple (G, S, V ) of probabilistic
polynomial-time algorithms satisfying the following two conditions:

1. On input 1n, algorithm G (called the key-generator) outputs a pair of bit strings.

2. For every pair (s, v) in the range of G(1n), and for every α ∈ {0, 1}∗, algorithms S
(signing) and V (verification) satisfy Pr[V (v, α, S(s, α)) = 1] = 1, where the probability
is taken over the internal coin tosses of S and V .

The standard definitions of security for signature schemes are existential unforgeability
under chosen message attack, also detailed in [25].

3.2 Cryptographic Tools

This thesis makes use of a variety of cryptographic tools, each coming with some useful
security guarantees and a model of functionality.

3.2.1 Commitment Scheme

A commitment scheme [11] consists of two algorithms, Commit and Reveal(or decom-
mit). Assume that Alice wants to commit to a value v to Bob. In general terms, Alice
wants to provide a ciphertext to Bob from which he cannot gain any information about v.
However, Alice needs to be bound to the value of v (she needs to have “committed”). This
means that, later when she wants or has to reveal v to Bob, she cannot provide a different
value, v′ 6= v, which convinces Bob that was the value committed (that is, that it corre-
sponds to the ciphertext provided by Alice). Specifically, to commit to v, Alice computes
Commit(v)→ (cv, dv), where cv is the resulting ciphertext and dv is a decommitment key;
cv and dv have the following properties:

• Bob cannot gain any information about v from cv.

• Alice cannot provide v′ 6= v such that Commit(v′) → (cv, d′), for some d′, subject to
standard computational hardness assumptions.

We say that Alice reveals v to Bob if she provides v and dv, the decommitment value, to
Bob, who already has cv.
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In our protocol, Bob (the server in VPriv or aggregator in PrivStats) will store all
commitments he receives from Alice (the client), and Alice will store all decommitment
keys. Therefore, we use the notation c(v) and d(v) to mean the commitment corresponding
to v and the decommitment corresponding to the commitment to v.

3.2.2 Pseudorandom functions

A pseudorandom function family [49] is a collection of functions {fk} : D → R with domain
D and range R, indexed by k. If one chooses k at random, for all v ∈ D, fk(v) can be
computed efficiently (that is, in polynomial time) and fk is indistinguishable from a function
with random output for each input (under standard computational hardness assumptions).

3.2.3 Homomorphic encryption

Homomorphic encryption is an encryption scheme in which performing an operation on the
encryptions of two values (v1 and v2) results in an encryption of values combined with a
second operation. For example, RSA [2] is a multiplicative homomorphic encryption scheme
because multiplying two ciphertexts results in a ciphertext of the underlying plaintexts
multiplied.

In VPriv, we use a homomorphic commitment scheme (such as the one introduced
by Pedersen [53]). Pedersen’s scheme has the property that c(v) · c(v′) = c(v + v′) and
d(v + v′) = d(v) · d(v′). If Alice committed to v and v′ and wants to reveal v + v′ alone
to Bob, she will give him v + v′ accompanied by d(v + v′). Bob can compute c(v + v′) by
multiplying the commitments to v and v′ he received from Alice.

3.2.4 Blind signature scheme

In PrivStats, we use a blind signature scheme: it is a signature scheme in which the signer
manages to sign a message without seeing the message signed or the signature produced.
Nevertheless, the signer can control how many signatures he produces for a certain client.

3.3 Zero-knowledge notions

3.3.1 Secure multi-party computation

A secure multi-party computation [63] is a protocol in which several parties holding private
data interact to compute a function on everyone’s private data. At the end of the protocol,
if at least a majority of the parties were honest, the correct result is obtained. Moreover,
none of the participants can learn the private information of any other party beyond what
can be inferred from the result of the function.

3.3.2 Zero-knowledge proofs and proofs of knowledge

A zero-knowledge proof [29], at a high level, is a proof that involves proving the truth of a
statement without revealing any information other than the validity of the statement.
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Proofs of knowledge [30], [5], [60] are proofs by which a machine can prove that it knows
some value that satisfies a certain relation. For example, Schnorr [60] provided a simple and
efficient algorithm for proving possession of a discrete log. If we add the zero-knowledge
[30] property, we also have the guarantee that no information about the value in question
is leaked.

For a formal definition of zero-knowledge proofs of knowledge, which we will use in our
proofs in the appendix, we use the definition in [46].

Consider a predicate Q : {0, 1}∗ × {0, 1}∗ → {false, true}. For a given bit-string z, a
prover claims to know a bit-string x with Q(z, x) = true.

Definition 3. An interactive protocol (Prover, Verifier) is a zero-knowledge proof of knowl-
edge for predicate Q if the following holds:

• Completeness: Verifier accepts when Prover has as input an s with Q(z, x) = true.

• Proof of knowledge: There is an efficient program K, called knowledge extractor,
with the following property. For any (possibly dishonest) prover P̂ with non-negligible
probability of making Verifier accept, K can interact with P̂ and outputs (with over-
whelming probability) an x such that Q(z, x) = true.

• Zero-knowledge: For every efficient verifier V̂ , there exists a simulator S, such that
the output of S is indistinguishable from a transcript of the protocol execution between
Prover and V̂ .

PrivStats uses the blind signature scheme from [14], which is accompanied by a proof
of knowledge of a signature for a value that is hidden inside a given commitment.

3.3.3 Discussion

Secure multi-party computation and zero knowledge proofs of knowledge are notions of
security and not constructions. One can design protocols for various problems and then
prove that they satisfy these security definitions. Goldreich et Al. showed in two seminal
papers ([27], [26]) that any language in NP has a zero-knowledge proof and that any game
can be transformed in a secure multi-party computation if a majority of the parties are
honest. Intuitively, this means that we can come up with secure multi-party computation
protocols and zero-knowledge proofs for most protocols encountered in practice. Moreover,
these papers as well as others in the literature provide general constructions for any feasible
problem based on reductions to certain problems with known protocols. However, using such
constructions in practice results in prohibitively slow and complex protocols. In practice,
one should design such secure protocols by exploiting the specifics of the problem at hand
and then prove it has the desired zero-knowledge properties. This can result in very efficient
protocols; in particular, VPriv relies on such a zero-knowledge proof and is three orders of
magnitude faster than the general reductions, as we will explain in Chapter 5.5.2.



Chapter 4

Model

In this section, we describe the framework underlying our schemes, our goals, and the threat
models we consider.

4.1 General Model

Both VPriv and PrivStats rely on a similar and general framework. There are two types
of participants: many clients and a logical server. Clients can be drivers in location-based
vehicular services, peers in a social network, or any other participants in a location-based
service. The server is an entity interested in computing a function or some statistics on the
drivers’ paths. The model requirements are:

• Clients can upload time-location information to a remote server using some portable
device

• Clients have some minimal computation and storage abilities

• Clients can communicate with a server

• Information can be taken in and out of the device

This framework is fairly general and captures a broad class of vehicular and social
location-based services. We elaborate on what specific devices clients can use in these
systems in the next subsections.

A first step for privacy that both systems implement is that clients do not upload their
identifiers at the server when uploading data.

In both systems, the basic threat model is similar. The server is trusted to perform the
computation correctly, but he is not trusted with the privacy of the clients: it would like to
learn clients’ paths and may leak such data. The clients may try to bias the computation
or statistics result in their favor.

Since VPriv and PrivStats have different computation goals, they have different instan-
tiations of this more general model.
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4.1.1 VPriv’s Framework

In VPriv, clients are typically drivers. Drivers operate cars, cars are equipped with transpon-
ders or smartphones that transmit information to the server, and drivers also run client
software which enacts the cryptographic protocol on their behalf.

The server computes some function f (e.g., tolling, law violation, insurance calculations)
for any given car; f takes the path of the car generated during an interaction interval as its
argument. The interaction interval is the time range over which the server computes the
function. To compute f , the server must collect the set of points corresponding to the path
traveled by the car during the desired interaction interval. Each point is a tuple with three
fields: 〈tag, time, location〉.

While driving, each car’s transponder generates a collection of such tuples and sends
them to the server. The server computes f using the set of 〈time,location〉 pairs. If
location privacy were not a concern, the tag could uniquely identify the car. In such a
case, the server could aggregate all the tuples having the same tag and know the path of
the car. Thus, in our case, these tags will be chosen at random so that they cannot be
connected to an individual car. However, the driver’s client application will give the server
a cryptographic commitment to these tags (described in Sections 3.2.1, 5.2): in our protocol,
this commitment binds the driver to the particular tags and hence the result of f (e.g., the
tolling cost) without revealing the tags to the server.

We are interested in developing protocols that preserve location privacy for three im-
portant functions:

1. Usage-based tolls: The server assesses a path-dependent toll on the car. The toll is
some function of the time and positions of the car, known to both the driver and
server. For example, we might have a toll that sets a particular price per mile on any
given road, changing that price with time of day. We call this form of tolling a path
toll; VPriv also supports a point toll, where a toll is charged whenever a vehicle goes
past a certain point.

2. Automated speeding tickets: The server detects violations of speed restrictions: for
instance, did the car ever travel at greater than 65 MPH? More generally, the server
may wish to detect violations of speed limits which vary across roads and are time-
dependent.

3. “Pay-as-you-go” insurance premiums: The server computes a “safety score” based on
the car’s path to determine insurance premiums. Specifically, the server computes
some function of the time, positions, and speed of the car. For example, we might
wish to assess higher premiums on cars that persistently drive close to the speed limit,
or are operated predominantly late at night.

These applications can be treated as essentially similar examples of the basic problem
of computing a localized cost function of the car’s path represented as points. By localized
we mean that the function can be decomposed as a sum of costs associated to a specific
point or small number of specific points that are close together in space-time. In fact, our
general framework can be applied to any function over path tuples because of the general
result that every polynomially computable function has a secure multi-party protocol [29,
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63, 27, 26]. However, as discussed in Section 5.5.2, these general results lead to impractical
implementations: instead, we devise efficient protocols by exploiting the specific form of the
cost functions.

In our model, each car’s transponder (transponder may be tampered with) obtains the
point tuples as it drives and delivers them to the server. These tasks can be performed in
several ways, depending on the infrastructure and resources available. For example, tuples
can be generated as follows:
• A GPS device provides location and time, and the car’s transponder prepares the

tuples.

• Roadside devices sense passing cars, communicate with a car’s transponder to receive
a tag, and create a tuple by attaching time information and the fixed location of the
roadside device.

Each car generates tuples periodically; depending on the specific application, either at
random intervals (e.g., roughly every 30 seconds) or potentially based on location as well,
for example at each intersection if the car has GPS capability. The tuples can be delivered
rapidly (e.g., via roadside devices, the cellular network, or available WiFi [21]) or they can
be batched until the end of the day or of the month. Section 5.6 describes how to avoid
leaking private information when transmitting such packets to the server.

Our protocol is independent of the way these tuples are created and sent to the server,
requiring only that tuples need to reach the server before the function computation. This
abstract model is flexible and covers many practical systems, including in-car device sys-
tems (such as CarTel [38]), toll transponder systems such as E-ZPass [32], and roadside
surveillance systems.

4.1.2 Threat model

Many of the applications of VPriv are adversarial, in that both the driver and the operator
of the server may have strong financial incentives to misbehave. VPriv is designed to resist
five types of attacks:

1. The driver attempts to cheat by using a modified client application during the function
computation protocol to change the result of the function.

2. The driver attempts to cheat physically, by having the car’s transponder upload in-
correct tuples (providing incorrect inputs to the function computation protocol):

(a) The driver turns off or selectively disables the in-car transponder, so the car
uploads no data or only a subset of the actual path data.

(b) The transponder uploads synthetic data.

(c) The transponder eavesdrops on another car and attempts to masquerade as that
car.

3. The server guesses the path of the car from the uploaded tuples.

4. The server attempts to cheat during the function computation protocol to change the
result of the function or obtain information about the path of the car.
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5. Some intermediate router synthesizes false packets or systematically changes packets
between the car’s transponder and the server.

All these attacks are counteracted in our scheme as discussed in Section 5.6. Note,
however, that in the main discussion of the protocol, for ease of exposition, we treat the
server as a passive adversary; we assume that the server attempts to violate the privacy of
the driver by inferring private data but correctly implements the protocol (e.g. does not
claim the driver failed a verification test, when she did not). We believe this is a reasonable
assumption since the server is likely to belong to an organization (e.g., the government or
an insurance company) which is unlikely to engage in active attacks. However, as we discuss
in Section 5.6, the protocol can be made resilient to a fully malicious server as well with
very few modifications.

4.1.3 Design goals

We have the following goals for the protocol between the driver and the server, which allows
the server to compute a function over a private path.

Correctness. For the car C with path PC , the server computes the correct value of
f(PC).

Location privacy. We formalize our notion of location privacy as follows:

Definition 4. (Location privacy) Let

• S denote the server’s database consisting of 〈tag,time,location〉 tuples.

• S′ denote the database generated from S by removing the tag associated to each tuple:
for every tuple 〈tag, location, time〉 ∈ S, there is a tuple 〈location, time〉 ∈ S′.

• C be an arbitrary car.

• V denote all the information available to the server in VPriv (“the server’s view”).
This comprises the information sent by C to the server while executing the protocol
(including the result of the function computation) and any other information owned
or computed by the server during the computation of f(path of C), (which includes
S).

• V ′ denote all the information contained in S′, the result of applying f on C, and any
other side channels present in the raw database S′.

The computation of f(path of C) preserves the locational privacy of C if the server’s in-
formation about C’s tuples is insignificantly larger in V than in V ′.

Here the “insignificant amount” refers to an amount of information that cannot be
exploited by a computationally bounded machine. For instance, the encryption of a text
typically offers some insignificant amount of information about the text. This notion can
be formalized using simulators, as is standard for this kind of cryptographic guarantee.

Informally, this definition says that the privacy guarantees of VPriv are the same as
those of a system in which the server stores only tag-free path points 〈time,location〉
without any identifying information and receives (from an oracle) the result of the function
(without running any protocol). Note that this definition means that any side channels
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present in the raw data of S itself will remain in our protocols; for instance, if one somehow
knows that only a single car drives on certain roads at a particular time, then that car’s
privacy will be violated. See Section 5.6 for further discussion of this issue.

Efficiency. The protocol must be sufficiently efficient so as to be feasible to run on in-
expensive in-car devices. This goal can be hard to achieve; modern cryptographic protocols
can be computationally intensive.

Note that we do not aim to hide the result of the function; rather, we want to compute
this result without revealing private information. In some cases, such as tolling, the result
may reveal information about the path of the driver. For example, a certain toll cost may
be possible only by a combination of certain items. However, if the toll period is large
enough, there may be multiple combinations of tolls that add to the result. Also, finding
such a combination is equivalent to the subset-sum problem, which is NP-complete.

4.2 PrivStats’ Framework

4.2.1 Setting

In our model, we have two parties. The clients are mobile devices with wireless connectivity;
the aggregator is an entity interested in computing certain aggregate statistics over the
clients.

In our SLP protocol, we will need a third party, the auxiliary. This is a potentially dis-
tributed entity which receives uploads from the clients and delivers them to the aggregator.

The client must be able to communicate with the aggregator and the auxiliaries over its
wireless network. The network connectivity could be continuous or intermittent. We do not
make any assumptions about the client, and the aggregator cannot assume any knowledge
of what software is running on the client. The aggregator also has no recourse to ensure
participation in any portion of the protocol.

The aggregator is interested in computing some aggregate statistical function period-
ically from the uploaded data. These statistics are calculated for various location-time
combinations known in advance (e.g. published in an online database); for example, the
average speed on road segment S (between blocks S1 and S2) for time in the range T1 =
4.00 pm to T2 = 4.15 pm. We use the term pointstamp to refer to the combination of
location and time slot; the aggregator can compute one or more statistical functions for
any given pointstamp. We assume that the clients know a priori from the aggregator which
statistical functions will be computed at any given pointstamp. The aggregator may choose
to compute the function in “real time”, or may choose to do so at a later point in time.
Tuples that have been uploaded do not have to be discarded by the aggregator to provide
location privacy even when an audit of the uploaded data is conducted. To upload tuples
to the aggregator, we assume that clients use an anonymizing network such as [17], a proxy
aggregator, or any other method that hides IP address information.

A client periodically logs tuples of the following form:

〈attribute, value, pointstamp, token〉 (4.1)

The attribute refers to the type of data (aggregation function) whose value is being logged,
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such as “speed”, “acceleration”, etc. The client sends logged data to the aggregator from
time to time, as long as the privacy protocol says that it is fine to do so for any given
pointstamp. The token in 4.1 is used in the accountability protocol to verify that the
upload is legitimately within an assigned quota. As we will see in Section 6.4, the token
does not reveal any information about the identity of each client and changes from one
upload to another.

Since attribute and pointstamp uniquely identify a statistics to be computed, we can
think of them as a statistic ID or statID (statID could be a concatenation or a hash of the
two fields). Client can also just upload statID instead of the two fields, if the mapping is
publicly known.

4.2.2 Threat Model

We assume that the aggregator cannot be trusted to protect the privacy of participants: the
aggregator might attempt to recover the path of a given client and release this information
to third parties without the consent or knowledge of the participant (e.g., for advertising
or more nefarious purposes). However, the aggregator is trusted to compute the aggregate
statistics correctly; we assume that this is in fact what the aggregator wants to compute.

On the other hand, the clients cannot be trusted to correctly upload values. Unlike in
tolling applications (e.g., the scenario considered in [55]), the aggregator is assumed to have
no ability to compel compliance of the clients. Even honest clients might suddenly stop
participating in the protocol. Clients might malfunction in various ways, and malicious be-
havior is also possible, as clients may have incentives to try to bias the statistics (depending
on the specific application). Specifically, since we will require uploads to be anonymous,
we have to address attacks by malicious nodes in which large numbers of bad tuples are
uploaded.

We assume the auxiliaries are potentially untrusted; we provide different privacy guar-
antees depending on the behavior of the auxiliaries.

4.2.3 Goals

In light of the threats outlined above, we identify the following desiderata for our system.
Our goal is to compute aggregate statistics over the client’s paths such that:

1. The aggregator or other parties with access to the complete history of uploads cannot
learn private location information about the clients beyond what is explicitly permit-
ted as part of the aggregate statistics contribution. This property should be preserved
even in the face of side information.

2. A malicious or damaged client will have quantifiable impact on the aggregate statistics,
with limited bias introduced unless the overall rate of uploads is low.

3. The aggregate statistics can be computed within a short time after the “collection
interval” ends. This requirement arises because we wish to obtain traffic information
in “real time” to guide route planning.

4. Client participation in a “reconciliation phase” must not be necessary for computation
of the statistics (which rules out the kind of solutions employed in VPriv [55]).
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5. No global trusted third-party is required for the protocol; any intermediaries used
must be untrusted and the consequences of their breakdown or corruption must be
limited.

6. Clients cannot reliably directly communicate with other nearby clients; we regard this
as impractical in the vehicular setting.

7. The protocol is efficient enough to run on commodity hardware for the aggregator
and auxiliary and on a commodity smartphone for the client.

We will explain how PrivStats achieves all these goals.
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Chapter 5

VPriv

The backbone of surprise is fusing speed with secrecy.
– Karl Von Clausewitz, Prussian historian and military theorist

In this chapter, we present VPriv, our system for computing functions over the paths
of drivers while preserving their privacy.

5.1 Architecture

This section gives an overview of the VPriv system and its components. There are three soft-
ware components: the client application, which runs on the client’s computer, a transponder
device attached to the car, and the server software attached to a tuple database. The only
requirements on the transponder are that it store a list of random tags and generate tuples
as described in Section 4.1.1. The client application is generally assumed to be executed on
the driver’s home computer or mobile device like a smart-phone.

The protocol consists of the following phases:

1. Registration. From time to time—say, upon renewing a car’s registration or driver
license—the driver must identify herself to the server by presenting a license or reg-
istration information. At that time, the client application generates a set of random
tags that will be used in the protocol. We assume that these are indistinguishable
from random by a computationally bounded adversary. The tags are also transferred
to the car’s transponder, but not given to the server. The client application then cryp-
tographically produces commitments to these random tags. We describe the details
of computing these commitments in Sections 3.2.1 and 5.2. The client application will
provide the ciphertext of the commitments to the server and these will be bound to
the driver’s identity; however, they do not reveal any information about the actual
tags under cryptographic assumptions.

2. Driving. As the car is driven, the transponder gathers time-location tuples and
uploads them to the server. Each path tuple is unique because the random tag is never
reused (or reused only in a precisely constrained fashion, see Section 5.2). The server
does not know which car uploaded a certain tuple. To ensure that the transponder

39
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Figure 5-1: Driving phase overview: A car with license plate L1 is traveling from Location
S1 at time 1 to Location S2 at time 2 when it undergoes a spot check. It uploads path
tuples to the server.

abides by the protocol, VPriv also uses sporadic random spot checks that observe the
physical locations of cars, as described in Section 5.3. At a high level, this process
generates tuples consisting of the actual license plate number, time, and location of
observation. Since these spot checks record license plate information, the server knows
which car they belong to. During the next phase, the client application will have to
prove that the tuples uploaded by the car’s transponder are consistent with these spot
checks. Figure 5-1 illustrates the driving phase.

3. Reconciliation. This stage happens at the end of each interaction interval (e.g., at
the end of the month, when a driver pays a tolling bill) and computes the function
f . The client authenticates itself via a web connection to the server. He does not
need to transfer any information from the transponder to the computer (unless the
tuples can be corrupted or lost on their way to the server and the client needs to
check that they are all there). It is enough if his computer knows the initial tags
(from registration). If the car had undergone a spot check, the client application
has to prove that the tuples uploaded are consistent with the spot checks before
proceeding (as explained in Section 5.3). Then, the client application initiates the
function computation. The server has received tuples from the driver’s car, generated
in the driving phase. However, the server has also received similar tuples from many
other cars and does not know which ones belong to a specific car. Based on this server
database of tuples as well as the driver’s commitment information from registration,
the server and the client application conduct a cryptographic protocol in which:

• The client computes the desired function on the car’s path, the path being the
private input.

• Using a zero-knowledge proof, the client application proves to the server that
the result of the function is correct, by answering correctly a series of challenges
posed by the server without revealing the driver’s tags.
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COST Path tolling cost computed by the client and reported to the server.
c(x), d(x) The ciphertext and decommitment value resulting from committing to value x.

That is, Commit(x) = (c(x), d(x)).
vi The random tags used by the vehicle’s transponder. A subset of these will be used

while driving.
(si, ti) A pair formed of a random tag uploaded at the server and the toll cost the server

associates with it. {si} is the set of all random tags the server received within a
tolling period with ti > 0.

Figure 5-2: Notation.

The reconciliation can be done transparently to the user the client software; from the
perspective of the user, he only needs to perform an online payment.

To implement this protocol, VPriv uses a set of modern cryptographic tools: a homomor-
phic commitment scheme and random function families. They are described in Chapter 3.

5.2 Protocols

This section presents a detailed description of the specific interactive protocol for our appli-
cations, making precise the preceding informal description. For concreteness, we describe
the protocol first in the case of the tolling application; the minor variations necessary to
implement the speeding ticket and insurance premium applications are presented subse-
quently.

5.2.1 Tolling protocol

We first introduce the notation in Figure 5-2. For clarity, we present the protocol in a
schematic manner in Figures 5-3 and 5-4. The protocol is illustrated for only one round for
simplicity. For multiple rounds, we need a different random function for each round. (The
reason is that if the same random function is used across rounds, the server could guess the
tuples of the driver by posing a b = 0 and a b = 1 challenge.) The registration phase is the
same for multiple rounds, with the exception that multiple random functions are chosen in
Step (a) and Steps (b) and (c) are executed for each random function.

This protocol is a case of two party-secure computation (the car is a malicious party
with private data and the server is an honest but curious party) that takes the form of zero-
knowledge proof: the car first computes the tolling cost and then it proves to the server
that the result is correct. Intuitively, the idea of the protocol is that the client provides
the server an encrypted version of her tags on which the server can compute the tolling
cost in ciphertext. The server has a way of verifying that the ciphertext provided by the
client is correct. The privacy property comes from the fact that the server can perform only
one of the two operations at the same time: either check that the ciphertext is computed
correctly, or compute the tolling cost on the vehicle tags using the ciphertext. Performing
both means figuring out the driver’s tuples.
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1. Registration phase:

(a) Each client chooses random vehicle tags, vi, and a random function, fk (one
per round), by choosing k at random.

(b) Encrypts the selected vehicle tags by computing fk(vi),∀i, commits to
the random function by computing c(k), commits to the encrypted vehi-
cle tags by computing c(fk(vi)), and stores the associated decommitment
keys, (d(k), d(fk(vi))).

(c) Send c(k) and c(fk(vi)), ∀i to the server. This will prevent the car from
using different tags.

2. Driving phase: The car produces path tuples using the random tags, vi, and
sends them to the server.

3. Reconciliation phase:

(a) The server computes the associated tolling cost, tj , for each random tag
sj received at the server in the last period based on the location and time
where it was observed and sends (sj , tj) to the client only if tj > 0.

(b) The client computes the tolling cost COST =
∑

vi=sj
tj and sends it to the

server.

(c) The round protocol (client proves that COST is correct) begins.

Figure 5-3: VPriv’s protocol for computing the path tolling cost (small modifications of
this basic protocol work for the other applications). The round protocol is presented in
Figure 5-4.

These verifications and computations occur within a round, and there are multiple
rounds. During each round, the server has a probability of at least 1/2 to detect whether
the client provided an incorrect COST, as argued in the proof below. The round protocol
should be repeated s times, until the server has enough confidence in the correctness of
the result. After s rounds, the probability of detecting a misbehaving client is at least
1 − (1/2)s, which decreases exponentially. Thus, for s = 10, the client is detected with
99.9% probability. The number of rounds is fixed and during registration the client selects
a pseudorandom function fk for each round and provides a set of commitments for each
round.

Note that this protocol also reveals the number of tolling tuples of the car because
the server knows the size of the intersection (i.e. the number of matching encryptions
fk(vi) = fk(sj) in iv) for b = 1). We do not regard this as a significant problem, since
the very fact that a particular amount was paid may reveal this number (especially for
cases where the tolls are about equal). However, if desired, we can handle this problem by
uploading some “junk tuples”. These tuples still use valid driver tags, but the location or
time can be an indication to the server that they are junk and thus the server assigns a zero
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The round protocol

Client Server

(i) Shuffle at random the pairs (sj , tj) ob-
tained from the server. Encrypt sj according
to the chosen fk random function by com-
puting fk(sj),∀j. Compute c(tj) and store
the associated decommitments.

Send to server fk(sj) and c(tj) , ∀j →
(ii) The server picks a bit b at random.
If b = 0, challenge the client to verify
that the ciphertext provided is correct;
else (b = 1) challenge the client to ver-
ify that the total cost based on the re-
ceived ciphertext matches COST .(iii) If b = 0, the client sends k and the set

of (sj , tj) in the shuffled order to the server
and proves that these are the values she com-
mitted to in step (i) by providing d(k) and
d(tj). If b = 1, the client sends the cipher-
texts of all vi (fk(vi)) and proves that these
are the values she committed to during reg-
istration by providing d(fk(vi)). The client
also computes the intersection of her and
the server’s tags, I = {vi,∀ i} ∩ {sj , ∀ j}.
Let T = {tj : sj ∈ I} be the set of asso-
ciated tolls to sj in the intersection. Note
that

∑
T tj represents the total tolling cost

the client has to pay. By the homomor-
phic property discussed in Section 3.2.3, the
product of the commitments to these tolls
tj ,

∏
tj∈T c(tj), is a ciphertext of the total

tolling cost whose decommitment key is D
=
∑

tj∈T d(tj). The server will compute the
sum of these costs in ciphertext in order to
verify that COST is correct; the client needs
to provide D for this verification.

If b = 0, d(k), d(ti) else D, d(fk(vi)) →

← Challenge random bit b

(iv) If b = 0, the server verifies
that all pairs (sj , tj) have been cor-
rectly shuffled, encrypted with fk, and
committed. This verifies that the
client computed the ciphertext cor-
rectly. If b = 1, the server computes∏

j:∃ i, fk(vi)=fk(sj) c(tj). As discussed,
this yields a ciphertext of the total
tolling cost and the server verifies if
it is a commitment to COST using D.
If all checks succeed, the server accepts
the tolling cost, else it denies it.

Figure 5-4: The protocol executed during each round in the reconciliation phase. The
arrows indicate data flow.

cost. These tuples will be included in the tolling protocol when the server will see them
encrypted and will not know how many junk tuples are in the intersection of server and
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driver tuples and thus will not know how many actual tolling tuples the driver has. Further
details of this scheme are not treated here due to space considerations.

First, it is clear that if the client is honest, the server will accept the tolling cost.

Theorem 1. If the server responds with “ACCEPT”, the protocol in Figures 5-3 and 5-4
results in the correct tolling cost and respects the driver’s location privacy.

Please find the proof in the appendix.
The protocol is linear in the number of tuples the car commits to during registration

and the number of tuples received from the server in step 3a. It is easy to modify slightly
the protocol to reduce the number of tuples that need to be downloaded as discussed in
Section 5.4.
Point tolls (replacement of toll booths). The predominant existing method of assessing
road tolls comes from point-tolling; in such schemes, tolls are assessed at particular points, or
linked to entrance/exit pairs. The latter is commonly used to charge for distance traveled
on public highways. Such tolling schemes are easily handled by our protocol; tuples are
generated corresponding to the tolling points. Tolls that depend on the entrance/ exit pairs
can be handled by uploading a pair of tuples with the same tag; we discuss this refinement in
detail for computation of speed below in Section 5.2.2. The tolling points can be “virtual”,
or alternatively an implementation can utilize the existing E-ZPass infrastructure:

• The transponder knows a list of places where tuples need to be generated, or simply
generates a tuple per intersection using GPS information.

• An (existing) roadside router infrastructure at tolling places can signal cars when to
generate tuples.

Other tolls. Another useful toll function is charging cars for driving in certain regions. For
example, cars can be charged for driving in the lower Manhattan core, which is frequently
congested. One can modify the tolling cost protocol such that the server assigns a cost of
1 to every tuple inside the perimeter of this region. If the result of the function is positive,
it means that the client was in the specific region.

5.2.2 Speeding tickets

In this application, we wish to detect and charge a driver who travels above some fixed
speed limit L. For simplicity, we will initially assume that the speed limit is the same
for all roads, but it is straightforward to extend the solution to varying speed limits. this
constraint. The idea is to cast speed detection as a tolling problem, as follows.

We modify the driving phase to require that the car uses each random vehicle tag vi

twice; thus the car will upload pairs of linked path tuples. The server can compute the speed
from a pair of linked tuples, and so during the reconciliation phase, the server assigns a
cost ti to each linked pair: if the speed computed from the pair is > L, the cost is non-zero,
else it is zero. Now the reconciliation phase proceeds as discussed above. The spot check
challenge during the reconciliation phase now requires verification that a consistent pair of
tuples was generated, but is otherwise the same. If it deemed useful that the car reveal
information about where the speeding violation occurred, the server can set the cost ti for
a violating pair to be a unique identifier for that speeding incident.
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Note that this protocol leaves “gaps” in coverage during which speeding violations are
not detected. Since these occur every other upload period, it is hard to imagine a realistic
driver exploiting this. Likely, the driver will be traveling over the speed limit for the duration
of several tuple creations. However, if this is deemed to be a concern for a given application,
a variant can be used in which the period of changing tuples is divided and linked pairs are
interleaved so that the whole time range is covered: . . . v2 v1 v3 v2 v4 v3 v5 v4 v6 v5 . . .

The computational costs of this protocol are analogous to the costs of the tolling protocol
and so the experimental analysis of that protocol applies in this case as well. There is a
potential concern about additional side channels in the server’s database associated with
the use of linked tuples. Although the driver has the same guarantees as in the tolling
application that her participation in the protocol does not reveal any information beyond
the value of the function, the server has additional raw information in the form of the
linkage. The positional information leaked in the linked tuple model is roughly the same as
in the tolling model with twice the time interval between successive path tuples. Varying
speed limits on different roads can be accommodated by having the prices ti incorporate
location.

5.2.3 Insurance premium computation

In this application, we wish to assign a “safety score” to a driver based on some function of
their path which assesses their accident risk for purposes of setting insurance premiums. For
example, the safety score might reflect the fraction of total driving time that is spent driving
above 45 MPH at night. Or the safety score might be a count of incidents of violation of
local speed limits.

As in the speeding ticket example, it is straightforward to compute these sorts of quan-
tities from the variant of the protocol in which we require repeated use of a vehicle identifier
vi on successive tuples. If only a function of speed and position is required, in fact the exact
framework of the speeding ticket example will suffice.

5.3 Enforcement

The cryptographic protocol described in Section 5.2 ensures that a driver cannot lie about
the result of the function to be computed given some private inputs to the function (the
path tuples). However, when implementing such a protocol in a real setting, we need to
ensure that the inputs to the function are correct. For example, the driver can turn off the
transponder device on a toll road. The server will have no path tuples from that car on this
road. The driver can then successfully participate in the protocol and compute the tolling
cost only for the roads where the transponder was on and prove to the server that the cost
was “correct”.

In this section, we present a general enforcement scheme that deals with security prob-
lems of this nature. The enforcement scheme applies to any function computed over a car’s
path data.

The enforcement scheme needs to be able to detect a variety of driver misbehaviors such
as using tags other than the ones committed to during registration, sending incorrect path
tuples by modifying the time and location fields, failing to send path tuples, etc. To this
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end, we employ an end-to-end approach using sporadic random spot checks. We assume that
at random places on the road, unknown to the drivers, there will be physical observations
of a path tuple 〈license plate,time,location〉. We show in Section 5.5 that such spot
checks can be infrequent (and thus do not affect driver privacy), while being effective.

The essential point is that the spot check tuples are connected to the car’s physical
identifier, the license plate. For instance, such a spot check could be performed by secret
cameras that are able to take pictures of the license plates. At the end of the day or month,
an officer could extract license plate, time and location information or this task could be
automated. Alternatively, using the existing surveillance infrastructure, spot checks can be
carried out by roving police cars that secretly record the car information. This is similar
to today’s “speed traps” and the detection probability should be the same for the same
number of spot checks.

The data from the spot check is then used to validate the entries in the server database.
In the reconciliation phase of the protocol from Section 5.2, the driver is also required to
prove that she uploaded a tuple that is sufficiently close to the one observed during the
spot check (and verify that the tag used in this tuple was one of the tags committed to
during registration). Precisely, given a spot check tuple (tc, `c), the driver must prove she
generated a tuple (t, `) such that |t − tc| < Ω1 and |` − `c| < (Ω2)|t − tc|, where Ω1 is a
threshold related to the tuple production frequency and Ω2 is a threshold related to the
maximum rate of travel.

This proof can be performed in zero knowledge, although since the spot check reveals
the car’s location at that point, this is not necessary. The driver can just present as a proof
the tuple it uploaded at that location. If the driver did not upload such a tuple at the
server around the observation time and place, she will not be able to claim that another
driver’s tuple belongs to his due to the commitment check. The server may allow a threshold
number of tuples to be missing in the database to make up for accidental errors. Before
starting the protocol, a driver can check if all his tuples were received at the server and
upload any missing ones.

Intuitively, we consider that the risk of being caught tampering with the protocol is akin
to the current risk of being caught driving without a license plate or speeding. It is also
from this perspective that we regard the privacy violation associated with the spot check
method: the augmented protocol by construction reveals the location of the car at the spot
check points. However, as we will show in Section 5.5, the number of spot checks needed to
detect misbehaving drivers with high probability is very small. This means that the privacy
violation is limited, and the burden on the server (or rather, whoever runs the server) of
doing the spot checks is manageable.

The spot check enforcement is feasible for organizations that can afford widespread
deployment of such spot checks; in practice, this would be restricted principally to gov-
ernmental entities. For some applications such as insurance protocols, this assumption
is unrealistic (although depending on the nature of insurance regulation in the region in
question it may be the case that insurance companies could benefit from governmental
infrastructure).

In this case, the protocol can be enforced by requiring auditable tamper-evident transpon-
ders. The transponder should run correctly the driving phase with tuples from registration.
Correctness during the reconciliation phase is ensured by the cryptographic protocol. The
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insurance company can periodically check if the transponder has been tampered with (and
penalize the driver if necessary). To handle the fact that the driver can temporarily disable
or remove the transponder, the insurance company can check the mileage recorded by the
transponder against that of the odometer, for example during annual state inspections.

5.4 Implementation

We implemented the road pricing protocol in C++ (577 lines on the server side and 582 on
the client side). It consists of two modules, the client and the server. We implemented the
tolling protocol from Figure 5-3, where we used the Pedersen commitment scheme [53] and
the random function family in [49], and a typical security parameter (key size) of 128 bits
(for more security, one could use a larger key size although considering the large number
of commitments produced by the client, breaking a significant fraction of them is unlikely).
The implementation runs the registration and reconciliation phases one after the other for
one client and the server. Note that the protocol for each client is independent of the
one for any other client so a logical server (which can be formed of multi-core or multiple
commodity machines) could run the protocol for multiple clients in parallel.

5.4.1 Downloading a subset of the server’s database

In the protocols described above, the client downloads the entire set of tags (along with
their associated costs) from the server. When there are many clients and correspondingly
the set of tags is large, this might impose unreasonable costs in terms of bandwidth and
running time. In this section we discuss variants of the protocol in which these costs are
reduced, at some loss of privacy.

Specifically, making a client’s tags unknown among the tags of all users may not be
necessary. For example, one might decide that a client’s privacy would still be adequately
protected if her tags cannot be distinguished in a collection of one thousand other clients’
tags. Using this observation, we can trade off privacy for improved performance.

In the revised protocol, the client downloads only a subset of the total list of tags. For
correctness, the client needs to prove that all of her tags are among the ones downloaded.
Let the number of encrypted tags provided to the server during registration be n; the first
m ≤ n of these tags have been used in the last reconciliation period. Assume the driver
informs the server ofm. Any misreporting regardingm can be discovered by the enforcement
scheme (because any tags committed to during registration but not included in the first m
will not verify the spot check). When step (iv) is executed for b = 1, the server also checks
that all the first m tuples are included in the set si; that is {fk(vi)|i ≤ m} ∈ {fk(sj)|∀j}.

There are many ways in which the client could specify the subset of tags to download
from the server. For instance, one way is to ask the server for some ranges of tags. For
example, if the field of tags is between 0 and (2128 − 1)/2128, and the client has a tag of
value around 0.5673, she can ask for all the tuples with tags in the range [0.5672, 0.5674].
The client can ask for an interval for each of her tags as well as for some junk intervals.
The client’s tag should be in a random position in the requested interval. Provided that
the car tags are random, in an interval of length ∆I, if there are total tags, there will be
about ∆I · total tags.
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Figure 5-5: The running time of the road pricing protocol as a function of the number of
tags generated during registration for one round.

Alternatively, during registration clients could be assigned random “tag subsets” which
are then subsequently used to download clusters of tags; the number of clients per tag subset
can be adjusted to achieve the desired efficiency/ privacy characteristics. The tag subset
could be enforced by having the clients pick random tags with a certain prefix. Clients
living in the same area would belong to the same tag subset. In this way, a driver’s privacy
comes from the fact that the server will not know whether the driver’s tuples belong to him
or to any other driver from that region (beyond any side information).

5.5 Evaluation

In this section we evaluate the protocols proposed. We first evaluate the implementation
of the road pricing protocol. We then analyze the effectiveness of the enforcement scheme
using theoretical analysis in Section 5.5.3 and with real data traces in Section 5.5.3.

We evaluated the C++ implementation by varying the number of random vehicle tags,
the total number of tags seen at the server, and the number of rounds. In a real setting,
these numbers will depend on the duration of the reconciliation period and the desired
probability of detecting a misbehaving client. We pick random tags seen by the server and
associate random costs with them. In our experiments, the server and the clients are located
on the same computer, so network delays are not considered or evaluated. We believe that
the network delay should not be an overhead because we can see that there are about two
round trips per round. Also, the number of tuples downloaded by a client from the server
should be reasonable because the client only downloads a subset of these tuples as discussed
in Section 5.4. We are concerned primarily with measuring the cryptographic overhead.

5.5.1 Execution time

Figures 5-5, 5-6, and 5-7 show the performance results on a dual-core processor with 2.0
GHz and 1 GByte of RAM. Memory usage was rarely above 1%. The execution time for
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Figure 5-6: The running time of the road pricing protocol as a function of the number of
tuples downloaded from the server during the reconciliation phase for one round.

a challenge bit of 0 was typically twice as long as the one for a challenge type of 1. The
running time reported is the total of the registration and reconciliation times for the server
and client, averaged over multiple runs.

The graphs show an approximately linear dependency of the execution time on the
parameters chosen. This result makes sense because all the steps of the protocol have linear
complexity in these parameters.

In our experiments, we generated a random tag on average once every minute, using
that tag for all the tuples collected during that minute. This interval is adjustable; the
1 minute seems reasonable given the 43 MPH average speed [52]. The average number of
miles per car per year in the US is 14, 500 miles and 55 min per day ([52]), which means
that each month sees about ≈ 28 hours of driving per car. Picking a new tag once per
minute leads to 28 × 60 = 1680 tags per car per month (one month is the reconciliation
period that makes sense for our applications). So a car will use about 2000 tags per month.

We consider that downloading 10, 000 tuples from the server offers good privacy, while
increasing efficiency (note that these are only tuples with non-zero tolling cost). The reason
is as follows. A person roughly drives through less than 50 toll roads per month. Assuming
no side channels, the probability of guessing which tuples belong to a car in this setting
is 1/

(10000
50

)
, which is very small. Even if some of the traffic patterns of some drivers are

known, the 50 tuples of the driver would be mixed in with the other 10000.
If the protocol uses 10 rounds (corresponding to a detection probability of 99.9%), the

running time will be about 10 · 10 = 100 seconds, according to Figure 5-7. This is a very
reasonable latency for a task that is done once per month and it is orders of magnitude less
than the latency of the generic protocol [7] evaluated below. The server’s work is typically
less than half of the aggregate work, that is, 50 seconds. Downloading 10, 000 tuples (each
about 50 bytes) at a rate of 10Mb/s yields an additional delay of 4 seconds. Therefore, one
similar core could handle 30 days per month times 86400 seconds per day divided by 54
seconds per car = 51840 cars per month. Even if bandwidth does not scale linearly with the
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Figure 5-7: The running time of the road pricing protocol as a function of the number of
rounds used in the protocol. The number of tags the car uses is 2000 and the number of
tuples downloaded from the server is 10000.

number of cores, the latency due to bandwidth utilization is still one order of magnitude
less than the one for computation; even if it adds up and cannot be parallelized, the needed
number of cores is still within the same order of magnitude. Also, several computers can
be placed in different parts of the network in order to parallelize the use of wide-area
bandwidth. Since the downloaded content for drivers in the same area is the same, a proxy
in certain regions will decrease bandwidth usage significantly. Hence, for 1 million cars, one
needs 106/51840 ≈ 21 < 30 similar cores; this computation suggests our protocol is feasible
for real deployment. (We assumed equal workloads per core because each core serves about
50000 users so the variance among cores is made small.)

5.5.2 Comparison to Fairplay

Fairplay [45] is a general-purpose compiler for producing secure two-party protocols that
implement arbitrary functions. It generates circuits using Yao’s classic work on secure two-
party computation [63]. We implemented a simplified version of the tolling protocol in
Fairplay. The driver has a set of tuples and the server simply computes the sum of the
costs of some of these tuples. We made such simplifications because the Fairplay protocol
was prohibitively slow with a more similar protocol to ours. Also, in our implementation,
the Fairplay server has no private state (to match our setting in which the private state is
only on the client). We found that the performance and resource consumption of Fairplay
were untenable for very small-sized instances of this problem. The Fairplay program ran
out of 1 GB of heap space for a server database of only 75 tags, and compiling and running
the protocol in such a case required over 5 minutes. In comparison, our protocol runs
with about 10, 000 tuples downloaded from the server in 100s, which yields a difference in
performance of three orders of magnitude. In addition, the oblivious circuit generated in
this case was over 5 MB, and the scaling (both for memory and latency) appeared to be
worse than linear in the number of tuples. There have been various refinements to aspects of
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Fairplay since its introduction which significantly improve its performance and bandwidth
requirements; notably, the use of ordered binary decision diagrams [41]. However, the
performance improvements associated with this work are less than an order of magnitude
at best, and so do not substantially change the general conclusion that the general-purpose
implementation of the relevant protocol is orders of magnitude slower than VPriv. This
unfeasibility of using existing general frameworks required us to invent our own protocol for
cost functions over path tuples that is efficient and provides the same security guarantees
as the general protocols.

5.5.3 Enforcement effectiveness

We now analyze the effectiveness of the enforcement scheme both analytically and using
trace-driven experiments. We would like to show that the time a motorist can drive illegally
and the number of required spot checks are small. We will see that the probability to detect
a misbehaving driver grows exponentially in the number of spot checks, making the number
of spot checks logarithmic in the desired detection probability. This result is attractive from
the dual perspectives of implementation cost and privacy preservation.

Analytical evaluation

We perform a probabilistic analysis of the time a motorist can drive illegally as well as the
number of spot checks required. Let p be the probability that a driver undergoes a spot
check in a one-minute interval (or similarly, driving through a segment). Let m be the
number of minutes until a driver is detected with a desired probability. The number of spot
checks a driver undergoes is a binomial random variable with parameters (p, m), pm being
its expected value.

The probability that a misbehaving driver undergoes at least one spot check in m min-
utes is

Pr[spot check] = 1− (1− p)m. (5.1)

Figure 5-8 shows the number of minutes a misbehaving driver will be able to drive
before it will be observed with high probability. This time decreases exponentially in the
probability of a spot check in each minute. Take the example of p = 1/500. In this case, each
car has an expected time of 500 minutes (8.3h) of driving until it undergoes a spot check
and will be observed with 95% probability after about 598 min (< 10 hours) of driving,
which means that overwhelmingly likely the driver will not be able to complete a driving
period of a month without being detected.

However, a practical application does not need to ensure that cars upload tuples on all
the roads. In the road pricing example, it is only necessary to ensure that cars upload tuples
on toll roads. Since the number of toll points is usually only a fraction of all the roads, a
much smaller number of spot checks will suffice. For example, if we have a spot check at
one tenth of the tolling roads, after 29 minutes, each driver will undergo a spot check with
95% probability.

Furthermore, if the penalty for failing the spot check test is high, a small number of
spot checks would suffice because even a small probability of detecting each driver would
eliminate the incentive to cheat for many drivers. In order to ensure compliance by rational
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agents, we simply need to ensure that the penalty associated with noncompliance, β, is
such that β(Pr[penalization]) > α, where α is the total toll that could possibly be accumu-
lated over the time period. Of course, evidence from randomized law enforcement suggests
strongly that independent of β, Pr[penalization] needs to be appreciable (that is, a driver
must have confidence that they will be caught if they persist in flouting the compliance
requirements) [19].

If there is concern about the possibility of tuples lost in transit from client to server, our
protocol can be augmented with an anonymized interaction in which a client checks to see if
all of her tuples are included in the server’s database (the client can perform this check after
downloading the desired tuples from the server and before the spot check reconciliation and
zero-knowledge protocol). Alternatively, the client might simply blindly upload duplicates
of all her tuples at various points throughout the month to ensure redundant inclusion in
the database. Note that it is essential that this interaction should be desynchronized from
the reconciliation process in order to prevent linkage and associated privacy violation.

Nevertheless, even if we allow for a threshold t of tuples to be lost before penalizing a
driver, the probability of detection is still exponential in the driving time 1−

∑t
i=0

(m
i

)
pi(1−

p)m−i ≥ 1− e
−(t−mp)2

2mp , where the last inequality uses Chernoff bounds.

Experimental evaluation

We now evaluate the effectiveness of the enforcement scheme using a trace-driven experi-
mental evaluation. We obtained real traces from the CarTel project testbed [38], containing
the paths of 27 limousine drivers mostly in the Boston area, though extending to other MA,
NH, RI, and CT areas, during a one-year period (2008). Each car drives many hours every
day. The cars carry GPS sensors that record location and time. We match the locations
against the Navteq map database. The traces consist of tuples of the form (car tag, seg-
ment tag, time) generated at intervals with a mean of 20 seconds. Each segment represents
a continuous piece of road between two intersections (one road usually consists of many
segments).

We model each spot check as being performed by a police car standing by the side of a
road segment. The idea is to place such police cars on certain road segments, to replay the
traces, and verify how many cars would be spot-checked.

We do not claim that our data is representative of the driving patterns of most mo-
torists. However, these are the best real data traces we could obtain with driver, time, and
location information. We believe that such data is still informative; one might argue that
a limousine’s path is an aggregation of the paths of the different individuals that took the
vehicles in one day.

It is important to place spot checks randomly to prevent misbehaving drivers from
knowing the location of the spot checks and consequently to behave correctly only in that
area. One solution is to examine traffic patterns and to determine the most frequently
travelled roads. Then, spot checks would be placed with higher probability on popular
roads and with lower probability on less popular roads. This scheme may not observe a
malicious client driving through very sparsely travelled places; however, such clients may
spend fuel and time resources by driving through these roads and which most likely do not
even have tolls. More sophisticated placement schemes are possible; here, we are primarily
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Figure 5-8: The time a motorist can drive illegally before it undergoes a spot check with a
probability 95% for various values of p, the probability a driver undergoes a spot check in
a minute.

concerned with showing the ability to observe most traffic with remarkably few spot checks.
Consider the following experiment: we use the traces from a month as a training phase

and the traces from the next month as a testing phase, for each month except for the last
one. The first month is used to determine the first 1% (≈ 300) popular sites. We choose an
increasing number of police cars to be placed randomly at some of these sites. Then, in the
testing phase we examine how many drivers are observed in the next month. We perform
this experiment for an increasing number of police cars and for each experiment we average
the results over fifty runs. In order to have a large sample, we consider the paths of a driver
in two different days as the paths of two different drivers. This yields 4826 different one-day
traces.

Figure 5-9 illustrates the data obtained. In few places, the graph is not perfectly mono-
tonic and this is due to randomization: we are placing few spot checks in some of the
300 locations. Even if in some cases we place a spot check more than in others, due to
randomization, the spot checks may be placed in an unfavorable position and observe less
paths. The reason is that the 300 spot check vary significantly in popularity. From the
shape of the graph, we can see that the fraction of paths observed increases very fast at the
beginning; this is explained by the exponential behavior discussed in Section 5.5.3. After
10 spot checks have been placed, the fraction of paths observed grows much slower. This
is because we are only placing spot checks at 1% of the segments traveled by the limousine
drivers. Some one-day paths may not be included at all in this set of paths. Overall, we
can see that this algorithm requires a relatively small number of police cars, namely 20, to
observe ≈ 90% of the 4826 one-day paths.

Our data unfortunately does not reflect the paths of the entire population of a city
and we could not find such extensive trace data. A natural question to ask would be how
many police cars would be needed for a large city. We speculate that this number is larger
than the number of drivers by a sublinear factor in the size of the population; according to
the discussion in Section 5.5.3, the number of spot checks increases logarithmically in the
probability of detection of each driver and thus the percentage of drivers observed.
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Figure 5-9: The fraction of one-day paths observed out of a total of 4826 one-day paths as
a function of the total number of police cars placed.

5.6 Security analysis

In this section, we discuss the resistance of our protocol to the various attacks outlined in
Section 4.1.2.

Client and intermediate router attacks. Provided that the client’s tuples are
successfully and honestly uploaded at the server, the analysis of Section 5.2 shows that
the client cannot cheat about the result of the function. To ensure that the tuples arrive
uncorrupted, the client should encrypt tuples with the public key of the server. To deal with
dropped or forged tuples, the drivers should make sure that all their tuples are included in
the subset of tuples downloaded from the server during the function computation. If some
tuples are missing, the client can upload them to the server. These measures overcome any
misbehavior on the part of intermediate routers.

The spot check method (backed with an appropriate penalty) is a strong disincentive
for client misbehavior. An attractive feature of the spot check scheme is that it protects
against attacks involving bad tuple uploads by drivers. For example, drivers cannot turn
off their transponders because they will fail the spot check test; they will not be able to
provide a consistent tuple. Similarly, drivers cannot use invalid tags (synthetic or copied
from another driver), because the client will then not pass the spot checks; the driver did
not commit to such tags during registration.

If two drivers agree to use the same tags (and commit to them in registration), they will
both be responsible for the result of the function (i.e., they will pay the sum of the tolling
amounts for both of them).

Server misbehavior. Provided that the server honestly carries out the protocol, the
analysis of Section 5.2 shows that it cannot obtain any additional information from the
cryptographic protocol. A concern could be that the server attempts to track the tuples
a car sends by using network information (e.g., IP address). Well-studied solutions from
the network privacy and anonymization literature can be used here, such as Tor [17], or
onion routing [28]. The client can avoid any timing coincidence by sending these tuples in
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separate packets (perhaps even at some intervals of time) towards the end of the driving
period, when other people are sending such tuples.

Another issue is the presence of side channels in the anonymized tuple database. As
discussed in Section 2.1, a number of papers have demonstrated that in low-density regions
it is possible to reconstruct paths with some accuracy from anonymized traces [36, 40, 34].
As formalized in Definition 4, our goal here was to present a protocol that avoids leaking
any additional information beyond what can be deduced from the anonymized database.
The obvious way to prevent this kind of attack is to restrict the protocol so that tuples are
uploaded (and spot checks are conducted) only in areas of high traffic density. An excellent
framework for analyzing potential privacy violations has been developed in [37, 35], which
use a time to confusion metric that measures how long it takes an identified vehicle to mix
back into traffic. In [35], this is used to design traffic information upload protocols with
exclusion areas and spacing constraints so as to reduce location privacy loss.

Recall that in Section 5.2, we assumed that the server is a passive adversary: it is trusted
not to change the result of the function, although it tries to obtain private information. A
malicious server might dishonestly provide tuples to the driver or compute the function f
wrongly. With a few changes to the protocol, however, VPriv can be made resilient to such
attacks.
• The function f is made public. In Figure 5-3, step 3a), the server computes the tolls

associated to each tuple. A malicious server can attach any cost to each tuple, and
to counteract this, we require that the tolling function is public. Thus, the client can
compute the cost of each tuple in a verifiable way.

• For all the client commitments sent to the server, the client must also provide to the
server a signed hash of the ciphertext. This will prevent the server from changing the
client’s ciphertext because he cannot forge the client’s signature.

• When the server sends the client the subset of tuples in Step 3a, the server needs to
send a signed hash of these values as well. Then, the server cannot change his mind
about the tuples provided.

• The server needs to prove to a separate entity that the client misbehaved during
enforcement before penalizing it (e.g., insurance companies must show the tamper-
evident device).

Note that it is very unlikely that the server could drop or modify the tuples of a specific
driver because the server does not know which ones belong to the driver and would need
to drop or modify a large, detectable number of tuples. If the server rejects the challenge
information of the client in Step iv) when it is correct, then the client can prove to another
person that its response to the challenge is correct.
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Chapter 6

PrivStats

Too many people are thinking of security instead of opportunity.
– James F. Byrnes, American statesman

In this chapter, we present PrivStats, our system for computing aggregate statistics over
the paths of drivers while preserving their privacy.

6.1 PrivStats at High Level

In this section, we provide an overview of PrivStats, before we delve into the details of its
protocols.

Recall that each tuple uploaded by a client is anonymized insofar as there is no identifier
linking the tuple to the client. However, as discussed, a great deal of information about
paths can be recovered from such anonymized tuple databases, and in the presence of side
information, recovered paths can be linked to specific drivers. Furthermore, there is nothing
to prevent a malicious client from uploading arbitrary quantities of bad data.

Our first protocol achieves plausible deniability and accountability; even in the presence
of side information, the aggregator cannot link a particular path to a driver in a provable
way, and drivers can only upload limited quantities of data while preserving anonymity.
The high level idea is that each client will upload data with a certain probability at each
pointstamp. We discuss the mechanism for selectively not uploading in Section 6.2 and
the functioning of the “quota token” in Section 6.4. Roughly speaking, the upload policy
ensures that the aggregator cannot tell which client uploaded a given tuple short of direct
observation.

However, this protocol still suffers from the generic problems with maintaining such
tuple databases; paths can be recovered in sparse areas. Our second protocol requires
more infrastructure, but provides strict locational privacy; the aggregator receives no more
information than that afforded by the computed statistic.

6.2 Aggregation Protocols

In this section, we discuss and analyze various threats to location privacy via side informa-
tion, formalize various kinds of anonymity guarantees, and present the aggregate statistics

57



58 CHAPTER 6. PRIVSTATS

Figure 6-1: Example of path inference of a client using side information about other client’s.
The number of the road indicates the number of tuples uploaded from that road. The side
information at the aggregator is that Alice, Bob and Chris were together on street A and
where Bob’s and Chris’ houses are located. Therefore, the aggregator can deduce that Alice
went from street A to street B.

protocols. We focus here on location privacy; in Section 6.4 we discuss how to handle
malicious clients.

6.2.1 Side information attacks

Tuples in PrivStats do not contain any identification information about the client, but this
level of anonymization hardly suffices to protect location privacy. Previous work [40] shows
that it is possible to recover significant path information from anonymized time-location
tuples. Furthermore, if the aggregator has side information specific to a client, it can use
this information in concert with the tuples received to learn further information about the
client as explained below.

• Areas of low density. Assume that the aggregator knows that Alice alone lives on a
particular street. If the aggregator receives one tuple from that street, the aggregator
can conclude that Alice just left her house or returned to it.

• Side information about other clients. Figure 6-1 illustrates an example.

• Physical observation. A client is observed at a specific location and time.

• Others. One can combine knowledge of the map of a city, approximate flow conser-
vation, and driving patterns to infer paths.

Our goal is to first define location privacy in the presence of side information, and then
to develop protocols that can provide it.

6.2.2 Location privacy definition

Side information can come in different forms and reveal various degrees of information.
Clearly, one cannot hope to enumerate all the types of side information there can be,
or know in advance what privacy leakage will result. This makes it challenging to provide
theoretical guarantees in the face of side information. For example, one can never guarantee
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that Alice’s path between point A and point B will remain unknown because Alice may
simply be observed at some location.

We use the term “adversary” to refer to a curious aggregator (one that wants to learn
location information about clients) or more generally to any party that gets data from the
aggregator (e.g. a court via a subpoena) and wants to learn Alice’s path.

So what does it mean for a protocol to guarantee location privacy? Obviously, we
cannot prevent the adversary from having side information. Instead, the idea is that the
protocol should not reveal any additional information about the path of Alice beyond what
the aggregator already knows and the result of the statistics. (The result of the statistics is
the goal of our computation so we want it to be public.) Of course, one can use differential
privacy approaches [18] with PrivStats to decide whether some results should be released
at all.

Definition 5. Strict location privacy (SLP). Let SI be the side information available to
the adversary, Result be the result of the aggregations to be computed, Data be the collection
of all tuples uploaded at the aggregator when running a protocol. We say that the protocol
maintains location privacy if the probability that the adversary guesses Alice’s path given
SI and Result is the same as the probability of guessing Alice’s path when the server is
additionally given Data.

The preceding definition can be formalized via standard notions in cryptography: In
cryptographic terminology, the difference between the chance of success of the adversary
in the case when he is given a random collection of tuples values and the actual tuples is
insignificant (and no bounded polynomial time algorithm can exploit such difference).

Intuitively, this definition says that the database of tuples used in our protocol to com-
pute the desired result leaks no location privacy information.

6.2.3 Plausible deniability (PD)

Before we present a protocol that provides SLP, we present a protocol, PD, that is simple
and lightweight and may be preferred in some cases in practice. PD does not provide as
strong security properties as SLP, yet it has some interesting security property that may
suffice in some cases.

Alice has plausible deniability if she is able to credibly deny that she went on a path (on
which she actually drove). A motivating real example [1] of the utility of such a guarantee
is when, due to a subpoena, the aggregator is forced to release the tuple database. In the
face of a specific accusation, the client should be able to deny that it went on a particular
road.

We first make the assumption that any tuple uploaded from a street could have orig-
inated from any client driving on that street; that is, the tuple’s statistics value does not
help distinguish between potential uploaders. This should hold true for most statistics (e.g.
average speed, delay, others). Recall that tuples never contain identification in PrivStats.

Then, observe that the number of tuples uploaded from a road (coupled with side
information) can jeopardize a client’s plausible deniability. For example, consider that
Alice and Bob are the only clients uploading from a certain street. If there are two distinct
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uploads from the same street at the same time, it is almost certainly the case that both
Alice and Bob drove on that street at that time.

We achieve plausible deniability using a simple, yet interestingly powerful observation.
Plausible deniability can be achieved if there are always some clients who refrain from
uploading at each statistics point. In this way, for whatever tuples Alice uploads, she can
claim that those tuples were uploaded by some other driver; this second driver is one of
the drivers who did not upload at the statistic point. Assuming all tuples could have been
generated by any driver, the tuples received at the aggregator are the same as in the case
when Alice never drove through that path and a driver from the ones refraining uploaded in
her case. Returning to the example of Alice and Bob, if one of them refrains from uploading,
Alice can claim that Bob uploaded the tuple and Bob can claim that Alice did so and no
one can disprove their claim without direct observation, of course.

How can we ensure that some nodes do not upload? As mention in Section 4.2, we
cannot assume that clients can communicate and synchronize. The idea is to have clients
choose probabilistically whether to upload. This probability should be set according to a
priori traffic density estimates based on historical data; higher in areas that are not heavily
trafficked and smaller in areas that are not so popular such that, in both cases, it is highly
likely that at least one client in the aggregation interval did not upload.

Specifically, we can determine the appropriate probabilities as follows. Let F be a public
estimate on a lower bound on the number of cars passing through a statistic point in the
corresponding statistics interval. Let P be the desired probability that at least one client
does not upload. We need to determine the probability p with which each car should decide
to upload.

We have that Pr[at least one does not upload] = 1− pF = P and thus,

p = F
√

1− P (6.1)

The expected number of clients not uploading is equal to F (1 − F
√

1− P ). We are
interested in the probability that a client that traverses L locations where data uploads
occur can plausibly deny that it went by those locations. For that to be claimed, each of
these locations must have at least one client not uploading data. Hence, the probability
that a client can plausibly deny that it traversed path of length L is equal to PL. Therefore,
with an adjustable probability P , at least one client will not upload.

It is important for the aggregator to be uncertain about how many clients passed through
a statistics point. If he knew that exactly one person did not upload, he would know that
the actual number of tuple through a road is one plus the number of tuples uploaded.
Fortunately, if F is the number of people passing through a location, and N < F tuples
were uploaded, the probability that N or N + 1 people upload are very close in value. In
particular, the fractional difference between these two probabilities is:

Pr[N upload]− Pr[N + 1 upload]
Pr[N upload]

= 1− F −N
N + 1

p

1− p
(6.2)

If we replace N with its expected value Fp, we obtain a fractional difference of 1/(N+1),
which for popular locations is small. Thus, the probability that N < F people upload is
about the same with the probability that N + 1 people upload. When the aggregator sees
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N < F clients, he is uncertain whether there were N,N − 1, N + 1 clients. Alice can now
deny plausibly that she went on a path.

We analyze the loss in accuracy of the aggregate statistics resulting from the probabilistic
upload in Section 6.6.4; it turns out to be remarkably small.

6.2.4 Strict location privacy (SLP)

We now present a protocol that achieves our strict location privacy definition. We first need
to make sure the following requirements hold:

1. Tuples should be uploaded in a way that does not leak when in the statistics interval
they were generated.

2. The raw value in the tuple should be encrypted; the aggregator should only have
access to the aggregates.

3. The aggregator should not have access to the total number of tuples uploaded for a
particular statistic.

The first requirement is needed because if the statistics interval is large enough and the
number of clients passing through some locations is sparse, an adversary can trace the paths
of some clients using estimates of how long it takes on average to traverse a certain segment.
Clients should either send tuples towards the end of the statistics interval or forward them
to a proxy or network that will delay them. The need for the second requirement is evident.
For example, if a client is a habitual speeder, tracking high speed value uploads will likely
indicate his path.

The third requirement is the most challenging. The number of tuples generated leaks
privacy. For example, if Alice and Bob are the only people living on a certain street and the
aggregator sees two tuples coming from there, likely both Alice and Bob left their house.
Therefore, the aggregator needs to receive a number of tuples that is independent of the
actual number of tuples generated.

Clients encrypt the values using a homomorphic encryption scheme that allows the
aggregator to compute the statistic on encrypted data; the protocol will ensure that the
aggregator can decrypt only the result. To obfuscate the actual number of tuples, clients
upload some junk tuples that are indistinguishable from legitimate tuples and that cancel
out during the statistics computation. To ensure that the number of tuples uploaded is
independent of the actual tuples generated, clients will upload in total a constant number
of tuples for each statistic. Each statistic has a publicly-known standard number of tuples
to be uploaded, which is an upper bound on the actual tuples to be uploaded, and which
can be computed using the historical popularity of the road.

We discuss the specific encryption schemes we use Section 6.3 together with the statistics
they support and how to verify that the auxiliary decrypted the correct value. To cancel
out in the aggregations, junk tuples are encryptions of zero or one. Because the encryptions
schemes are randomized, they will be indistinguishable from correct tuples. If the value of
a junk tuple is used in a sum, it should be an encryption of zero; if it is used in a product,
it should be an encryption of one.

To keep the number of tuples uploaded constant, we need an online rendezvous point
where clients can somehow synchronize (the clients cannot communicate directly).
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Claim 2. If clients cannot directly communicate and the number of clients uploading at a
statistics point is not predictable, they cannot upload a total constant number of tuples in
an interval of time at all times.

The proof is in the appendix. One such rendezvous point is naturally the aggregator.
However, the aggregator can count how many clients are requesting the synchronization
information and thus estimate how many clients attempt to upload! Having clients make
junk requests would require synchronization on the requests to make and this leads to the
same recursive problem.

Instead, we augment our protocol with a new online module: an auxiliary. However, we
assume very little from it: it is partially trusted and has light load. The auxiliary cannot
change the statistics result and cannot collude with clients to let them upload more than
their quota. Furthermore, the auxiliary never handles client id and location information.
In previous work [35], the intermediaries were heavily trusted; a corrupt intermediary could
change the statistics, collude with clients, and had access to complete client information.

The computational burden on the auxiliary is light: it stores the total number of tuples
uploaded at the aggregator for a statistics so far, gives this number to inquiring clients, and
decrypts one value per interval. We expect in fact that a suitable implementation of the
auxiliary would be distributed across public clouds such as on Amazon or Azure, they can
be run by the Electronic Frontier Foundation or the government, an accredited company
employed by the aggregator, or the participants themselves. If the auxiliary is completely
malicious, clients do not have SLP and they will just fall back to PD(which we assume
clients always run).

We now specify the protocol for the statistics with id denoted by id and with standard
number of tuples to be uploaded Sid. The players are: the auxiliary (X), a client (C),
and the aggregator (A). At the beginning of the system, X publishes a public key for a
homomorphic encryption scheme.

Setup. X records zero for the number of tuples uploaded so far for id, sid := 0.
Upload. C ↔ X : Request the number of tuples uploaded so far sid for the statistic

of interest.
C → A : If t is the current time, I is the time interval of id, and Sid is

the total number to be uploaded for this statistics, then the client should upload
∆s := min(quotaC , bSidt/Ic − sid) tuples, where quota is the maximum number of
tuples the client is allowed to upload. One of the tuples is accurate, the others are junk.
(In parallel, X computes sid := ∆s+ sid assuming he knows the quota.)

Aggregation. A ↔ X : At the end of the interval, the aggregator computes
the aggregate on ciphertext using the homomorphic properties of the encryption. The
auxiliary must decrypt only one value per interval and verify the decrypted value.

The reasoning behind the equation for ∆s is to keep an approximate value of Sidt/I
tuples uploaded so far at time t (even though these tuples may be physically uploaded at
random times in the interval). We can see that when t = T , Sid tuples have been uploaded
so far.
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One recommendation for picking Sid is quota/2 · F (for quota ≥ 3), where F is the
historical average of the number of clients for that statistics. We can see that F clients can
upload a total number of tuples anywhere in [0 . . . F · quota]. We can see that this number
of uploads can be sustained even by half of the drivers F/2 (each uploading at the quota)
meaning that even in less trafficked cases privacy is maintained.

The aggregator can also wait for a short period after the statistics were terminated so
that few clients traversing the statistics point after the interval is over can complete the
uploads for that interval.

Since the aggregator verifies the decryption, the auxiliary cannot change the result. The
auxiliary can be replicated at different service providers or cloud computing infrastructures,
or in a peer-to-peer system in case some of them refuse to provide an answer, and be
partitioned to scale.

Note that encryption of values permits malicious clients to attempt to upload exorbitant
values to bias the statistics. This can be addressed with the following refinement of the
protocol: Depending on the particular statistic, the aggregator publishes an interval within
which reasonable values must live. The client then additionally uploads a zero-knowledge
proof that the value in the encryption lies in the interval (using the efficient scheme of [10]
which we will evaluate in the context of the accountability protocol).

Theorem 3. If the number of uploads for each statistics is the desired standard value, the
encryption scheme is semantic secure, the auxiliary does not leak upload times and only
decrypts the overall result, no privacy is leaked according to Definition 5.

Please find the proof in the appendix.
Spatially distributed fake tuples. In order to handle situations in which streets

of interest for the aggregate statistics computation have low densities, one might use the
following extension of the SLP protocol: whenever a client decides to upload, the client
uniformly chooses k statistics with the given time interval (i.e., k different locations) and
engages in the SLP protocol with the auxiliary and aggregator for each of these statistics —
however, all tuples are fake except for the tuple associated to the real upload. For sufficiently
large k, all of the statistics will have Sid uploads. Note that this protocol requires enlarged
quotas, and thus malevolent clients have greater latitude to affect the results.

Discussion. We considered a variety of solutions which remove the need for the aux-
iliary by placing its functionality securely on the aggregator. Given the restrictions on a
practical system outlined in Section 4.2, we do not think this is possible.

For instance, it would be attractive to use a solution in which the aggregator can decrypt
the aggregate value itself, in a way that it can only decrypt once. However, this seems to
require “distributed threshold cryptography” which is impractical given the no-coordination
assumptions we are working with. Regarding the second task of the auxiliary, informing
clients of the number of tuples presently uploaded, plausible solutions involved private
information retrieval that would hide the statID requested by the client to the aggregator;
these solutions, however, are highly impractical to perform at high speeds and for large
amounts of data. Even if private information retrieval is as practical as possible, an inherent
limitation is that the aggregator has to scan through all possible statistics id per request.

Furthermore, we investigated “statistical obfuscation” when computing averages, an in-
tuitive possibility for allowing the server to compute an overall result yet not learn about
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individual values. Unfortunately, it is hard to provide formal guarantees about the indistin-
guishability of junk tuples and real tuples with such a solution: for a significant proportion
of tuples, the noise added to real tuples will result in values that could not have been created
by junk tuples.

6.3 Statistics Supported

PD supports essentially any aggregate statistics computation because the data is uploaded
in plain text; the aggregator can use it in any computation of his choice. SLP is also quite
general. There are practical homomorphic encryption schemes for three basic computations:

1. Summations (S). Using EC-ElGamal, Paillier, or Benaloh schemes [6], the aggregator
can aggregate an arbitrary number of ciphertexts and obtain a ciphertext for the
summation of the underlying plaintexts.

2. Many summations, one multiplication, many summations (SMS). Using the Boneh-
Goh-Nissim cryptosystem [9], the aggregator can perform an arbitrary number of
summations on encrypted values, followed by one multiplication, and finally followed
by any number of additions.

3. Multiplications (M). Using RSA, ElGamal, or SMS, the aggregator can aggregate
an arbitrary number of ciphertexts and obtain a ciphertext for the product of the
underlying plaintexts.

Thus, SLP supports any aggregation that is reducible to the three operations. Fortu-
nately, these operations are fairly general and support a wide range of statistical functions.
Table 6.1 lists some of the ones supported by PrivStats, including many of practical interest.

S, M, and SMS do not support median, min, and max. As such, we propose some partial
remedies for these situations. To compute the median, one can estimate it with the mean in
some cases. To compute min and max, clients need to upload an additional bit with their
data. The bit is 1 if the statistic value is smaller than a certain threshold. The aggregator
can collect together all values with the bit set and ask the auxiliary to identify and decrypt
the minimum.

The schemes we use have the nice property that the aggregator can verify the decrypted
value from the auxiliary. For the Boneh-Goh-Nissim cryptosystem (to which the other
schemes reduce), an encryption to x is in fact a commitment to x, so the auxiliary can
provide a decommitment key as a proof of correctness as in [53].

6.4 Accountability

Since each client uploads statistics anonymously, some malicious clients may attempt to
bias the statistics by uploading multiple times. In this section, we discuss PrivStats’s
accountability protocol, which enforces quotas on how much each client can upload.

There is tension between maintaining the location privacy of each client and placing
a quota on how much data they can upload. The idea is to have each client upload a
cryptographic token whose legitimacy the aggregator can check and which does not reveal
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Table 6.1: Table of statistics supported by PrivStats with example applications and imple-
mentation. Conditional aggregations are aggregations computed only over statistics that
satisfy a certain predicate. For example, we may want to know the average speed of indi-
viduals whose speeds fell inside a range (or were greater than a threshold).

Aggregation Example Applica-
tion

Implementation

Count Traffic congestion:
no. of people
through an inter-
section.

Each driver uploads encryption of one when they pass by
the statistics point. Aggregator uses S.

Summation No. of people car-
pooled through an
intersection.

Each car uploads encryption of the number of people in the
car. Aggregator uses S.

Average Average speed, de-
lay estimation.

Clients upload an encryption of their speed/delay and an
encryption of the value one (for count). Junk tuples will
correspond to two encryptions of zero. Aggregator uses
SMS by adding speeds, counts and dividing them.

Std. Dev. Studying std. dev.
of delays.

Compute average and count as above. Compute sum of
square values using SMS.

Product Existence: Is
there at least one
client satisfying a
predicate?

If a client satisfies the predicate, he uploads encryption
of zero, else he encrypts a random number (similarly
for junk tuples). Using M, one client uploading zero
will induce zero in the result. M can also be used
for parity checks or summing small values using the
exponential.

Conditional
aggregations
of all the
aggregations
above

Count of people ex-
ceeding speed limit

Clients upload encryption of the neutral element (zero or
one) if the condition in question is not satisfied. Besides this
change, the clients and the aggregator follow the protocol
for the desired aggregation above.

Any other aggregation reducible to S, M, SMS.

any information about the client; yet a client cannot create more that its quota of legitimate
tokens for the same statistic and location.

Notation and conventions. Let SKA be the aggregator’s secret signing key and PKA

the corresponding public verification key. Consider the statistics with identifier id. Let Tid

be a token uploaded by a client for statistic id. All the values in this protocol are computed
in Zn, where n = p1p2, two safe prime numbers.

We make standard cryptographic assumptions that have been used in the literature
(e.g., the strong-RSA assumption). Further specific assumptions and more background is
discussed in the Appendix.
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6.4.1 Protocol

For clarity, we explain the protocol for a quota of one tuple per statistics id per client and
explain how to use the protocol for a greater quota.

We have the following goals:

1. Accountability: The aggregator should examine Tid and realize if the driver has up-
loaded a tuple before for id.

2. Location privacy: The aggregator should not be able to link different tokens from the
same client because it will learn path information.

We solve this problem by designing an efficient zero-knowledge proof of knowledge pro-
tocol from scratch. Proofs of knowledge [30], [5], [60] are proofs by which a machine can
prove that it knows some value that satisfies a certain relation. For example, Schnorr [60]
provided a simple and efficient algorithm for proving possession of a discrete log. If we add
the zero-knowledge [30] property, we also have the guarantee that no information about the
value in question is leaked.

Registration. Before a client C can participate in aggregations, he needs to register
with the aggregator A. C identifies himself to A (using his real identity) and A will give C
one capability (allowing him to upload one tuple per statistic) as follows. C picks a random
number s and obtains a blind signature from A on s (using the scheme in [14], which is
accompanied by a proof of knowledge of a signature for a value that is hidden inside the
given commitment).

Let sig(s) denote a signature from the aggregator on s. s is used to create a token Tid

for every id. The client keeps s and sig(s) secret. Since the signature is blind, A never
sees s or the signature. If the signature were not blind, the aggregator could a client’s real
identity to a capability; he could then test each token received to see if it was produced by
the capability of the client in question. By running the signing protocol once for a client
C, A can ensure that he gives only one capability to C. The signature attests that the
capability of the client is correct. Without some certification, a client can create his own
capabilities and upload more than he is allowed to.

Accountability during upload

1. C → A : Computes Tid = ids mod n and uploads it together with the data. C also
uploads a zero-knowledge proof of knowledge (as explained below) that he knows a
value s such that ids = T mod n and for which it has a signature from the aggregator.

2. A→ C : Aggregator checks the proof and if the value T has been uploaded before for
id. If the latter holds, it means that this tuple is an over-upload and discards it.

Intuitively, Tid does not leak any information about s because of hardness of the discrete
log problem. The client’s proof is a zero-knowledge proof of knowledge (ZKPoK) so it does
not leak any information about s either. Since Tid is computed deterministically, more than
one upload for the same id will result in the same value of Tid. The aggregator can detect
these over-uploads and throw them away. The client cannot produce a different Tid for the
same id because he cannot convince the aggregator that he has a signature for the exponent
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of id in Tid. Here we assumed that id is randomly distributed (which can be enforced by
hashing id in practice).

To enforce a quota > 1, the aggregator simply issues the client more capabilities (quota
of them) during registration.

6.4.2 ZKPoK

We now describe the zero-knowledge proof of knowledge, which we constructed from scratch.
We require a commitment scheme (such as the one in [53]): recall that this allows Alice to
commit to a value x by computing a ciphertext C and giving it to Bob. Bob cannot learn x
from C. Alice can open the commitment by providing x and a decommitment key that are
checked by Bob. Alice cannot open the commitment for x′ 6= x and pass Bob’s verification
check.
Public inputs: id, Tid, PKA, g, h
Client’s input: s, σ = sig(s).
Aggregator’s input: SKA

Construction 1. Proof that C knows s and σ such that ids = T and σ is a signature
by A on s.

1. C computes com = gshr mod n, where r is random. com is a Pedersen commitment
to s. C proves to A that he knows a signature σ from the aggregator on the value
committed in com using the protocol in [14].

2. C proves that he knows s and r such that Tid = ids and com = gshr as follows:

(a) C picks k1 and k2 at random in Zn. He computes T1 = gk1 mod n, T2 = hk2

mod n and T3 = idk1 mod n and gives them to the aggregator.

(b) The aggregator picks c a prime number, at random and sends it to the client.

(c) The client computes r1 = k1 + sc, r2 = k2 + rc and sends them to the aggregator.

(d) The aggregator checks if comcT1T2
?≡ gr1hr2 mod n and T cT3

?≡ idr1 mod n. If
the check succeeds, it outputs “ACCEPT”; else, it outputs “REJECT”.

This proof can be made non-interactive using the Fiat-Shamir heuristic [22] or following
the proofs in [10].

Theorem 4. Under the strong RSA-assumption, Construction 1 is a zero-knowledge proof
of knowledge that the client knows s and σ such that ids = Tid mod n and σ is a signature
by the aggregator on s.

The proof is presented in the Appendix.

6.5 Implementation

We implemented the SLP protocol and accountability protocol in C++. The implementa-
tion consists of three modules: the Client, who produces tokens according to the account-
ability protocol and uploads encrypted junk/correct tuples, the Aggregator, who checks
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Table 6.2: Running time of various operations.
Party Setup (ms) Registration (ms) Upload (ms)
Client 0 70 320

Aggregator 160 70 310
Total 160 140 630

tokens according to the accountability protocol, collect tuples per statID, and at the end
compute the result using homomorphic encryption and ask the auxiliary for the result, and
the Auxiliary, who decrypts the result from the aggregator.

The accountability protocol implementation includes the registration and upload proto-
col for both the client and the aggregator as described in Section 6.4. The upload protocol
includes our zero-knowledge proof of knowledge from Section 6.4; we also implemented the
signature scheme by [14].

Our implementation is only 500 lines of code for all three parties, not counting empty
lines. This count does not include basic libraries and NTL (the number theory library).

6.6 Evaluation and Analysis

We ran our experiments on a low-end desktop PC—a dual-core processor with 2.2 GHz
and 1 GByte of RAM. Except for the registration phase, we expect the clients will run
on more limited hardware such as a smart phone. We emulated the environments for two
smartphones, Nexus and iPhone, as described below.

6.6.1 Run time

We first evaluate the performance of the accountability protocol alone and then evaluate
each party’s performance as a whole. The homomorphic encryption scheme we used in our
evaluation is Benaloh [6], which allows summations and counts. In our implementation,
encryption takes 0.05 ms and decryption takes 76 ms for an integer. The decryption time
is much slower because it involves searching the plaintext in a small field of possible values.
The ciphertext length is 1024 bits.
Accountability protocol. The client always needs to compute and upload tokens, but
the server can choose to do so probabilistically. Table 6.2 shows the code execution time of
this protocol (we analyze network overhead later).

The upload protocol requires 320 ms of processing on the client side and 310 ms on
the aggregator side. Note that the overall protocol takes three transmissions: the client
computes and uploads some data (phase 1), the aggregator answers with some random
numbers used for the challenge (phase 2), the client responds with verification data (phase
3), and the aggregator checks the verification results (phase 4). We measured the execution
time for each phase, and the time of phase 2 and phase 3 are essentially 0 milliseconds. The
reason for this is that in phase 2, the aggregator just picks a few random numbers and sends
them to the client, and in phase 3 the client performs a few multiplications and additions.
As optimizations, clients can preprocess tokens or postprocess tokens and upload tuples at
a later time; the aggregator can also probabilistically check tokens
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Table 6.3: Client execution time for one tuple generation and upload for different execution
frameworks.

Machine Hardware capabilities Upload
Nexus 512MB RAM, 1GHz 352ms
iPhone 256MB RAM, 600MHz 660ms

PC 1GB RAM, 2.2GHz 320ms

Client. The client runs two phases: registration and upload. Registration consists entirely
of the accountability protocol evaluated above and can be run on a commodity PC. Up-
load consists of generating a tuple and uploading it; the performance is dominated by the
accountability and encryption times above. Since the client will run on some more limited
hardware (such as a smartphone), it is important to understand the performance of our
protocols on such devices. To that end, we emulated the computational capabilities of the
Nexus and iPhone platforms using a Linux virtual machine. We adjusted the resources of
a virtual machine to match the RAM sizes of these two smartphones.

Unfortunately, one cannot adjust the length of a CPU cycle, so we evaluated the run-
time in terms of clock cycles rather than actual time and then scaled the clock cycle to the
device considered. If the same CPU-intensive binary can run on two different machines of
different clock cycles (and all other parameters are equal) the scaling should be approxi-
mately proportional. The results we obtain are not exact because the operating systems
are different, but we believe that this approach gives a very good idea of the performance
on these devices. We are currently working on porting our system and needed libraries to
Java to run on Android.

Table 6.3 shows our performance results. On the Nexus, which is quite fast, the results
are about the same as on the PC. On the iPhone are slower, but an overhead of 0.6 seconds
per upload is still reasonable given that a client uploads a tuple at a much lower time period
than that.

Every upload incurs an additional network round trip delay because the client contacts
the auxiliary. We believe this is reasonable. If the client has intermittent connectivity, it
can contact the auxiliary at a time t∗ before the time t at which it actually uploads. It
can then estimate the number of tuples uploaded so far, st for the statistic of interest using
st∗t/t

∗ and operate with that estimate.
Aggregator. The aggregator’s role consists of two phases: collect tuples and compute
statistics. Collecting the tuples involves verifying the token for correctness and uniqueness.
Again, verifying the correctness of the token (accountability) dominates execution time. By
turning off this verification, the aggregator could process 106 tuples in 8s (mostly uniqueness
checks).

Typically, aggregation on encrypted data corresponds to multiplying all the data items
together. The aggregator can perform this task as it receives the tuples. For illustration
purposes, the aggregator can aggregate (in one computation) 105 values of 1024 bits in size
in 0.65 s, 5 · 105 values in 3.28 s and 106 values in 6.46 s; the scaling is linear.

We would like to compute how many statistics an aggregator can support. It takes 310
ms to serve the upload of one client if the aggregator verifies the accountability proof. Let
p be the probability with which the aggregator checks a certain proof. Let n be the number
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Table 6.4: The amount of data sent out by each party during various protocols.
Party Registration Upload Aggregation
Client 1KB 7.01KB 0

Aggregator 0.5KB 0.5KB 128B
Auxiliary 0 2B 4B

Total 1.5KB 7.51KB 132B

of drivers uploading for a statistics. Therefore, one aggregator can support 3 ∗ 105/np
statistics in one day. For instance, statistics [50] show that there are about 2000 cars on
average passing in an hour through a highway lane so r = 0.556 so let n = 2000. If p = 1,
this amounts to ≈ 150 and if p = 0.1, it amounts to 1500 popular statistics in a day.
Therefore, we expect one commodity aggregator node to suffice for computing the statistics
in a city.
Auxiliary. The auxiliary’s processing is very light, reducing in effect to one decryption (76
ms) of the statistics result per statistics computed. The ratio of the auxiliary’s processing
time to the aggregator’s is about 76/(310 · N), which is ≈ 10−4 for N = 2000. Of course,
there is still the overhead of responding to requests to clients involving the number of tuples
uploaded for a statistics, but this should be similar (if not smaller) than the overhead the
aggregator incurs when receiving tuples from clients.

We measure the bandwidth and storage overhead in the appendix. Both are quite small:
about 7 Kbytes per token including the proof of knowledge, and 137 bytes for the other
fields (statistic value, pointstamp).

6.6.2 Bandwidth and storage overhead

We measure the amount of data sent by each party during our SLP protocol; Table 6.4
presents our results.

The size of a tuple consists of 6.875 Kbytes for the token (with the proof of knowledge
included) and 137 bytes for the other fields (statistics value, pointstamp).

The client should not maintain state unless he wants to preprocess some tokens. The
aggregator needs to maintain, for each statistic, 8 bytes of data corresponding to a statistic
id and a number of tuples uploaded so far.

The aggregator should maintain all the tokens (1024 bits each, without the proofs of
knowledge) to make sure that the tokens uploaded are unique, a requirement for the ac-
countability protocol. With a RAM of 1GB, an auxiliary can store in main memory data
for 125,000 statistics. Thus, storage should not be a problem.

6.6.3 Accuracy of the statistics

As mentioned, we prevent clients from uploading more than a small constant number of
tuples for a statistics ID and we enforce that the value uploaded be in a certain interval of
possible values; however, we of course cannot verify the value the client uploads, other than
ensuring that it lies in an interval of acceptable values.
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If a client wants to bias the statistics in a certain direction (e.g., show that the average
speed on a road is very small), in the worst case, he will upload the minimum or maximum
acceptable value. We analyze how much a client can affect the statistics. Let N be the
number of clients uploading for a certain statistics, I is the interval of accepted values, and
µ is the average speed if all clients are honest. For example, using the statistics in [50],
N can be 2000 clients in an hour. For average speed computation, I = (30, 100) mph. µ
might be 60 mph, for instance. The highest change in the average that a client can induce
is ±|I|/N , where |I| is the length of the interval I; this happens when the average is in fact
the minimum or the maximum value in the interval and the client uploads the maximum or
minimum, respectively). The maximum fractional error is ±|I|/Nµ or ±|I|/S, where S is
the sum of all values uploaded by the clients. A client can affect a statistics by ratio of the
size of the interval of acceptable values and the sum of all values uploaded by other clients.
The error increases linearly in the number of malicious clients and is inversely proportional
to the total number of clients. We can see that if |I| is not very large and N is large (a
popular area), the error introduced by a client is small. For our example, this is equal to
±0.035 mph and 0.06%, both rather small.

6.6.4 Plausible deniability

In this section, we show that guaranteeing plausible deniability in the presence of side
information even for the entire population does not affect the number of tuples uploaded
significantly (and hence does not affect the accuracy of the aggregate result).

Figure 6-2(a) illustrates the probability that a car does not upload and Figure 6-2(b)
shows the expected number of cars that do not upload given the popularity of certain
pointstamps. We can see that this probability is rather low and decreases. It is interesting
to note that the number of clients who do not upload during each interval at each location
is constant.

The reason is that limF→∞ F (1− F
√

1− P ) = − ln(1−P ). Moreover, as we can see from
the graphs, the convergence is rapid. The expected number of clients not uploading is a
small constant (e.g. 3 for P = 0.95) approximately independent of the number of clients
traversing a location. This means that accuracy of the statistic is not affected and the
percentage of clients not uploading decreases with popularity in an inversely proportional
manner.

To understand how much impact the tuples not uploaded can have on the overall statis-
tics, we examine real data collected in CarTel [38]. We obtained real traces from the CarTel
project testbed, containing the paths of 27 taxis mostly in the Boston/MA area over one
year. Each car drives many hours every day. The cars carry GPS sensors that record loca-
tion and time, which we match against a map database. The traces consist of tuples of the
form (car tag, segment tag, time) generated at intervals with a mean of 20 seconds.

Because 27 drivers cannot give a good sense of what intersections are popular, we look at
each one-day path of a driver as an independent path; there are about 4800 one-day paths
in a month. We chose varying lengths for the intervals of the statistics. For each interval,
we computed how many one-day paths are on each road segment in the same time interval.
We consider that a statistic is recorded only at points with at least 10 cars passing through
in the whole aggregation interval. We computed the average ratio of clients who do not
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(a) Probability that a client will not upload as
depending on the popularity of a certain road
for different plausible deniability probabilities
P .

(b) The expected number of clients that do not
upload.

Figure 6-2: PrivStats’ analysis results.

upload to the total number of clients passing through some intersection over all intersections
(as a percentage); the result is in Figure 6-3. The percentages are small, which indicates
that our scheme for plausible deniability does not significantly affect the number of tuples
to be uploaded.

If a certain probability P of having plausible deniability on a road of length L is desired,
we need to pick P = P1/L. For example, to have plausible deniability with 0.95 on an entire
path that passes through 5 statistic points, we need to use P = 0.99.
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Figure 6-3: Fraction of users not uploading data for various lengths of the statistics interval
for CarTel data in the year 2008.
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Chapter 7

Other Applications

In this section, we suggest applications of VPriv and PrivStats to location-based mobile
systems that are not vehicular. Both VPriv and PrivStats can support any application that
complies with their model (Chapter 4). In what follows, we explain how the model of VPriv
and PrivStats applies to other applications.

7.1 Location-based social networking applications

In recent years, with the increased popularity of smartphones, a variety of location-based
social networking sites have been developed [59]. Currently, most such applications violate
location privacy: the client application uploads the client’s identifier together with location
data to the application’s server. Besides being a breach of privacy, location disclosure could
also lead to serious safety consequences [54]: some users were robbed after indicating on
a social application that they were away from home (e.g., on vacation); some women were
stalked and threatened because the application provider negligently made available certain
location information users considered private. Moreover, some location-based social appli-
cations (e.g. Foursquare, Gowalla) post on their public website feeds of location updates
from users.

Moreover, in some of these social applications, the server just needs to compute some
functions of the users’ paths and does not need to know the actual path. VPriv and
PrivStats could be employed in such cases and we describe a few examples below.

One area of applicability of VPriv are social games such as Foursquare [23] and Gowalla.
In Foursquare, users earn points based on where, when, and how often they check in with
Foursquare. In addition, if users check in at a certain location (e.g., restaurant) more than
a threshold number of times, they earn points and may get rewards from the owner of the
place. Using VPriv, a server could compute all these functions without knowing the path
of the users. Users could upload similar time-location tuples, where the location is replaced
with the name of a place (e.g., a restaurant’s name). The server could assign points to each
time-location tuple received and compute the total number of points of a user using VPriv.

PrivStats could be applied to social applications that compute aggregate statistics over
locations, such as Loopt [20] for restaurant ratings. In Loopt, customers upload ratings of
each place and Loopt (in partnership with Yelp) maintains the average rating. PrivStats

75



76 CHAPTER 7. OTHER APPLICATIONS

could be used to maintain the anonymity of users uploading, enforce quota on how much
each uploads, as well as compute the statistics at the server.

Of course, there are location-based social networking applications where neither VPriv
nor PrivStats are directly applicable. An example problem is, given a certain user and
its location, to find which friends of the user are within a certain perimeter. Approaches
in which the server runs a secure multi-party computation protocol for each friend of a
user to determine which friends are within the desired perimeter from the user seem more
appropriate [64].

7.2 Applications to cellular networking

An interesting application for VPriv (and for PrivStats, but to a lesser extent) is cellular
phone networking. Every time a user calls another user or is being called, the user commu-
nicates with the tower of control. As the user moves, the user may change towers of control.
This may especially happen when driving or traveling. All throughout, the towers of control
with which the user communicates report to the cell phone company’s logical server; the
server can use the location of the towers of control and create an approximate path of the
users. The cell phone company can leak the path due to software bugs or hacker attacks,
or simply release it upon a subpoena. Obviously, one of the utilities of maintaining records
for each user is to compute the bill a user has to pay at the end of the month.

In principle, VPriv could be used to allow the cell phone company to charge users, yet
not know their paths. In what follows, we will outline, at a high level, how VPriv would
work in this setting. Of course, there are many other details that one needs to work out
when performing an actual implementation (and potentially political barriers to overcome),
but here we just want to propose and sketch such an idea. An interesting future project
would be to work out the details of such an implementation.

There is a delicate aspect we need to be careful with: the server needs to know where
a user (say Alice) is, not only for purposes of billing, but also to allow Alice to receive or
issue calls. We must explain how phone calls happen if VPriv were used. Consider the
random tags that users upload together with their tuples in VPriv. In the phone setting,
each user generates the random tags using a pseudorandom function (see Section 3.2.2) that
is indexed by a secret value each users has. This secret value is unknown to the server. We
can think of this secret value as the base phone number of the user. This base phone number
will be used to generate other phone numbers that will actually be used in communication.
The time is divided in short time intervals. Each random tag is generated by applying
the pseudorandom function to the identifier of the time interval. The time partitioning
algorithm into time intervals is known to everyone.

random tag for time interval I = fbase phone number(I)

Intuitively, each random tag becomes a temporary phone number to be used only in
the corresponding time interval. If these random tags are computed in a very large field,
collisions become unlikely. Therefore, the base phone number is used to generate a lot of
temporary pseudorandom phone numbers. Each user keeps their phone number secret and
only gives it to people who are allowed to call the user. The user follows the same procedure



7.2. APPLICATIONS TO CELLULAR NETWORKING 77

for the random tags as in VPriv to register with the server. Also, similarly to VPriv, the
server does not know to what user a temporary phone number belongs.

As Alice moves around, she checks in with the tower of control and informs it of the
temporary phone number corresponding to that time interval. This allows the tower of
control to know where the user with the temporary phone number is located when someone
attempts to call that phone number. If Bob wants to call Alice and he has Alice’s base phone
number, he can use the pseudorandom function and compute which is Alice’s temporary
phone number at the time of a call. Then he can issue the call and the server will be able
to route it to the appropriate tower of control.

If a friend of Alice is malicious and posts Alice’s base phone number online, everyone can
construct all future temporary phone numbers and thus be able to call Alice. Even without
VPriv, if Alice’s phone number becomes public, everyone will be able to call her until she
changes her phone number. However, we need to prevent users from advertising one of
Alice’s temporary phone numbers to the tower of control and making Alice pay for charges.
For this, Alice needs to obtain a blind signature from the server on each temporary phone
number during registration (see Section 3.2.4 for a definition of blind signatures). Whenever
Alice advertises a temporary phone number to the tower of control, she must provide the
blind signature. Users other than Alice could not have obtained such a signature.

Like in VPriv, the server should maintain mappings of random tags (or temporary phone
numbers) to the cost of the conversation. During the reconciliation phase (at the end of
the month), the server and the client compute the bill of the client following the protocol
in VPriv 5.2.
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Chapter 8

Conclusions

In this thesis, we developed two practical systems, VPriv and PrivStats, for protecting
location privacy of users while efficiently supporting a wide range of location-based vehicular
services as well as other mobile applications.

We formalized various definitions of location privacy and introduced novel and practi-
cal cryptographic protocols (function computation in VPriv, accountability and statistics
computation in PrivStats) that provably achieve such definitions. We implemented both
systems and verified that they are efficient enough to run on smartphone-class devices or
commodity computers.

We hope that VPriv and PrivStats will be used to reduce privacy concerns associated
with location-based vehicular and mobile services, and thus allow such systems to reach
their full benefits.
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Appendix

Proofs

Proof of Theorem 1. Assume that the client has provided an incorrect tolling cost in step 3b.
Note first that all decommitment keys provided to the server must be correct; otherwise
the server would have detected this when checking that the commitment was computed
correctly. Then, at least one of the following data provided by the client provides has to be
incorrect:

• The encryption of the pairs (sj , tj) obtained from the server. For instance, the car
could have removed some entries with high cost so that the server computes a lower
total cost in step iv).

• The computation of the total toll COST . That is, COST 6=
∑

vi=sj
tj . For example,

the car may have reported a smaller cost.

For if both are correct, the tolling cost computed must be correct.
During each round, the server chooses to test one of these two conditions with a proba-

bility of 1/2. Thus, if the tolling cost is incorrect, the server will detect the misbehavior with
a probability of at least 1/2. As discussed, the detection probability increases exponentially
in the number of rounds.

For location privacy, we prove that the server gains no significant additional information
about the car’s data other than the tolling cost and the number of tuples involved in the
cost (and see above for how to avoid the latter). Let us examine the information the server
receives from the client:

Step (1c): The commitments c(k) and c(fk(vi)) do not reveal information by the defi-
nition of a commitment scheme.

Step (i): c(tj) does not reveal information by the definition of a commitment scheme. By
the definition of the pseudorandom function, fk(si) looks random. After the client shuffles
at random the pairs (sj , tj), the server cannot tell which fk(sj) corresponds to which sj .
Without such shuffling, even if the sj is encrypted, the server would still know that the j-th
ciphertext corresponds to the j-th plaintext. This will break privacy in Step (iv) for b = 1
when the server compares the ciphertext of sj to the ciphertext of vj .

Step (iii): If b = 0, the client will reveal k and tj and no further information from the
client will be sent to the server in this round. Thus, the values of fk(vi) remain committed
so the server has no other information about vi other than these committed values, which do
not leak information. If b = 1, the client reveals fk(vi). However, since k is not revealed, the
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server does not know which pseudorandom function was used and due to the pseudorandom
function property, the server cannot find vi. Providing D only provides decommitment to
the sum of the tolls which is the result of the function, and no additional information is
leaked (i.e., in the case of the Pedersen scheme).

Information across rounds: A different pseudorandom function is used during every
round so the information from one round cannot be used in the next round. Furthermore,
the commitment to the same value in different rounds will be different and look random.

Therefore, we support our definition of location privacy because the road pricing protocol
does not leak any additional information about whom the tuple tags belong to and the cars
generated the tags randomly.

Proof of Claim 2. Consider two alternate scenarios in which N1 and N2 (N1 6= N2) clients
upload for the same statistics point. Assume that in the first case client i uploads n(1)

i

tuples and in the second case, he uploads n(2)
i tuples. There must be at least one client i

for which n
(1)
i 6= n

(2)
i because otherwise the total numbers of tuples uploaded in the two

scenarios are different (because N1 6= N2). Since the number of clients for a statistics is
unpredictable and clients cannot communicate, client i cannot know in which scenario he
is. Since both scenarios have nonzero probability of happening, client i must upload n

(1)
i

at some point and with nonzero probability; however, when he uploads n(1)
i it can happen

that we are in scenario and all other clients uploaded their values for scenario two. In this
case, the total number of tuples uploaded is smaller than standard.

Proof of Theorem 3. According to definition 5, we need to argue that any information that
reaches the aggregator (besides the result of the aggregation and any side information he
has) cannot possibly leak any additional information about the paths of the drivers. The
information that reaches the aggregator consists of a number of encrypted tuples for each
statID, each tuple arriving at a certain time in the interval. As we have discussed, the tuples
should all be delayed through a Tor or proxy to reach the aggregator towards the end of
the statistics time interval. Moreover, the number of tuples that arrive is known to the
aggregator already and discloses no information beyond what the aggregator already had.
The values of the tuples are indistinguishable from random numbers according to semantic
security of the encryption.

We use a simulator argument (which forms the foundation of zero-knowledge proofs) to
argue that the aggregator does not learn any information from the tuples that he did not
have already. Even before the system was running (i.e., when there are no members in the
system), the aggregator could have generated Sid random numbers for each statistic id and
have them all sent to himself at the end of the statistics interval. The distribution of these
tuples is the same with the distribution of tuples received from the actual system.

Since the aggregator does not obtain any information from the tuples, the probability
of guessing the path of a client is the same as without the data from the clients.

To prove Theorem 4, we use standard zero knowledge proofs of knowledge definitions
(specifically the ones in [46]). For our protocol, the Prover is the client and the Verifier is
the aggregator. The proof of the theorem uses the following lemma.
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Lemma 5. Under the strong RSA assumption, Step 2 of Construction 1 is an honest-
verifier zero-knowledge argument system with proof of knowledge property for the desired
problem.

Proof. We need to prove the three properties of zero-knowledge proofs of knowledge pre-
sented in Section 3.3.2.

Completeness: If the client knows s and r, the aggregator will accept. Let us
verify that the checks in Step 2d succeed for an honest client. We have comcT1T2 =
(gshr)cgk1hk2 = gk1+schk2+rc = gr1hr2 and T cT3 = (ids)cidk1 = idk1+sc = idr1 . Thus, for
an honest client, the aggregator will accept.

Proof of knowledge: We must provide an efficient knowledge extractor, K. Consider
a prover P that makes the verifier accept with a nonnegligible probability. Let K be a
machine that performs the following:

1. Start a random instance of the Prover. Let it output T1 and T2.

2. Pick c1 at random and send it to the prover. Receive r11 and r12 and see if checks in
Step 2d verify. If the checks do not verify, start this algorithm from the beginning.

3. If the checks verify, rewind the Prover up to the point where he just output T1 and T2

(the same as above). Pick c2 at random and send it to the Prover. Receive r21 and
r22. If the checks in Step 2d are not verified, start this algorithm from the beginning.

4. If c1 − c2 does not divide both r11 − r21 and r12 − r11, start this algorithm from the
beginning.

5. If the checks verify, then output s = r11−r21
c1−c2

and r = r12−r22
c1−c2

Since the Prover has non-negligible probability of convincing the Verifier, we can see
that the equality checks will succeed and we will execute Step 5 in expected polynomial
time. [16] prove that Step 4 will happen in expected polynomial time, if the strong RSA
assumption holds. Let us show that, in this case, s and r are indeed solutions to our
problem.

Since the checks verify, it means that we have comc1T1T2 = gr11hr12 , T c1
id T3 = idr11 ,

comc2T1T2 = gr21hr22 , and T c2
id T3 = idr21 . By dividing the appropriate two equations, we can

compute: gshr = g
r11−r21
c1−c2 h

r12−r22
c1−c)2 = (gr11−r21hr12−r22)1/(c1−c2) = (comc1−c2)1/(c1−c2) = com

and ids =
(
idr11−r21

)1/(c1−c2) =
(
T c1−c2

id

)1/(c1−c2)
= Tid

Zero-knowledge: We must provide a simulator proof. We follow the proof in [56],
which proves that the Schnorr [60] algorithm for proving knowledge of a discrete logarithm
is zero-knowledge.

We construct a simulator that can generate a communication transcript with any verifier
indistinguishable from a transcript between the prover and the verifier. The simulator
performs the following. Picks c′, k′1, r′1 and r′2 at random. Computes T ′1 = gk′1 , T ′2 ≡
gr′1hr′2com−c′g−k′1( mod n) and T ′3 = idr′1T−c′

id . Sends T ′1, T
′
2, T

′
3 to the verifier. Receives c

from the verifier. If c 6= c′, restart the verifier and repeat this algorithm from the beginning.
If c = c′, send r′1 and r′2 to the verifier; output the transcript produced in this run.



84 CHAPTER 8. CONCLUSIONS

Let us argue that this transcript (T ′1, T
′
2, T

′
3, c
′, r′1, r

′
2) is indistinguishable from a tran-

script between the prover and the verifier. We drew c′, k′1, r′1 and r′2 at random and
computed T ′1, T

′
2, T

′
3 based on these values. The distribution of these values is indistinguish-

able from choosing c′, k′1, T
′
2, T

′
3 at random and then considering random values of r′1 and r′2

that satisfy the verifier checks. The latter distribution is the same with the distribution in
a real transcript.

This simulation has an expected polynomial time of success if the space of possible
values for c is constrained to a polynomial-sized space.

Proof of Theorem 4. Camenish and Lysyanskaya [14] show that the protocol in Step 1 is a
zero-knowledge proof of knowledge. Lemma 5 shows that Step 2 is also a zero-knowledge
proof of knowledge.

All we have to prove is that the client cannot run these two proving protocols for different
values of s. We proceed by contradiction. Assume that the user proofs knowledge of s1
according to the proof in Step 1 and knowledge of s2 according to the proof in Step 2 such
that s1 6= s2. Let M be a machine that has access to the knowledge extractor for the first
and second proofs. M can use these two extractors and obtain s1 6= s2 and r1, r2 such
that C ≡ gr1hs1 ≡ gr2hs2( mod n). This means that gr1−r2 ≡ hs1−s2( mod n). M can
repeat this experiment for different randomness given to the extractors and obtain s1 − s2
which divides r1− r2 in expected polynomial time. By dividing these values, M obtains the
discrete log of h in base g and thus invert the discrete log problem.



Statement of Originality

The results contained in this thesis are original research that is joint work with Hari Bal-
akrishnan and Andrew J. Blumberg. They are contained in the following papers:

• Raluca Ada Popa, Hari Balakrishnan, and Andrew J. Blumberg. VPriv: Protecting
Privacy in Location-Based Vehicular Services. USENIX Security, 2009.

• Raluca Ada Popa, Andrew J. Blumberg, and Hari Balakrishnan. PrivStats: Location
Privacy and Accountability in Aggregate Statistics for Mobile Systems. In submission.
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