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Abstract
Encryption of secret data prevents an adversary from learning
sensitive information by observing the transferred data. Even
though the data itself is encrypted, however, an attacker can
watch which locations of the memory, disk, and network are
accessed and infer a significant amount of secret information.

To defend against attacks based on this access pattern leak-
age, a number of oblivious algorithms have been devised.
These algorithms transform the access pattern in a way that
the access sequences are independent of the secret input data.
Since oblivious algorithms tend to be slow, a go-to optimiza-
tion for algorithm designers is to leverage space unobservable
to the attacker. However, one can easily miss a subtle detail
and violate the oblivious property in the process of doing so.

In this paper, we propose ObliCheck, a checker verify-
ing whether a given algorithm is indeed oblivious. In con-
trast to existing checkers, ObliCheck distinguishes observable
and unobservable state of an algorithm. It employs symbolic
execution to check whether all execution paths exhibit the
same observable behavior. To achieve accuracy and efficiency,
ObliCheck introduces two key techniques: Optimistic State
Merging to quickly check if the algorithm is oblivious, and
Iterative State Unmerging to iteratively refine its judgment if
the algorithm is reported as not oblivious. ObliCheck achieves
×50300 of performance improvement over conventional sym-
bolic execution without sacrificing accuracy.

1 Introduction
Security and privacy have become crucial requirements in the
modern computing era. To preserve the secrecy of sensitive
data, data encryption is now widely adopted and prevents
an adversary from learning secret information by observing
the data content. However, attackers can still infer secret in-
formation by observing access patterns to the data. Even
though the data itself is encrypted, an attacker can watch
which locations of the memory, disk, and network are ac-
cessed. Such concerns are growing with the increasing adop-
tion of hardware enclaves such as Intel SGX [49], which
provides memory encryption but does not hide accesses to
memory. By simply observing the access patterns, several
research efforts [23, 37, 42, 43, 47, 57, 58, 71] have shown that

an attacker can reconstruct secret information such as confi-
dential search keywords, entire sensitive documents, or secret
images.

As a result, a rich line of work designs oblivious execu-
tion to prevent such side channels based on access patterns.
There are two types of oblivious algorithms. The first, Oblivi-
ous RAM (ORAM) [31, 66], can be used generically to hide
accesses to memory, and fits best for workloads of the type
“point queries”. Intuitively, ORAM randomizes accesses to
memory. However, even the fastest ORAM scheme incurs
polylogarithmic overhead proportional to the memory size
per access, which becomes prohibitively slow for processing
a large amount of data as in data analytics and machine learn-
ing. For these workloads, instead, researchers have proposed
a large array of specialized oblivious algorithms, such as algo-
rithms for joins, filters, aggregates [7, 11, 14, 19, 57, 78], and
machine learning algorithms [36, 48, 58, 64]. These special-
ized algorithms work by accessing memory according to a
predefined schedule of accesses, which depends only on an
upper bound on the data size and not on data content. In this
paper, we focus on such specialized oblivious algorithms.

Oblivious algorithms in general tend to be notoriously slow
(e.g., hundreds of times for data analytics [78] and tens of
times for point queries [66]). To reduce such overhead, many
oblivious algorithms take advantage of an effective design
strategy: they leverage special regions of memory that are not
observable to the attacker. Such unobservable memory, albeit
often smaller than the observable one, allows the algorithm to
make direct and fast accesses to data. It essentially works as
a cache for the slower observable memory, which is accessed
obliviously. Different techniques choose different resources
as unobservable. For example, some techniques [7, 51, 58, 60]
treat registers as unobservable but all the cache and main mem-
ory as observable in the context of hardware enclaves such as
Intel SGX. GhostRider [46] employs an on-chip scratchpad
as an unobservable space to make the memory trace oblivious.
Certain techniques focus on the network as being observable
by an attacker and the internal secure region of a machine as
unobservable [57, 78]. These techniques show one or more
orders of magnitude [78] performance improvement by lever-
aging the unobservable memory.



While generic algorithms like ORAM are heavily scruti-
nized, specialized algorithms designed for different settings
do not receive the same level of scrutiny. Further, these al-
gorithms can be quite complex, balancing rich computations
with efficiency. The designer can miss a subtle detail and vio-
late the oblivious property. Currently, an oblivious algorithm
comes with written proof, and users must verify the proof
manually. As a result, recent research efforts devise ways to
check whether an algorithm is oblivious in an automated way
(by looking for a secret dependent branch) using taint analy-
sis [15,33,59,77]. These techniques, however, cannot discern
unobservable state and would classify an algorithm as not
oblivious because of its non-oblivious accesses to unobserv-
able state. Thus, they cannot model a vast array of modern
oblivious algorithms.

We propose ObliCheck, a checker that can verify oblivious
algorithms having unobservable state in an efficient and accu-
rate manner. ObliCheck allows algorithm designers to write
an oblivious algorithm using ObliCheck’s APIs to distinguish
between observable and unobservable space. Based on this
distinction, ObliCheck precisely records the access patterns
visible to an attacker. Then, ObliCheck automatically proves
that the algorithm satisfies the obliviousness condition. Oth-
erwise, ObliCheck provides counterexamples – i.e., inputs
that violate the oblivious property – and identifies program
statements that trigger non-oblivious behavior.

ObliCheck primarily aims to verify the oblivious property
of an algorithm, not the actual implementation of the algo-
rithm. We use a subset of JavaScript for modeling algorithms.
We made this choice to leverage an existing program analy-
sis framework, Jalangi [61], for ObliCheck’s implementation.
Moreover, we focus on a subset of the language because ver-
ification of programs in the full JavaScript language could
result in verification conditions having undecidable theories.
Automated verification fails for undecidable theories. We ex-
pect that an algorithm designer will use ObliCheck to verify
algorithms rapidly during the algorithm design phase, instead
of trying to verify the algorithm manually.

1.1 Techniques and contributions

We observed that taint analysis used in prior work [15, 33, 59,
77] is too ‘coarse’ to capture unobservable state. With taint
analysis, if a branch predicate contains tainted variables, then
a checker simply rejects the algorithm even if both execution
paths of the branch display the same observable behavior.
Instead, we observe that we can overcome the limitations of
taint analysis with symbolic execution [17, 38]. Using sym-
bolic execution, ObliCheck can analyze an input algorithm
with unobservable state in a finer-grained manner and rea-
son about how observable and unobservable state changes in
each execution path. Even if a branch depends on a secret
input variable, ObliCheck correctly classifies an algorithm
as oblivious if the two execution paths after the branch show
the same observable behavior. For example, if the two paths

both send an identically-sized encrypted message over the
network, our checker can conclude both branches maintain
the same observable state (the size of the message and its des-
tination) since the message content itself is encrypted (thus
unobservable).

However, a naïve application of symbolic execution does
not scale. The main challenge with employing symbolic ex-
ecution is that the program state quickly blows up as the
number of branches in the program increases, making it in-
feasible to complete the check for many algorithms. While
traditional state merging [10, 27, 27, 30, 63] can merge states
to alleviate the path explosion problem to some extent, it only
works when the values in two different paths are the same. To
address this problem, ObliCheck employs a novel optimistic
state merging technique (§4), which leverages the domain-
specific knowledge of oblivious algorithms that the actual
values are unobservable to the attacker. ObliCheck uses this
insight to optimistically merge two different unobservable
values by introducing a new unconstrained symbolic value for
over-approximating the two unobservable values.

Such “aggressive” state merging for symbolic values is
effective at tackling path explosion, but could result in a false
“not-oblivious” prognosis. If a symbolic variable, x, is merged
into an unconstrained new symbolic variable y, later accesses
to y in a conditional statement may trigger an execution path
which would have been impossible if x were not replaced with
unconstrained y. To address this issue, we devise a technique
called iterative state unmerging (§5). ObliCheck records sym-
bolic variables merged during the execution. Then, it iter-
atively refines its judgment by backtracking the execution
and unmerges a part of merged variables which may have
caused the wrong prognosis. This iterative probing process
continues until it either classifies the algorithm as oblivious,
or completes the refinement process.

Although iterative state unmerging costs extra symbolic
execution, we find that the overhead is tolerable. This is be-
cause our target algorithms are mostly oblivious: an algorithm
designer who wants to check their algorithm for oblivious-
ness likely did a decent job making much of the algorithm
oblivious, but is worried about subtle mistakes. Hence, most
algorithms require few iterations of the iterative state unmerg-
ing process, and even when an algorithm needs the extra runs,
our evaluation shows that the overhead is less than 70% of
single execution time. Further, when ObliCheck reports an
algorithm as not oblivious, ObliCheck produces a counterex-
ample that violates the obliviousness verification condition.
This information provides valuable help to the algorithm de-
signers to amend their algorithm.

Finally, a well-known limitation of symbolic execution
is its inability to verify an algorithm containing an input-
dependent loop, requiring the user to provide loop invariants
manually, making it hard to verify oblivious algorithms writ-
ten in terms of an arbitrary length of the input. In ObliCheck,
we design a loop summarization technique (§6) that can auto-



matically generate a loop invariant for common loop patterns
employed in oblivious algorithms: each iteration of a loop
appends the same constant number of elements to the output
buffer. Using this observation, ObliCheck can automatically
figure out the side-effect of a loop on the output length, en-
abling it to verify oblivious algorithms not tied to a concrete
length of the input.

We evaluated ObliCheck using 13 existing oblivious al-
gorithms, and find that ObliCheck improves the verification
performance up to×50300 over conventional techniques. The
checking time of ObliCheck grows linearly as the number of
input records grows, whereas that of an existing technique
increases exponentially.

2 Background and Existing Approach

We first provide necessary background information regarding
the oblivious property and symbolic execution to understand
the problems. We then point out the limitations of an existing
approach to motivate our approach.

2.1 Oblivious Property and Oblivious Algorithms

The oblivious property implies the access sequences of an
algorithm are independent of the secret input data. To achieve
the oblivious property in a practical sense, specialized obliv-
ious algorithms have recently been devised. In contrast to
Oblivious RAM (ORAM), which compiles a general algo-
rithm and runs it in an oblivious manner, oblivious algorithms
are designed for a specific purpose for data processing such as
distributed data analytics [57, 78], data structures [22, 32, 70],
and machine learning [56, 58]. Instead of randomly shuffling
and re-encrypting data as ORAM does, oblivious algorithms
implement fixed scheduling independent of secret input data
in a deterministic manner.

Oblivious algorithms leverage unobservable space, a se-
cure region of registers or memory which an attacker cannot
observe. Since the unobservable space is not visible to an
attacker, an algorithm can access data inside the unobservable
space fast in a non-oblivious way. Existing oblivious algo-
rithms use different types of unobservable space to protect
secret data from different types of attackers. For example,
oblivious algorithms for distributed data analysis [14, 57, 78]
assume a network attacker who can observe network traf-
fic but cannot observe a part of local memory. The network
attacker can only watch encrypted messages sent over the
network, so the information the attacker can utilize is the net-
work access patterns including the size of the messages and
the source and destination network addresses. On the other
hand, other works focusing on local data processing [7,51,58]
regard registers as unobservable space and treat cache and
local memory as observable by a memory attacker. We will
discuss how ObliCheck captures different threat models under
an observable and unobservable space abstraction in §3.1.

2.2 Symbolic Execution and Path Explosion Problem
Symbolic execution runs a program with symbolic values as
input where symbols represent arbitrary values. During sym-
bolic execution, each feasible execution path of the program
is executed symbolically: The execution of each instruction
updates the state with symbolic expressions containing the in-
put symbols. The execution of a conditional instruction forks
the execution into two separate execution paths—one taking
the true branch and the other taking the branch. Symbolic
execution maintains a first-order logic formula, say φ, for each
path. The execution of a conditional instruction updates the
paths conditions along the then and else paths with φ∧ c and
φ∧¬c, respectively, where c is the symbolic expression cor-
responding to the condition in the instruction. At the end of
the execution, a constraint solver solves the path condition of
each execution path to generate a set of representative inputs
that exercise those paths of the program.

One of the most common problems that a user of symbolic
execution encounters is path explosion. A traditional symbolic
execution forks into two execution paths for each conditional
branch. Thus, the number of paths explored and the corre-
sponding state of symbolic values grow exponentially in the
number of branches.

2.3 State Merging and MultiSE
One way to alleviate the path explosion problem is state merg-
ing [10, 27, 30, 63]. State merging techniques merge the sym-
bolic state of different paths at join points in the control-flow
graph to reduce the number of paths to explore. Traditional
state merging introduces a new symbolic variable for each
merged value. This auxiliary variable is used to encode pos-
sible distinct values for the same variable in the merged sym-
bolic state. A key issue with traditional state merging is that
it could result in constraints that cannot be handled by con-
straint solvers. MultiSE [63] achieves state merging without
auxiliary variables and control-flow analysis. It is based on a
new representation of the state called value summary. A value
summary is a set of guarded symbolic expressions, pairs of a
path constraint and a corresponding value of a variable.

For example, after a conditional statement, if C then

x = x0 else x = x1, symbolic execution diverges into two
paths. The value-summary representation of the state after
this statement is x 7→ {(C,x0),(¬C,x1)}. This represents the
value of x becomes x0 if the condition C holds, and x1 oth-
erwise. MultiSE performs state merging incrementally by
updating the value-summary of a variable at every assign-
ment statement. MultiSE combines the guarded symbolic
expressions with logical disjunction when the values are the
same. When x0 = x1 in the previous case, the merged state is
x 7→ {(C∨¬C,x0)}, simplified to x 7→ {(True,x0)}.

The benefit of state merging is apparent when the values of
a variable on different paths are identical. State merging re-
duces the execution time by half in this case. When the values
are different, however, state merging comes at the cost of com-



Check Result Algorithm0 is actually:

Oblivious Not Oblivious

Algorithm0 is oblivious True Negative(3) False Negative(7)
Algorithm0 is not oblivious False Positive(7) True Positive(3)

Table 1: Definition of the correct and erroneous classification types
of an oblivious checker. The null hypothesis is that a given algorithm
is oblivious. Rejecting a benign oblivious algorithm is a false positive
case (Type I error). Accepting a not oblivious algorithm is a false
negative case (Type II error).

1 function tag(secretInput, threshold) {

2 var buf = [];

3 for (var i = 0; i < secretInuput.length;

i++) {

4 if (secretInuput[i] < threshold) {

5 buf.push(Pair(secretInuput[i], 0));

6 } else {

7 buf.push(Pair(secretInuput[i], 1));

8 }

9 }

10 }

11 var encrypted = Crypto.encrypt(buf);

12 socket.send(ADDR, encrypted);

13 }

Listing 1: An example code from Opaque [3] in Javascript. It
tags each element in the secret input and sends the encrypted
result over the network. Red variables are tainted variables from
the secret input secretInput[i]. Since the algorithm has a
secret (secretInput[i]) dependent branch, taint analysis based
techniques deem that this code has leakage although the observed
size of the data (encrypted) does not depend on the secret input.

plicated path constraints, which increase constraint solving
time. In some cases, state merging may lower the performance
of symbolic execution if applied indiscreetly [41].

2.4 Existing Approach Using Taint Analysis
Several techniques have been devised to check the access
pattern leakage of an algorithm. The most widely used tech-
nique is taint analysis. Existing works utilize it to check
side-channel leakage [15, 59] and more broadly oblivious-
ness [8, 75]. This line of work identifies variables whose
values depend on secret input. They track the taints of vari-
ables propagated from secret inputs. In this way, a checker
can check whether a given algorithm includes a secret depen-
dent branch. Algorithms with secret dependent branches are
rejected in this approach assuming that those branches incur
information leakage because of the different behaviors in the
true and false blocks of the conditional statements.

Limitation. However, taint analysis can reject benign obliv-
ious programs many times. Even if both execution paths of
a branch exhibit the same observable behavior, a checker
simply rejects the algorithm if the branch contains a tainted
variable. As we define in Table 1, this is a false-positive error.
For example, let us assumes the network attacker discussed
in §2.1. The attacker can only observe the network access
patterns including the size of data sent over the network, but

not the actual content of the encrypted data. Listing 1 shows
one example algorithm where taint analysis leads to a false
positive. In this example, the predicate (Line 4) contains a se-
cret variable secretInput[i]. Hence, taint tracking based
techniques reject this algorithm due to this secret branch.
However, since the threat model in oblivious algorithms as-
sumes the actual content ((secretInput[i], 0) in Line
5, (secretInput[i], 1) in Line 7) is encrypted, both true
and false branch blocks have indistinguishable behavior to an
attacker. Hence, the example algorithm is actually oblivious.

Requirements. A more accurate checker for oblivious algo-
rithms should satisfy the following requirements.
1) Be aware of which state of a program is observable or not

to an attacker (e.g., in Listing 1, the data content is en-
crypted, thus invisible, but the size of the data is revealed).

2) Understand the behavior of a program on different execu-
tion paths across the whole input space to make a sound
judgment of whether an algorithm is oblivious.

3) Know which input values are secret or public to decide
the behavior of a program is independent of secret input.

4) Since a checker has a limited time budget, the checking
process should be scalable in terms of the number of input
data records.

3 ObliCheck Overview
In order to check oblivious algorithms with unobservable state
and overcome the limitations of existing approaches, we pro-
pose ObliCheck. We now provide an overview of ObliCheck’s
API, the threat model it assumes, and its security guarantees.

3.1 ObliCheck APIs
To provide a framework that can accommodate algorithms
with different threat models, ObliCheck provides abstract ob-
servable and unobservable memory space. Any read and write
operations to the observable space are assumed to be observed
by an attacker. ObliCheck provides algorithm designers with
special APIs for describing reads and writes to the observ-
able space as described in Table 2. We assume data written
to or read from observable space is always encrypted. Thus,
an attacker can learn the size, source/destination address of
the data, and the type of operation (read or write) but not the
actual content. Using this abstract store model with APIs, a
designer can reflect a threat model that she assumes in the
code.

ObliCheck offers two categories of APIs for a designer
to write an oblivious algorithm. The first has functions that
describe communication between unobservable and observ-
able spaces. The second one is to specify whether an input
value is secret or public. Table 2 lists the APIs that ObliCheck
provides. Using observableRead and observableWrite, a de-
signer can naturally render a boundary between observable
and observable spaces in the algorithm.

ObliCheck keeps the access sequence under the hood and
uses the access sequence to check the final verification condi-



Name Arguments Description Effect

observableWrite(space, addr, buf)
Write buf at the addr of observable τP += (<space.ID,W>, addr, size(buf)),
space space.store[addr] = *buf

observableRead (space, addr, buf)
Read size(buf) of bytes at addr τP += (<space.ID,R>, addr, size(buf)),
of observable space *buf = space.store[addr]

readSecretInput () Introduce a secret input A new tainted symbolic value is added
readPublicInput () Introduce a public input A new untainted symbolic value is added

Table 2: API of ObliCheck. observableWrite and observableRead are used to describe communication between observable and unobservable
space. τP is the trace of observations defined as a sequence of triplets in § 3.3. The first field of a triplet added to the access sequence contains
the enumerated type of access of MW, MR, NS, and NR, which encode memory write, memory read, network send and network receive respectively.
readSecretInput, and readPublicInput are necessary to make ObliCheck distinguish the secret inputs from public inputs (Refer to Figure 3).

Function Implementation using ObliCheck API

send(dst, buf) observableWrite(network, <host, dst>, buf)

recv(src, buf) observableRead(network, <src, host>, buf)

write(dst, buf) observableWrite(memory, dst, buf)

read(src, buf) observableRead(memory, src, buf)

Table 3: Example user-defined functions accessing observable
spaces. send and recv are used to express message transfer over net-
work and read and write represents local memory access. network
and memory are initialized by users with unique IDs and memory
space to store written and sent data.

 Local Machine

Unobservable
(e.g. Registers, 

Enclave)

Write

Read

Memory

(a) Memory Attacker

Local 

Machine

Send

Receive

Remote

Machine A

Remote

Machine B

(b) Network Attacker
Figure 1: Threat model of ObliCheck. The dark gray ( |||| ) part of
the figure represents the store and data that an adversary cannot
observe. The light gray( |||| ) indicates observable parts. An attacker
is not able to eavesdrop on the unobservable space and the content of
encrypted data. However, an attacker is capable of learning the size
of transferred data, the locations of data written to or read from an
observable space, and the destination and source network addresses
of the network messages and their sizes.

tion explained in §3.3. readSecretInput and readPublicInput
let a designer specify the secret input of an algorithm. This
specification is necessary to generate the verification condi-
tion at the end of symbolic execution. Listing 2 shows the
code in Listing 1 re-written using ObliCheck’s API.

3.2 Threat Model

As discussed in §3.1, ObliCheck assumes the existence of
unobservable spaces where an attacker cannot watch the data
content and access patterns. ObliCheck considers an attacker
that watches any accesses to observable space, as depicted
in Figure 1. However, we assume the attacker cannot learn
about the actual content of data written to or read from ob-
servable space because the data is encrypted when it crosses
the boundary between unobservable and observable spaces.

1 function tag(secretInput, threshold) {

2 var buf = [];

3 for (var i = 0; i < secretInput.length; i++) {

4 if (secretInput[i] < threshold) {

5 buf.push(Pair(secretInput[i], 0));

6 } else {

7 buf.push(Pair(secretInput[i], 1));

8 }

9 }

10 send(ADDR, buf);

11 }

12 function main(n) {

13 var secretInput = new Array(n);

14 for (var i = 0; i < n; i++) { secretInput[i] =

ObliCheck.readSecretInput() };

15 var threshold = ObliCheck.readPublicInput();

16 tag(secretInput, threshold);

17 }

Listing 2: Listing 1 is re-written using the APIs of ObliCheck. Only
the socket.send is replaced with send, and the input is introduced
using readSecretInput, and readPublicInput.

It is important to note that this observable space can differ
between threat models. A memory attacker in Figure 1a can
observe the memory address and size of data written to and
read from memory. A network attacker in Figure 1b can watch
the network address and length of messages transferred. To
account for this variability of unobservable and observable
spaces, ObliCheck provides an abstract threat model.

This abstract threat model allows algorithm designers to
express common threat models that oblivious algorithms as-
sume using the APIs of ObliCheck. For example, the network
attacker discussed in §1 can be modeled by using observ-
ableWrite and observableRead for network send and receive
functions respectively. The memory attacker can be modeled
similarly. Table 3 shows how these functions can be defined
using APIs of ObliCheck. We focus on the network adversary
as a running example, but an algorithm assuming the memory
attacker can be checked the same way.

ObliCheck only checks the obliviousness of a given algo-
rithm and assumes the data is properly encrypted when it is
written to an observable location. Mistakes of not properly
encrypting data can be caught using existing information flow



checking techniques [20, 26, 35, 40, 53, 55, 72–74].

3.3 Security Guarantee
To formulate the security guarantees of ObliCheck, we first
define the trace of observations visible to the adversary during
an execution. Given an algorithm P with input I, the trace of
observations τ is defined as a sequence of triplets:

τP(I) =< (ti,ai, li)|i ∈ N >

where t represents a type of access, a denotes a target or
source location of the operation, and l represents the size of
a data read or written. The type of access is either read or
write combined with the type of an observable space (e.g.,
memory or network). Further, since we assume the data itself
is encrypted properly before being written to an observable
store, the attacker can only observe the size of the data that is
read or written, and not the actual contents.

Note that in addition to secret data, an algorithm P may
also receive some public data as input. For P to achieve the
oblivious property, we require that given any pair of inputs
I and I′, as long as the public input is the same, then no
polynomial-time adversary should be able to distinguish be-
tween the traces τP(I) and τP(I′). Based on this definition,
a condition for checking the oblivious property can be ex-
pressed as follows:

∀I, I′ ∈ InputSpace(P),

PublicInputP(I) = PublicInputP(I′)

⇒ τP(I) = τP(I′)

Here, InputSpace represents all the possible input spaces of a
given algorithm, and PublicInputP returns the public input of
an algorithm P. ObliCheck verifies that the above condition
holds while checking an algorithm. The condition assumes
nothing about SecretInput, which encodes the independence
of the observable output from secret input.

ObliCheck records the trace during the execution under the
hood when it encounters a read or write API explained in §3.1.
The verification condition is written in terms of the pairs of
input (I, I′). This implies that the verification condition for
the oblivious property is a 2-safety property [67] that requires
a checker to observe two finite traces of an algorithm. We will
describe how ObliCheck uses symbolic execution to check
the above verification condition in §4.1.

4 Symbolic Execution and State Merging
4.1 Symbolic Execution for Checking Obliviousness
ObliCheck executes an algorithm symbolically, and at the
end of the execution, it checks whether the algorithm satisfies
the obliviousness condition defined in §3.3. ObliCheck uses
symbolic execution in the following way.

ObliCheck starts by treating all input values as symbolic
variables. ObliCheck explores both the true and false blocks of
all branches containing a symbolic value, while distinguishing
between secret and public symbolic variables to correctly
generate the verification condition at the end of the execution.

However, just running an algorithm once symbolically is
not sufficient because the verification condition of oblivious-
ness is written in terms of pairs of input. In other words,
obliviousness is a 2-safety property. Terauchi and Aiken [67]
formally defined a 2-safety property to distinguish it from a
general safety property, which can be proved by observing a
single finite trace.

In order to refute a 2-safety property, a checker has to ob-
serve two finite traces of an algorithm. Hence, ObliCheck
internally runs the algorithm twice symbolically, by sequen-
tially composing two copies of the algorithm. Each exe-
cution path of the first copy is followed by each one of
the second copy. This makes ObliCheck explore every pair
(Cartesian product) of the execution paths with pairs of input
(I, I′) ∈ InputSpace(P). At the end of the second execution,
ObliCheck compares the traces of both runs and checks that
the verification condition is always true using a constraint
solver (which checks that the negation of the verification con-
dition is unsatisfiable).

Example. To demonstrate how symbolic execution is used,
we represent the value-summary symbolic state of Listing 2
in Table 4. For brevity, we assume the input length n is 1 so
the loop iterates only once and omit the program counter (pc)
state. We will generalize for algorithms with loops bounded
by an arbitrary symbolic value in §6.

Line Value Summary

2-4 buf.length 7→ {(true,0)},i 7→ {(true,0)},buf[i] 7→ {(true,unde f ined)}

5,8-10
buf.length 7→ {(x0, f irst < y f irst ,1)},i 7→ {(x0, f irst < y f irst ,0)},

buf[i] 7→ {(x0, f irst < y f irst ,Pair(x0, f irst ,0))}

7,8-10
buf.length 7→ {(x0, f irst ≥ y f irst ,1)},i 7→ {(x0, f irst ≥ y f irst ,0)},

buf[i] 7→ {(x0, f irst ≥ y f irst ,Pair(x0, f irst ,1))}

2-4 buf.length 7→ {(true,0)},i 7→ {(true,0)},buf[i] 7→ {(true,unde f ined)}

5,8-10
buf.length 7→ {(x0,second < ysecond ,1)},i 7→ {(x0,second < ysecond ,0)},

buf[i] 7→ {(x0,second < ysecond ,Pair(x0,second ,0))}

7,8-10
buf.length 7→ {(x0,second ≥ ysecond ,1)},i 7→ {(x0,second ≥ ysecond ,0)},

buf[i] 7→ {(x0,second ≥ ysecond ,Pair(x0,second ,1))}
Table 4: Result of symbolic execution of the algorithm in Listing 2.

main introduces secret and public symbolic variables x0
and y respectively and assigns them to secretInput[0] and
threshold. To differentiate the first and second symbolic
executions, we add additional subscripts f irst and second to
the variables. Inside the tag function, the first symbolic exe-
cution starts with an initial path condition True and the length
of the output buffer is 0. After encountering the branch at Line
4, the execution diverges into two sets and the output buffer
length increments by one. The second symbolic execution
runs the same algorithm but with different symbolic variables:
x0,second and ysecond instead of x0, f irst and y f irst .

After finishing the symbolic execution, ObliCheck gener-



ates a verification condition based on the definition in §3.3:
y f irst = ysecond ⇒

((x0, f irst < y f irst ∧ x0,second < ysecond ⇒ 1 = 1)
∧(x0, f irst < y f irst ∧ x0,second ≥ ysecond ⇒ 1 = 1)
∧(x0, f irst ≥ y f irst ∧ x0,second < ysecond ⇒ 1 = 1)
∧(x0, f irst ≥ y f irst ∧ x0,second ≥ ysecond ⇒ 1 = 1))

This formula is trivially always true since buf.length is
always a concrete value 1 (we leave out the type of access
and the address fields of the trace for simplicity). The verifi-
cation condition is quite trivial for this simple example, but
as an input algorithm becomes more complicated, symbolic
execution proves its real worth since it can capture how the
observable trace changes over the execution and can exercise
all possible execution paths.

4.2 Optimistic State Merging
As we discussed in § 2.3, existing state merging techniques
merge states on different paths to alleviate the path explosion
problem. When a variable carries distinct values along differ-
ent paths, however, the benefit of state merging diminishes.
In MultiSE, for example, the size of value summary can still
grow exponentially if the variable maintains different values
across all execution paths. To solve this problem, we devise
optimistic state merging – a state merging technique that lever-
ages domain-specific knowledge of oblivious execution in the
presence of unobservable state.
Shortcomings of Traditional State Merging. In Listing 1,
the code is oblivious under the definition in §3.3 assum-
ing the data length is public. The algorithm always sends
the buffer with a length n regardless of the secret values in
secretInputRecords. To check this condition, a checker
should confirm the length of encrypted is the same across
any possible pairs of secretInputRecords. Naïvely run-
ning symbolic execution leads to path explosion because the
branch is inside the for loop. Since it is common to iterate
over elements in the input data set within unobservable space,
we need a way to prevent path explosion in this case.

To mitigate the path explosion problem, state merging tech-
niques merge two different symbolic states of a variable. As
we discussed in § 2.3, this can prevent unnecessary explo-
ration. However, conventional state merging techniques do
not effectively reduce the paths to explore when two merged
states are different from each other. For example, Table 4
shows the symbolic states after the execution in Listing 2.
With traditional state merging, the true and false paths
of the if statement at Line 4 cannot get combined because
buf[i] has different state in each path. In other words, tra-
ditional state merging techniques are sound and complete
with regard to symbolic execution and explore the same set
of program behaviors as regular symbolic execution.
Merging Paths Using Domain Specific Knowledge of
Oblivious Algorithms. ObliCheck is able to apply state
merging more aggressively through a domain specific insight.

Optimistic state merging leverages the observation that, in
oblivious algorithms, the attacker is unable to distinguish be-
tween different unobservable states because the plaintext data
only resides in unobservable space, and is later encrypted
when written to observable space. For example, buf[i] in
Listing 2 is encrypted when the buf is sent over network at
Line 10. Therefore, at branching statements, ObliCheck ex-
plores both true and false blocks immediately and merges the
corresponding states into a new symbolic variable without
divergence.

ObliCheck simplifies path conditions by introducing a new
variable when merging two different symbolic expressions.
For example, the algorithm in Listing 2 exhibits different
state of buf[i] in the then and else branches after Line
4 (Pair(x0,0) and Pair(x0,1) respectively; Table 4). Hence,
traditional state merging cannot merge these two states. In
contrast, ObliCheck introduces a new unconstrained symbolic
variable, z. Now, buf[i][1] becomes the same z, so those
two states can get combined as in Table 5.

Line Value Summary

2-4 buf.length 7→ {(true,0)},i 7→ {(true,0)},buf[i] 7→ {(true,unde f ined)}

5
buf.length 7→ {(x0, f irst < y f irst ,1)},i 7→ {(x0, f irst < y f irst ,0)},

buf[i] 7→ {(x0, f irst < y f irst ,Pair(x0, f irst ,0))}

7
buf.length 7→ {(x0, f irst ≥ y f irst ,1)},i 7→ {(x0, f irst ≥ y f irst ,0)},

buf[i] 7→ {(x0, f irst ≥ y f irst ,Pair(x0, f irst ,1))}
8-10 buf.length 7→ {(true,1)},i 7→ {(true,0)},buf[i] 7→ {(true,Pair(x0, f irst ,z))}

2-4 buf.length 7→ {(true,0)},i 7→ {(true,0)},buf[i] 7→ {(true,unde f ined)}

5
buf.length 7→ {(x0,second < ysecond ,1)},i 7→ {(x0,second < ysecond ,0)},

buf[i] 7→ {(x0,second < ysecond ,Pair(x0,second ,0))}

7
buf.length 7→ {(x0,second ≥ ysecond ,1)},i 7→ {(x0,second ≥ ysecond ,0)},

buf[i] 7→ {(x0,second ≥ ysecond ,Pair(x0,second ,1))}
8-10 buf.length 7→ {(true,1)},i 7→ {(true,0)},buf[i] 7→ {(true,Pair(x0,second ,z))}

Table 5: Result of optimistic state merging of the Listing 2.

This merging simplifies the verification condition to
y f irst = ysecond ⇒ 1 = 1, which reduces the burden of
a constraint solver. Optimistic state merging is an over-
approximation based on the domain-specific knowledge of
oblivious algorithms, where the data is encrypted and not ob-
servable by an adversary. Since it is an over-approximation,
this a sound transformation; namely, if the transformed sym-
bolic execution judges an algorithm is oblivious, then the
original algorithm is always oblivious.

Tracking the Secret Values after Merging. ObliCheck
checks the verification after the execution of two copies of a
given algorithm. The verification condition in §3.3 is gener-
ated from the access sequence recorded by ObliCheck under
the hood. To generate the verification condition, ObliCheck
needs to know which symbolic values are secret or public.

To this end, ObliCheck associates a taint tag with every
introduced symbolic variable. Symbolic variables introduced
by readSecretInput are assigned a taint tag 1, and the others
are assigned 0. ObliCheck sees the taint tag of symbolic val-
ues included in the trace and produces a proper verification
condition based on this information. Figure 3 describes the
semantics in a formal notation.

The use of taint tags is necessary due to optimistic state



Pgm ::= (` : stmt ;)∗

stmt ::= x = c
x = readSecretInput
x = readPublicInput
z = x ./ y
if x goto y
y = ∗x
∗x = y
error
halt

where
Σ is the program state
V is a set of variables
C is the set of constants
L is the set of statement labels
A is a set of memory addresses

x,y,z are elements of V
pc an element of V denoting the program

counter
c is an element of C∪A∪L
` is an element of L

./ is a binary operator
SecretSet is a set of secret symbolic variables
PublicSet is a set of public symbolic variables

Figure 2: A simple imperative language originally devised by Sen et
al. in MultiSE [63], augmented with states SecretSet and PublicSet
to maintain the mapping from symbolic values to the taint state.
The functions readSecretInput and readPublicInput introduce a
symbolic variable and initialize the corresponding taint tag. Refer to
Figure 3 for more details.

merging. When ObliCheck applies optimistic state merging, it
has to maintain whether a newly generated symbolic variable
is secret. Taint tags let ObliCheck track how secret input is
propagated and decide the security level of a newly generated
symbolic variable after optimistic state merging. Unlike tradi-
tional taint analysis, ObliCheck draws the final verdict based
on the verification condition, not the value of taint tags.

Optimistic State Merging Semantics. Our optimistic state
merging technique is based on MultiSE [63]. MultiSE merges
state without introducing auxiliary variables, and does not
require control flow graph analysis to identify join points
because the merging is done incrementally per assignment
operation. MultiSE maintains the state of variables in the form
of a value summary – a set of path conditions and possible
values of a variable. Each pair represents a possible value
which a variable can have and the corresponding condition
that leads to it. For example, buf.length in Listing 2 can
be represented using value summary {(x0 < y,1),(x0 ≥ y,1)}
after the first loop iteration.

In MultiSE, state merging can be done by simply replacing
pairs with the same values with a single pair whose path con-
dition is the disjunction of the conditions of the merged pairs.
For instance, the value summary of buf.length, {(x0 <
y,1),(x0 ≥ y,1)}, becomes {(True,1)} after state merging.
MultiSE further removes pairs whose path condition is false
when merging.

To formally demonstrate the semantics of ObliCheck oper-
ations including optimistic state merging, we bring a simple
imperative language from MultiSE [63] in Figure 2. Figure 3
defines the operational semantics of ObliCheck. Each operator
updates the program state Σ. The initial state maps each vari-
able to {(True,⊥)}, and pc to {(True, l0)}. To incorporate
the taint tag, we extend the value part of the value summary
from (φ,v) to (φ,〈v, t〉), where t is the taint tag either T or F
associated with the value. ] is the original value-summary
union operator that performs state merging in MultiSE. To
distinguish our optimistic state merging operator from the
MultiSE operator, we introduce the ∪× operator in the seman-
tics description. Our optimistic state merging operator works
as follows.
• In the value-summary pairs, the value part has an additional

taint tag t. T denotes that the corresponding value is secret,
and F denotes the value is public.

• For any two pairs (φ,〈v, t〉) and (φ′,〈v′, t ′〉) where v = v′, a
new value summary for s is calculated in the same way as
] does except that the new taint tag is set to t ∨ t ′. The new
value summary becomes (s\{(φ,〈v, t〉),(φ′,〈v′, t ′〉)}) ∪
{(φ∨φ′,〈v, t ∨ t ′〉)}.

• For any two pairs (φ,v) and (φ′,v′) where v 6= v′ in a
value summary for s, a new symbolic variable y is intro-
duced. If φ or φ′ contain a secret symbolic variable, the new
value summary becomes (s\{(φ,〈v, t〉),(φ′,〈v′, t ′〉)}) ∪
{(φ∨φ′,〈y,T 〉)}. Otherwise, the value summary becomes
(s\{(φ,〈v, t〉),(φ′,〈v′, t ′〉)}) ∪ {(φ∨φ′,〈y, t ∨ t ′〉)}
For example, buf[i] in Listing 2 has a value summary

{(x0 < y,〈0,F〉),(x0 ≥ y,〈1,F〉)}. After merging, the new
value summary becomes {(True,〈z,T 〉)}. The taint tag after
merging is T because the original path conditions contain x0,
a secret symbolic variable even though the original merged
values 0 and 1 are not secret values.

The ∪× operator is used in Figure 3 to describe the seman-
tics of symbolic execution and merging techniques used by
ObliCheck. Note that the program counter is treated in the
same way as MultiSE using ] operator.

5 Iterative State Unmerging
Although our optimistic state merging technique improves
the performance of ObliCheck without losing soundness, the
overapproximation of the technique incurs false positives.
In this section, we point out the problem of optimistic state
merging and devise a technique that iteratively and selectively
removes false positives.

5.1 Problem of Aggressive State Merging
Optimistic state merging overapproximates the values to get
merged. This overapproximation enables more values to be
merged but loses path-specific information. Because the val-
ues are replaced with symbolic variables which can be an
arbitrary value satisfying a corresponding path condition, it
brings up more false positives.
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Figure 3: The semantics of symbolic execution and state merging techniques of ObliCheck. The semantics incorporates the taint tag into the
MultiSE semantics [63] in order to track the propagation of secret input through merged symbolic values.

Listing 3 is a benign oblivious algorithm but is reported
as not oblivious if our optimistic state merging is used. At
Lines 6 and 8, the i− th position of buf is updated to either
0 or 1 depending on the value of secretInput[i]. Since
0 6= 1, our optimistic state merging operation introduces a
new symbolic variable and puts it in the value summary
of buf[i].second. At Lines 16 and 18, the predicates in
the branches contain record.second, where each record

points to the value stored at buf[i]. Since ObliCheck over-
approximated buf[i].second, it has no way to know 0 and
1 are the only possible values for record.second and thus
the algorithm is reported as not oblivious.

Our merging technique does not affect the soundness of
ObliCheck, but sacrifices the completeness due to the overap-
proximation for merging. In fact, if we merge every variable,
any algorithm that has a secret dependent branch that affects
the access sequence is classified as not oblivious, the same
way as a taint analysis based checker does. For better preci-
sion, ObliCheck has to intelligently choose variables to apply
the optimistic state merging technique.

5.2 Iteratively and Selectively Unmerging State

To overcome the issue, we introduce an iterative way to re-
move false positives. Choosing which values to merge during
the execution is tricky. The symbolic execution engine does
not immediately know how an updated variable is used later
by the verification condition. A naïve solution is rolling back
the merged state after the first iteration. However, this sim-
ple delayed rollback approach can cause the performance to
significantly deteriorate when a given algorithm is a false-
positive. In this strawman solution, ObliCheck will always
unmerge every symbolic value in the second iteration and
perform as poorly as regular symbolic execution.

Instead of identifying which variables to merge, ObliCheck
does the reverse. ObliCheck first runs a program merging
every variable updated in multiple execution paths. Then it
checks the verification condition, and identifies which vari-
ables should be unmerged. In the next iteration, ObliCheck
backtracks the execution, locates operations where the merg-
ing should be avoided and re-runs the program symbolically.
The verification is performed again at the end of the iteration.
This iterative process helps ObliCheck learn how a certain



1 function tag(secretInput, threshold) {

2 var buf = [];

3 for (var i = 0; i < secretInput.length; i++) {

4 if (secretInput[i] < threshold)

5 buf.push(Pair(secretInput[i], 0));

6 else

7 buf.push(Pair(secretInput[i], 1));

8 }

9 return buf;

10 }

11 function apply(records, func0, func1) {

12 var buf = [];

13 for (var i = 0; i < records.length; i++) {

14 if (records[i].second == 0)

15 buf.push(func0(records[i].first));

16 if (records[i].second == 1)

17 buf.push(func1(records[i].first));

18 }

19 return buf;

20 }

21 function main() {

22 // Input values are initialized

23 ...

24 var tagged = tag(secretInput, publicThreshold);

25 ...

26 var applied = apply(tagged, funcA, funcB);

27 ...

28 applied = Cipher.encrypt(applied);

29 write(ADDR, applied);

30 }

Listing 3: Tag&Apply code from Opaque [78]. tag function tags
0 or 1 depending on the value of each secretInput[i]. apply
applies a function to the value depending on the tag of an element.
Optimistic state merging merges the tags 0 and 1 into a symbolic
value. Although the branches in apply do not cause non-oblivious
behavior, the algorithm is reported as non-oblivious because the
record.second becomes a symbolic value after merging.

merging operation affects the outcome of verification later.
Algorithm 1 in Figure 4 is a formal description of the

iterative state unmerging process. During the execution,
ObliCheck tracks the location of operations which incur the
domain-specific merging. Jalangi inserts a unique operation
ID for every operation in a program statically. ObliCheck
stores the ID of operations which introduce a symbolic vari-
able or triggered domain-specific merging to an introduced
symbolic variable. At the end of each iteration, symbolic vari-
ables included in the verification condition are extracted. If
the verification condition does not hold and the extracted sym-
bolic variables contain ones introduced by domain-specific
merging, the operation IDs stored in SymVarToOID are added
to UnmergeOID to prohibit merging at these locations in the
next iteration. This iterative process enables an efficient selec-
tion of merging points that do not incur false positive errors.

An algorithm with more non-oblivious branches will end
up enduring more unnecessary iterations, wasting time. How-
ever, our domain-specific merging was based on the expecta-

Algorithm 1 Iterative state unmerging algorithm
1: global variables
2: SymVarToOID . Symbolic variables to operation IDs
3: UnmergeOID . Set of operation IDs
4: end global variables

. Called for every assignment operation in a program
5: procedure UPDATE(OperationID)
6: if OperationID ∈ UnmergeOID then
7: CONVENTIONALMERGING(OperationID)
8: else
9: s← DOMAINSPECIFICMERGING(OperationID)

10: SymVarToOID[s]← SymVarToOID[s] ∪
11: {OperationID}
12: procedure OBLICHECKMAIN(Program)
13: while true do
14: Reset SymVarToOID
15: Trace1← SYMBOLICEXEC(Program)
16: Trace2← SYMBOLICEXEC(Program)
17: VC← OBLIVIOUSVC(Trace1, Trace2)
18: if VC then
19: report OBLIVIOUS, return
20: SymVarsInVC← EXTRACTSYMVARS(VC)
21: if SymVarsInVC ∩ SymVarToOID.keys = ∅ then
22: report NOT OBLIVIOUS, return
23: for all s ∈ SymVarsInVC do
24: UnmergeOID← UnmergeOID ∪
25: SymVarToOID[s]

Figure 4: A formal description of how our iterative state unmerging
algorithm functions. SymVarToOID is a dictionary maps a symbolic
variable introduced by merging to a set of operation IDs. The oper-
ation IDs uniquely identify each operation in a program statically.
UnmergeOID is a set of operation IDs that represent the locations
where ObliCheck should avoid performing our domain-specific merg-
ing. For every iteration, UnmergeOIDs grows. This lets ObliCheck
increases the precision gradually as necessary.

tion that developers checking an algorithm for obliviousness
likely put effort towards making it oblivious, while potentially
missing a few details. Therefore, the number of iterations re-
quired to unmerge relevant symbolic values is not large. In §7,
we evaluate the additional cost using example algorithms. If
ObliCheck fails to check an algorithm within a given time bud-
get, it reports the locations where state merging has happened.
This information can greatly assist an algorithm designer to
manually inspect only a part of the code and then figure out
whether the algorithm is a true-positive or false-positive.

6 Handling Input-dependent Loops
6.1 Limitation of Symbolic Execution: Handling Loops

Bounded by Symbolic Expression
A well-known limitation of symbolic execution is its inability
of verifying a program containing an input-dependent loop.
These types of loops are bounded by a symbolic expression
which consists of symbolic input variables. A program with
an input-dependent loop has an infinite number of paths to
explore. For example, Listing 4 shows a loop bounded by



1 // threshold and inputSize are public input

2 function tag(secretInput, threshold, inputSize) {

3 var buf = [], i = 0;

4 while (i < inputSize) {

5 if (secretInput[i] < threshold) {

6 // buf.length += 1 inside push

7 buf.push(Pair(secretInput[i], 0));

8 } else {

9 // buf.length += 1 inside push

10 buf.push(Pair(secretInput[i], 1));

11 }

12 i++;

13 }

14 return buf;

15 }

Listing 4: tag function with an input-dependent loop. The for loop
is transformed into while to better demonstrate the control flow.

inputSize. The path condition of the first iteration inside
the loop is 0 < inputSize. That of the second one is ¬(0 <
inputSize)∧ (1 < inputSize) and a new path condition is
generated infinitely since inputSize is not bounded.

Most oblivious algorithms involve loops bounded by sym-
bolic input variables. These loops are used to iterate over an
secret input record of which the length is public. The length
of the processed output is thus dependent on the input length.
However, the algorithm can still be oblivious since revealing
the input length does not violate the obliviousness property.
In order to verify generalized oblivious algorithms with sym-
bolic input length, ObliCheck is required to handle loops
bounded by symbolic variables.

6.2 Automatic Generation of Loop Invariants
In a general program verification, a user is required to pro-
vide a loop invariant manually since it is an undecidable
problem [24, 34, 44, 65]. However, ObliCheck automatically
infers relevant partial loop invariants by leveraging a fact that
the length of the output is an induction variable. Induction
variables get incremented or decremented by a fixed amount
for each iteration in a loop. Oblivious algorithms use input-
dependent loops to build up output data by iterating over
the secret input records. To preserve obliviousness, a fixed
amount of elements are appended to the output buffer for
every iteration as shown in the tagging example of Listing 4.

As long as the size of a buffer is an induction variable, the
problem is reduced to inferring the number of iterations of a
loop. The side-effects of a loop to induction variables can be
captured by multiplying the delta of the variables per itera-
tion by the number of iterations. Godefroid and Luchaup [29]
formalized this idea in dynamic test generation. We extend
the idea to capture partial loop invariants in pure symbolic
execution. In a similar way that Godefroid and Luchaup [29]
proposed, ObliCheck tracks the modified variables and check
the delta of the variables and expression in the loop condi-
tion between two consecutive iterations. Unlike Godefroid
and Luchaup, however, we use pure symbolic execution for

Algorithm 2 Automatic loop invariant generation algorithm

. Called for every read operation in a loop
1: procedure READLOOP(L, Var)
2: if Var not in L.UpdatedVars.Keys then
3: L.UpdatedVars[Var] = readSecretInput
4: return L.UpdatedVars[Var]

. Called for every write operation in a loop
5: procedure UPDATELOOP(L, Var, Val)
6: L.UpdatedVars[Var] = Val

. Both functions are called at the end of a loop body
7: procedure INFERINDUCTIONVARS(L)
8: for V in L.UpdatedVars.Keys do
9: if L.Iteration == 1 then

10: L.IVCandidates[V]=L.UpdatedVars[V]
11: if L.Iteration == 2 then
12: L.IVDeltas[V]=L.UpdatedVars[V]-

L.IVCandidates[V]
13: L.IVCandidates[V]=L.UpdatedVars[V]
14: if L.Iteration == 3 then
15: if L.UpdatedVars[V] - L.IVCandidates[V]
16: == L.IVDeltas[V] then
17: IVs.append(V)
18: return IVs
19: procedure INFERLOOPITERATIONS(L)
20: for C in L.LoopConditions do
21: if L.Iteration == 1 then
22: C.Value = C.LHS - C.RHS
23: if L.Iteration == 2 then
24: C.Delta = (C.LHS - C.RHS) - C.Value
25: if L.Iteration == 2 then
26: if (C.LHS - C.RHS) - C.Value == C.Delta then
27: if L.Operator == < then
28: C.LoopCount = -(C.InitialVal / C.Delta)
29: if L.Operator == > then
30: ...

Figure 5: Functions added for generating loop invariants automati-
cally. ReadLoop and UpdateLoop track the changed variables inside
the loop. ReadLoop returns a fresh symbolic variable if a variable
is read before written. InferInductionVars and InferLoopIterations
track the delta of the variables and loop conditions to find the induc-
tion variables, and compute the number of iterations of a loop.

sound verification and finish loop summarization within three
iterations by over-approximation. Algorithm 2 in Figure 5
describes our loop summarization algorithm.

Finding Induction variables. ObliCheck figures out the
difference of each variable between the first and second itera-
tions, and the second and third ones. Then ObliCheck checks
that the two differences are the same. The first iteration starts
with an empty state mapping. When a variable is modified
in the first iteration, an entry from the variable to its con-
crete or symbolic value is updated. If a variable is referenced
but does not have an entry in the mapping, an unconstrained
symbolic variable is assigned to the referenced variable. This
over-approximation takes any possible modifications in previ-



ous iterations into account. At the end of the first iteration, the
values of the updated variables are saved. The second iteration
is executed with the state created during the first iteration. At
the end of the second iteration, the difference of the values
saved at the first iteration and the second one is calculated
and saved. After the third iteration, another set of the deltas
is obtained and the variables whose deltas are the same are
judged as induction variables.

Calculating the number of iterations. The number of loop
iterations depends on the loop condition that bounds the loop.
Loop conditions are the conditional statements inside a loop
that have one of their targets point to the outside of the loop.
A conditional predicate of the form LHS ◦ RHS in a loop
condition, where ◦ is one of the conditional operators (<,≤
,>,≥,=, 6=), can be transformed to LHS−RHS ◦0 and the
delta of LHS−RHS between iterations are obtained in the
same way that the delta of induction variables are figured
out [29]. When the operator ◦ is <, the number of iterations
is −(InitialValue/Delta). Since there can be multiple loop
conditions if a loop body has break or return statements,
ObliCheck computes the number of iterations for each loop
condition and takes the minimum among them.

After getting the delta per iteration of induction variables
and the number of iterations, the loop’s post-condition be-

comes
n∧
i

IVi =Ci +Di ∗ ICl , where IVi represents the induc-

tion variables, Ci is each induction variable’s initial value
before the loop, and ICl is the number of iterations of the
loop l. For example, the algorithm in Listing 4 has two in-
duction variables, i and buf.length. The post-condition be-
comes i = 0+1∗ inputSize∧bu f .length = 0+1∗ inputSize.
The pre-condition of the loop is the loop condition i <
inputSize, so the loop is summarized as (i < inputSize)∧(i =
inputSize∧bu f .length = inputSize).

Limitation. ObliCheck cannot summarize the side-effects
of a loop on non-induction variables (e.g., sum += x, where
x is a symbolic expression). Also, if the loop condition de-
pends on a non-induction variable, ObliCheck is unable to
infer the number of loop iterations (e.g., for (i=0; i<y;

i+=x), where x is a symbolic expression, not a constant). The
same limitation applies to the recursive functions bounded
by input-dependent variables. In these cases, ObliCheck sim-
ply assigns an arbitrary symbolic variable to non-induction
variables and variables changed in a loop bounded by non-
induction variables for over-approximation. If a part of the
over-approximated variables is included in the verification
condition, it will result in a false-positive. However, in §7 we
show that this is not the case for existing oblivious algorithms
since the relevant variables such as the length of the output
buffer increment by a fixed amount per iteration.

7 Evaluation
7.1 Implementation
We implemented ObliCheck using Jalangi [61], a dynamic
program analysis framework for JavaScript. We chose
Javascript as a modeling language mainly to leverage the
existing open-source Jalangi framework and MultiSE imple-
mentation. Other open-source tools such as KLEE [16] and
Manticore [52] do not support full-fledged state merging for
general programs. Moreover, the idea of value summary rep-
resentation and incremental state merging is most straightfor-
ward to base the implementation of our techniques on. The
main concern of our evaluation is the relative performance im-
provement from our techniques. Hence, we did not consider
the absolute performance of existing tools when choosing
MultiSE as a baseline.

Overcoming limitations of symbolic execution. We ad-
dress two challenges posed by the limitation of symbolic
execution. First, handling memory address and pointer val-
ues can be prohibitively expensive. When references and
pointers with symbolic values are de-referenced, symbolic
execution invokes a constraint solver to figure out all possible
pointer values under the path condition. Finding all satis-
fying assignments using a constraint solver is prohibitively
expensive. We eluded this issue since ObliCheck is based on
MultiSE. MultiSE does not require constraint solving for de-
referencing pointers because it maintains the set of possible
memory addresses of a pointer in the value-summary. This
allows ObliCheck to read and write memory locations directly
instead of using a constraint solver to reason about memory
operations. Second, symbolic execution cannot precisely han-
dle programs with unbounded loops or recursions. Existing
tools sacrifice soundness and limit the depth of path to handle
this issue. We implemented our loop summarization technique
in § 6 to preserve soundness and avoid false-negative cases.
ObliCheck is still not able to summarize all unbounded loops
as we pointed out in the last paragraph of § 6.

7.2 Evaluation Setup and Input Algorithms
We measured the total analysis time including the symbolic
execution and constraint solving time, but excluded the instru-
mentation time which is syntax-based and done before the
symbolic execution. The experiment was done on an AWS
instance with Ubuntu 18.04.2, with 2.5 GHz Intel Xeon Plat-
inum 8175 processors and the memory size is 32GB

We evaluate ObliCheck using existing data processing algo-
rithms from data processing frameworks used in production
and published academic papers. Table 6 lists the benchmark
algorithms. Opaque [78] is an open-source, distributed data
analytics frameworks based on Apache Spark [2]. Signal
Messenger [7] is an open-source encrypted messaging service
commercialized by Signal Messenger LLC. The input pro-
grams are derived from either the implementation or written
description of the algorithms. However, ObliCheck does not
verify the actual implementation of the algorithms and the



Algorithm Description

Tag The algorithm in Listing 1
Tag (Not Oblivious) The algorithm in Listing 1 with the false

branch in the if statement removed
Tag&Apply The algorithm in Listing 3
Sort Oblivious operator from Opaque

project [3]
Filter Oblivious operator from Opaque

project [3]
Aggregate Oblivious operator from Opaque

project [3]
Join Oblivious operator from Opaque

project [3]
MapReduce MapReduce algorithm by Ohrimenko et

al. [57]
Decision Tree Oblivious decision tree inference by

Ohrimenko et al. [58]
Hash Table Oblivious hash table used in the Signal

messenger contact discovery service [6]
AES Encryption AES CBC encryption from AES-JS [1]
Neural Net Infer-
ence

Prediction part of a neural network from
neuroJS [5]

TextSecure Server End-to-End message encryption server
in Javascript [4]

Table 6: List of benchmark algorithms. Tag and Tag&Apply are the
example algorithms showed earlier. Sort, Filter, Aggreate and Join
are from the Opaque framework [3], MapReduce and Decision Tree
are from Ohrimenko et al. [57,58] and Hash Table is from the Signal
Messenger [7].

input programs are all re-written in the subset of Javascript
using ObliCheck APIs.

7.3 Accuracy Test

Example Oblivious? Taint
Analysis

ObliCheck

OSM OSM+ISU

Tag © × 7 © 3 © 3

Tag (NO) × × 3 × 3 × 3

Tag&Apply © × 7 × 7 © 3

Sort © × 7 © 3 © 3

Filter © × 7 © 3 © 3

Aggregate © × 7 © 3 © 3

Join © × 7 © 3 © 3

MapReduce × × 3 × 3 × 3

DecisionTree © × 7 © 3 © 3

HashTable © × 7 © 3 © 3

AES Encryption © © 3 © 3 © 3

Neural Net Inference © © 3 © 3 © 3

TextSecure Server × × 3 × 3 × 3

Table 7: Accuracy evaluation result of each technique over the bench-
mark suite algorithms. Taint Analysis checks the algorithm has a se-
cret dependent branch by taint tracking. OSM is our optimistic state
merging technique where only the length of buffers are not merged,
and ISU is our iterative state unmerging technique (ObliCheck).©
means the algorithm is classified as oblivious and× represents one
is classified as not oblivious. 3 marks the test result is correct (either
true positive or true negative)and 7 marks the result is an error (either
false positive or false negative).

We first evaluate the accuracy of ObliCheck’s techniques
(i.e., optimistic state merging and iterative state unmerging)
and compare it with other existing techniques – namely, taint
tracking, and symbolic execution with conventional state
merging (MultiSE). Table 7 displays the results. MapReduce
is not oblivious because it pads the output up to the possi-
ble maximum length of the output based on the input data.
Thus, it leaks information regarding the input data distribu-
tion. TextSecure Server is not oblivious since the server sends
the different lengths of the messages based on the status of
the devices and it does not pad the messages before sending
them.

Taint analysis classifies all algorithms as not oblivious ex-
cept for AES Encryption and Neural Net Inference. Both
of the two are only algorithms without secret-dependent
branches. Our optimistic state merging technique obtains the
correct results except for the Tag&Apply (in Listing 3) exam-
ple. As we discussed in §5, optimistic state merging enables
two paths with different symbolic states to get merged pre-
cisely by the overapproximation. However, the performance
improvement comes at the cost of accuracy due to false posi-
tives. In Tag&Apply, simply merging all the tag values leads
to false positive because of the if statements in the apply

function in Listing 3.
With iterative state unmerging, ObliCheck iterates the sym-

bolic execution in addition to the first Optimistic State Merg-
ing phase. In Listing 3 with the Tag&Apply source code, the
tag value is unmerged in the second iteration then ObliCheck
correctly classifies the program as oblivious. Both conven-
tional state merging and our iterative state unmerging tech-
nique correctly identify oblivious and non-oblivious algo-
rithms. There is no false-negative case in either technique.
We discuss the cost of additional iterations of iterative state
unmerging in the next evaluation.

7.4 Performance Evaluation
Pure symbolic execution suffers from path explosion and
conventional state merging does not fully address this issue.
We evaluate the performance of applying conventional state
merging to ObliCheck and show how much performance im-
provement it achieves in terms of total program analysis time.
We also measured the overhead of iterative state merging com-
pared with a non-iterative domain-specific merging technique.
We set the length of the input data as large as possible until
MultiSE is on the brink of out of memory. The input data
to be processed is considered private in all the examples. In
Neural Net Inference, we consider the size of the network
layers is not private. In TextSecure Server, we consider the
destination device addresses are private input.

Table 8 shows the evaluation results of pure MultiSE and
ObliCheck on the test algorithms. ObliCheck performs up
to 50300× faster than MultiSE. The improvement mainly
comes from the reduced number of exploration paths and
simplified path conditions due to optimistic state merging.



Example LoC Branch
Symbolic Execution (MultiSE) ObliCheck (OSM) ObliCheck (OSM + ISU)

Total Time (s)
Avg Value

Summary Size Total Time (s)
Avg Value

Summary Size Total Time (s)
Avg Value

Summary Size
Speed Up (×)
(vs MultiSE)

Overhead (%)
(vs OSM)

Tag 27 90 5176.90 459.52 0.19 1.37 0.20 1.37 26548.16 0.52
Tag (NO) 25 90 5141.39 589.71 1.48 2.23 1.49 2.23 3450.60 0.02
Tag&Apply 32 94 5148.17 377.00 0.27 1.43 0.46 1.42 11167.40 70.74
Sort 149 263 4614.00 4.01 0.44 1.60 0.45 1.60 10276.16 0.02
Filter 150 287 14970.46 7.46 0.41 1.58 0.42 1.58 35900.39 0.01
Aggregate 156 268 4875.15 3.99 0.35 1.61 0.34 1.61 14380.99 -0.01
Join 160 268 3912.44 4.06 0.31 1.61 0.31 1.61 12620.77 -0.02
MapReduce 62 241 8154.90 204.86 9.68 2.09 38.32 2.20 212.79 296.11
DecisionTree 35 653 9305.51 465.12 0.19 1.01 0.19 1.01 50300.04 1.64
HashTable 42 139 1683.32 38.64 0.15 1.39 0.16 1.39 10520.75 0.0
AES Encryption 754 0 1.00 1 0.99 1 1.00 1 1.00 0.0
Neural Net Inference 179 0 4.84 1 4.84 1 4.78 1 1.03 -0.01
TextSecure Server 158 149 3433.11 36.23 0.18 1.44 0.18 1.44 19506.32 0.02

Table 8: Performance evaluation result of each technique on the test algorithms. OSM refers to optimistic state merging, and ISU to iterative
state unmerging. LoC is the lines of code of each program. Branch refers to the number of branches encountered during a single execution. The
total time includes the execution time of the symbolic execution engine and the solver time of ObliCheck. The average value summary size is
the average length of the value summary, which reflects how efficiently state merging was done. OSM shows the best performance since it
merges everything and executes a program only once. ObliCheck with ISU has less than 1.64% of the overhead for the test algorithms except
for Tag&Apply and MapReduce. Two algorithms are a false positive and a true negative, which make ObliCheck iterates more.
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(a) Oblivious Tagging (True Negative)
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(b) Oblivious Tag and Apply (False Positive)
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(c) Non-oblivious Tagging (True Positive)
Figure 6: Total analysis time of MultiSE (conventional state merging) and ObliCheck (domain-specific merging followed by iterative state
unmerging) over Tag, Tag&Apply, and Tag (Non-oblivious). The total time of MultiSE grows exponentially until the input size 16 and fails to
finish due to out of memory error after then when it analyzes Tag and Tag&Apply. The total analysis time of ObliCheck grows linearly without
out of memory error. The total time of ObliCheck blows up exponentially when it checks the non-oblivious Tag algorithm. This is because state
merging is not possible after unmerging merged state and the size of state exponentially grows as MultiSE does.

The overhead of iterative state merging is marginal if the al-
gorithm is oblivious. If the algorithm is not oblivious (true
positive) or needs more iterations to turn out to be oblivious
(false positive) it becomes more significant. In Tag&Apply, a
false-positive case, the overhead is 70.74%. The additional it-
eration of iterative state unmerging causes this extra execution
to report a correct result. The maximum overhead is 296%
for checking MapReduce in the benchmark suite. Although
iterative state unmerging costs some performance improve-
ment achieved by optimistic state merging for true-positive
cases, ObliCheck achieves a significant improvement over
conventional symbolic execution. In MapReduce, ObliCheck
still achieves 212.79× of speedup. This is because ObliCheck
only unmerges the variables affecting the verification condi-
tion instead of re-running a program without any merging.

We also demonstrate the scalability of ObliCheck com-
pared with conventional state merging techniques, by running

vanilla MultiSE and ObliCheck over Tag, Tag&Apply and
Non-oblivious Tag algorithms. The algorithms result in a true
negative, false positive and true positive respectively when
checked using optimistic state merging.

Figure 6 shows the results. ObliCheck boasts linear scala-
bility when it checks Tag, and Tag&Apply algorithms, which
are oblivious. In contrast, the runtime of MultiSE grows ex-
ponentially for non-oblivious Tag since it fails to merge the
states in the end. In this case, ObliCheck provides the informa-
tion regarding the program statements where state unmerging
has been applied so that an algorithm designer can manually
inspect and judge a given algorithm is truly non-oblivious.

Table 9 demonstrates the loop summarization performance
of ObliCheck. The number of loops only include ones summa-
rized by ObliCheck. For example, AES Encryption algorithm
contains multiple for loops but only one outermost loop has
the input length in its loop condition. All the other loops are



Example MultiSE ObliCheck # of Loops Total Time (s)

Tag ∞ © 3 2 0.060
Tag (NO) ∞ × 3 2 0.062
Tag&Apply ∞ © 3 2 0.138
Sort ∞ © 3 30 0.245
Filter ∞ © 3 34 0.290
Aggregate ∞ © 3 30 0.161
Join ∞ © 3 30 0.160
MapReduce ∞ × 3 26 0.439
DecisionTree ∞ © 3 5 0.117
HashTable ∞ © 3 6 0.151
AES Encryption ∞ © 3 5 0.017
Neural Net Inference ∞ © 3 5 0.016
TextSecure Server ∞ × 3 2 0.065

Table 9: Loop invariant generation test result. The # of Loops col-
umn includes the number of loops summarized by ObliCheck. ∞

means the checking process runs infinitely. MultiSE runs infinitely
for all test algorithms because of input-dependent loops. ObliCheck
classifies each algorithm correctly by summarizing the loops.

constants. As we discussed in §4.1, MultiSE runs infinitely
when a given algorithm contains input-dependent loops and
thus cannot verify it. In contrast, ObliCheck generates loop
invariants automatically and classifies every test algorithm
correctly within a second.

7.5 Case Study on the Applications
ObliCheck boasts the biggest speedup on the Decision Tree
application. The code in Listing 5 is from the application.
A decision tree compares a given input and intermediate de-
cision nodes to provide a prediction result. The oblivious
decision tree keeps accessing the rest of the layers even after
finding a leaf node to keep the visible access patterns the same
regardless of the input value. Regular symbolic execution suf-
fers from the path explosion since it diverges at every iteration
due to the branch statement. In contrast, ObliCheck merges
the branch statement and correctly judges the obliviousness
of a program with the orders of magnitude speedup.

1 var cur = 0, found = 0;

2 for (var i = 0; i < layerLen; i++) {

3 if (privateData < layers[i][cur]) {

4 cur = cur * 2;

5 } else if (privateData > layers[i][cur]) {

6 cur = cur * 2 + 1;

7 } else {

8 found = cur;

9 cur = cur * 2;

10 }

11 }

Listing 5: A branch statement from Decision Tree.
ObliCheck accomplishes a speedup on the Hash Table ap-

plication similarly. In Listing 6 from Hash Table, ObliCheck
merges the if statement that calculates the index of a bucket.
The x variable is used to calculate the remainder based on the
length of the cache line. This modulo operation figures out
at which index privateData[i] should be inserted. This
merging prevents the path explosion problem.

1 for (var i = 0; i < cacheLineLen; i++) {

2 for (var j = 0; j < dataLen; j++) {

3 var x = readSecretInput();

4 if (x * cacheLineLen + i ==

privateData[j]) {

5 cacheLines[i][nextAvailableCache[i]] =

privateData[i];

6 nextAvailableCache[i] += 1;

7 } else {

8 cacheLines[i][dummySlot] =

privateData[i];

9 }

10 }

11 }

Listing 6: A branch statement from Hash Table

8 Discussion
8.1 Generalization for Checking Other Side Channels
ObliCheck proves the absence of the access pattern side-
channel by keeping the access sequence as a program state.
Based on the recorded state, ObliCheck checks whether the
predefined verification condition holds at the end of symbolic
execution. The oblivious property enforced by ObliCheck
guarantees the absence of the access pattern based side-
channel leakage at the algorithm level. In principle, other
types of side-channel leakage can also be verified similarly.
For example, one can model timing side-channels by record-
ing the number of steps of an algorithm while symbolically
executing an algorithm. In contrast to existing works that rule
out algorithms with secret dependent branches and memory
accesses entirely [15, 69], comparing the time it takes to fin-
ish each execution path directly is a more precise approach.
By (1) modeling observable behavior of an algorithm as pro-
gram state during the symbolic execution, and (2) defining
the verification condition based on the state, one can prove
the side-channel leakage using the same technique used in
ObliCheck. We leave the generalization of our technique for
different types of side-channels as future work.

8.2 Checking Probabilistically Defined Obliviousness
ObliCheck checks if a given algorithm has the same determin-
istic access sequence across all possible inputs. In contrast, the
original ORAM work defines obliviousness probabilistically.
To verify the obliviousness condition in this case, a checker
should keep the probability distribution of access sequences
and verify the distributions of any two inputs are indistin-
guishable. For this, a symbolic execution engine should be
able to capture how a variable with probability distribution is
transformed over the algorithm execution. Several techniques
have been proposed recently to automatically verify differ-
ential privacy, which certifies the distance between any two
algorithm outputs is within a concrete bound [9, 13, 76]. For
example, LightDP [76] provides a language with a lightweight
dependent type incorporating probability distribution. Sim-
ilarly, ObliCheck can be extended with APIs or with a new
domain-specific language (DSL) to capture probability distri-



bution, and its transformation during the execution. The final
verification condition checks the statistical distance of the
observable state for any two inputs. This interesting direction
requires further investigation and we leave it for future work.

8.3 Checking Algorithms in a Different Programming
Language

Although core techniques of ObliCheck can be implemented
in any other languages, we found Javascript is the right choice
as a modeling language in most cases. It is a dynamic lan-
guage that does not require static typing, compilation, and
explicit memory management. These characteristics facili-
tate rapid prototyping of an algorithm to quickly check its
obliviousness using ObliCheck. Although it has some quirks
such as the unusual semantics of equality, ObliCheck utilizes
a clean subset of Javascript as modeling language and thus
clear enough for modeling algorithms. However, we found
it unnatural to model the low-level behavior of an algorithm
in Javascript. A user has to write assembly-like code using
Javascript to verify the machine code-level obliviousness. In-
stead of using Javascript, it is natural to devise a Domain
Specific Language for writing an algorithm in this case. Then
a compiler translates it to an intermediate representation such
as LLVM IR for verification, rather than a user manually de-
scribes the low-level behavior of an algorithm.

9 Related Work
Checking Side Channel Leakage Using Taint Analysis.
Several past works detect or mitigate side-channel leakage
of an algorithm using taint analysis. Vale [15] provides a
DSL and tools for writing high-performance assembly code
for cryptographic primitives. Vale checks the written code
is free from digital side-channels of memory and timing us-
ing taint analysis. As described in §2.4, this approach can
result in a large number of false positives in the presence of
unobservable state.

Raccoon [59] uses taint analysis to identify secret depen-
dent branches which can potentially leak information and
obfuscate the behaviors of these branches. Since Raccoon is
a compiler but not a checker, using taint analysis in this way
may result in unnecessary obfuscation but not the rejection
of a program. Sidebuster [77] uses taint analysis in the same
way to check and mitigate side-channels in web applications.
Overall, taint analysis is an efficient technique to detect and
mitigate side-channels under a limited time budget. However,
it keeps a coarse-grained state regarding information flow and
only tracks which variables are affected by a source input.

Symbolic Execution and State Merging Techniques for
Preventing Side Channel Attacks. Symbolic execution has
widely deployed to check certain properties of a program and
generate high-coverage test cases [16–18,28,38,61,62]. Prac-
tical symbolic execution frameworks normally limit the depth
of exploration or drive the execution to parts of a code to find
buggy code with a limited time budget. Our checker rather

checks the whole input space of a program to eliminate false-
negative cases to make our checker useful for checking the
security property.

State merging techniques are used to resolve the path ex-
plosion problem of symbolic execution at the expense of
more complicated path conditions [10, 27, 30]. MultiSE [63]
merge states incrementally at every assignment of symbolic
variables without introducing auxiliary variables. MultiSE
supports merging values not supported by constraint solver
such as functions and makes it unnecessary to identify the join
points of branches to merge state. OSM of ObliCheck is fun-
damentally different from existing state merging techniques.
Existing state merging techniques are sound and complete
with regard to symbolic execution. The merged symbolic state
explores the same set of program behaviors as regular sym-
bolic execution. Therefore, existing techniques do not report
false positives. In contrast, OSM leverages domain-specific
knowledge from oblivious programs and over-approximates
program behavior to merge two states even if they cannot be
merged in original state merging, which significantly speeds
up the checking process. However, OSM might report false
positives, and that’s where ISU kicks in to repair them.

One of the most widely exploited and studied side-channels
is the cache side-channel. CaSym [45] uses symbolic execu-
tion to detect a part of a given program that incurs cache side-
channel leakage. CaSym runs the LLVM IR of a program
symbolically and finds inputs which let an attacker distin-
guish observable cache state. CaSym merges paths by intro-
ducing an auxiliary logical variable. CaSym and ObliCheck
differs in how they merge state—CaSym merges at join points
by introducing auxiliary variables, while ObliCheck merges
at each assignment statement. Moreover, CaSym does not
use domain-specific knowledge to merge state aggressively.
CaSym specifically focuses on checking cache side-channel
leakage with a comprehensive cache model but ObliCheck is
for more general oblivious algorithms. CacheD [69] also uses
symbolic execution but only checks the traces explored in a
dynamic execution of a program, which may miss potential
vulnerabilities. CacheAudit [21] uses abstract interpretation
to detect cache side-channel leakage.

Ensuring Noninterference Policy. Noninterference is a se-
curity policy model which strictly enforces information with
a ‘high’ label does not interfere with information with a ‘low’
label [20]. Some existing approaches for enforcing nonin-
terference are type checking [53, 54, 68] and abstract in-
terpretation [25, 39]. Barthe et al. defined a way to prove
noninterference by a sequential composition of a given al-
gorithm [12]. Terauchi and Aiken proposed a term 2-safety
to distinguish safety property like noninterference which re-
quires observing two finite sets of traces [67]. Also, they
devised a type-based transformation of a given algorithm
for self-composition which has better efficiency than a sim-
ple sequential-composition suggested by Barthe et al. for
removing redundant and duplicated execution. Milushev et



al. suggested a way to use symbolic execution to prove the
noninterference property of a given algorithm [50]. They
used type-directed transformation suggested by Terauchi and
Aiken to interleave two sets of algorithms. The type-directed
transformation can be orthogonally applied and potentially
improve the performance of ObliCheck.

10 Conclusion
Access pattern based side-channels have gained attraction due
to a large amount of information they leak. Although oblivious
algorithms have been devised to close these side-channels, the
algorithms must be manually checked. We showed that sym-
bolic execution can be utilized to automatically check a given
algorithm is oblivious. With our optimistic state merging
and iterative state unmerging techniques, ObliCheck achieves
more accurate results than existing taint analysis based tech-
niques and runs faster than traditional symbolic execution.
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