Oblivious Coopetitive Analytics Using Hardware Enclaves

Ankur Dave, Chester Leung, Raluca Ada Popa, Joseph E. Gonzalez and Ion Stoica
ankurd,chester,raluca,jegonzal,istoica@eecs.berkeley.edu
UC Berkeley

Abstract

Coopetitive analytics refers to cooperation among compet-
ing parties to run queries over their joint data. Regulatory,
business, and liability concerns prevent these organizations
from sharing their sensitive data in plaintext.

We propose Oblivious Coopetitive Queries (OCQ), an effi-
cient, general framework for oblivious coopetitive analytics
using hardware enclaves. OCQ builds on Opaque, a Spark-
based framework for secure distributed analytics, to execute
coopetitive queries using hardware enclaves in a decentralized
manner. Its query planner chooses how and where to execute
each relational operator to prevent data leakage through side
channels such as memory access patterns, network traffic
statistics, and cardinality, while minimizing overhead.

We implemented OCQ as an extension to Apache Spark
SQL. We find that OCQ is up to 9.9x faster than Opaque, a
state-of-the-art secure analytics framework which outsources
all data and computation to an enclave-enabled cloud; and is
up to 219x faster than implementing analytics using AgMPC,
a state-of-the-art secure multi-party computation framework.

1 Introduction

Distributed analytics frameworks [79] are now widely used,
but are designed to operate on data owned by one entity. Fed-
erated databases, which span data owned by multiple coop-
erating parties, have a long history in the database commu-
nity [27, 28, 70, 80]. This community has focused on the case
when the organizations trust each other and can share data.

However, there are many applications in which organiza-
tions cannot share plaintext data with each other because, for
example, they are in business competition, or due to privacy
regulations and liability concerns. Nevertheless, collaboration
among these competing organizations could enable new appli-
cations. For example, banks would like to perform analytics
over their aggregate data to better detect money laundering,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

EuroSys '20, April 27-30, 2020, Heraklion, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to
ACM.

ACM ISBN 978-1-4503-6882-7/20/04. .. $15.00
https://doi.org/10.1145/3342195.3387552

@ Jointly 0CQ Planner Secure Federated Execution
Approved 7 Replicated Plan
Party 1 Queries i
across parties | | ouiious
- operators on
@ Joint L joint data B
Party 2 Schema Schema-Aware
Padding Authenticated |~
. operators on
@ ASens“.lt{ylty Mixed-Sensitivity parties’ own |

Figure 1. OCQ executes approved federated queries using hardware
enclaves. Its query planner and relational operators hide memory
and network access patterns and sensitive cardinalities.

but cannot share the data with each other because they are in
competition. The Chief Risk Officer of Scotiabank stated that
such collaboration “will enhance yields by orders of magni-
tude” [25]. We are partnering with Scotiabank for this use
case. As another example, consider a consortium of hospitals
that want to pool their patient data for researchers to access.
Researchers need the ability to correlate patients across hos-
pitals, yet regulations prevent the hospitals from sharing raw
patient data or letting it leave the premises [17]. Following
previous work [82], we refer to this setting of analytics among
cooperative and competing parties as coopetitive analytics.

In a coopetitive setting, parties agree in advance on a shared
schema and a set of allowed queries. They agree to run these
queries on their private data and share only the results. In
particular, they will not share the actual database of any party
or intermediate results in the query computation.

Prior work in the coopetitive setting uses either specialized
cryptography or hardware enclaves. Cryptography [1, 7, 42,
51, 64, 82] either offers limited functionality too restrictive
for general analytics, as is the case for partially-homomorphic
encryption, or introduces enormous overheads, taking hours
to months for typical queries, as is the case for secure multi-
party computation (MPC), as we show in §8.

Approaches based on hardware enclaves [26, 53, 60, 81]
are more promising for performance. While hardware en-
claves have many side channels [14, 15, 46, 69, 74, 77], prior
work [35] shows that many classes of side channels disap-
pear if one designs the computation to be oblivious: memory
accesses are independent of sensitive data. In a distributed set-
ting, network traffic patterns also create a side channel [59].
Hence, to use hardware enclaves for coopetitive analytics
requires oblivious protocols designed for this setting. The
overarching challenge is that such protocols are slow.

The most relevant related work to OCQ is likely
Opaque [81], which offers oblivious analytics on data
outsourced to a single untrusted cloud. However, aggregating
multiple parties’ sensitive data to a single location suffers
from several drawbacks in the coopetitive setting. First,


https://doi.org/10.1145/3342195.3387552

transferring and maintaining a remote copy of large data
incurs significant overhead especially if this data changes
frequently. Second, this strategy may run afoul of regulations
that forbid a database from being moved out of a certain
perimeter. Third, the oblivious computation in Opaque
crucially assumes that all communication happens within
the same cloud; applying Opaque’s algorithms to query
execution across different parties connected by a wide-area
network results in prohibitive overhead.

In this paper, we propose Oblivious Coopetitive Queries
(OCQ), a general framework for coopetitive analytics based
on hardware enclaves, overviewed in Figure 1. Rather than
requiring multiple parties’ data to be aggregated to a single lo-
cation, OCQ executes queries in a decentralized manner. OCQ
develops efficient oblivious query algorithms (e.g., oblivious
federated join) for the federated setting and a schema-aware
padding mechanism, which combined prevent data leakage
through (1) memory accesses to data inside the enclaves, and
(2) network traffic patterns outside the enclaves, both within
alocal data center and in the wide area. OCQ also contributes
an oblivious planner, which determines where to execute each
operation and how to execute it, to minimize the overhead
while maintaining the oblivious security guarantees.

We implemented OCQ as an extension to Apache Spark
SQL’s Catalyst query planner and execution engine. We evalu-
ate OCQ using SGX-enabled, geographically distributed clus-
ters on a variety of synthetic benchmarks and find that OCQ
is up to 9.9x faster than outsourcing all data and computation
to a third party running Opaque. Compared to AgMPC [75],
a state-of-the-art cryptographic framework for secure multi-
party computation, OCQ is up to 219x faster.

OCQ’s design addresses the following challenges:

Challenge 1: Oblivious queries in the wide area. The first
step of distributed operators such as aggregations and joins is
typically to shuffle the entire relation to colocate the appro-
priate records. For example, Opaque implements aggregation
using an initial distributed sort based on the grouping at-
tributes to colocate records that belong to the same group.
However, in the coopetitive setting, this incurs record move-
ment across the wide area, requiring the use of expensive
security protocols to avoid leaking information.

Approach: Federated and oblivious planner. Our federated
planner chooses operators that maximize the computation
run at originating parties and ensures that communication
across the wide area does not leak information about the input
data. For example, while a high-cardinality aggregation that
results in many groups would normally be implemented using
an initial distributed sort, OCQ’s planner instead chooses to
compute partial aggregates at each party and shuffle those
partial aggregates across the wide area, with padding to hide
the number of groups from each party. The worst-case upper
bound on the number of groups is often much smaller than
the number of rows in the database, for example, for fields

containing gender or age. This approach avoids exchanging
un-aggregated records between parties. Key to performance is
that parts of the computation running within a party’s cluster
that only touch that party’s data need not be oblivious because
the data is known to the party. Such local computation will
still run inside the enclaves for integrity and authentication.

Challenge 2: Combining data of mixed sensitivities.
Queries may consist of operators that combine slices of
multiple parties’ data. Because OCQ executes these operators
at the parties themselves, and because parties may provide
table-level sensitivity annotations, many relational operators
in OCQ combine data of varying sensitivity levels. For
example, one party may execute a join operator between
its own data and a slice of sensitive data from other parties.
Executing such operators using fully-oblivious algorithms
would incur unnecessary overhead.

Approach: Mixed-sensitivity algorithms. OCQ introduces
mixed-sensitivity operators, such as a mixed-sensitivity
oblivious join algorithm based on the merge phase of
bitonic sort that provides up to 2.5x speedup compared to a
fully-oblivious join.

Challenge 3: Query planning with sensitive cardinalities.
Query planners traditionally rely on statistics to choose
among multiple plans. However, such statistics are sensitive
in a coopetitive setting, as they reveal information about
the distribution of each party’s data. The plan chosen can
leak information about the input statistics. Additionally, the
cardinalities of intermediate relations may leak information,
such as the selectivity of a filter. Cardinality leakage poses a
further threat in the coopetitive setting than in the outsourced
computation setting because a malicious party can manipulate
its input to extract information through cardinalities.
Approach: Schema-aware padding. As in previous work on
Opaque [81], we take the approach of padding input and
intermediate relations to publicly-known bounds to hide sen-
sitive cardinalities. Our contribution is a scheme to refine
these bounds by exploiting the likely presence of foreign key
relationships between public and private relations in each
party’s schema to find tighter padding bounds for each opera-
tor. For example, a query to find all distinct disease diagnoses
across multiple hospitals would typically involve padding to
the number of patient diagnoses, while a foreign key rela-
tionship to a set of diseases would enable OCQ to pad to
the possibly much smaller number of registered diseases. We
introduce rules to propagate these bounds through the query
plan. Conveniently, padding rules also obviate the problem of
leakage via the choice of plan, because the resulting padding
bounds provide exact cardinality information without leaking
sensitive statistics.

2 Background

OCQ is designed to enable coopetitive analytics using hard-
ware enclaves. Here we describe the coopetitive setting and
provide background on the building blocks for OCQ.



Partition
12
61512 3
14| al| 7| Step1:| 5
10| 1f[13] st | 6| 8
3l|16)| 9 1011
17| 8| 2 14151
5|11 o 17|16 |1

3

Step 2: 3 s 6
exchange |1¢|/ 14|17 |Step3:
(transpose) | 1| 4| g| sort 5| 8| (inverse

0 6| Step4:

1 7

3
11([15]| 16 9|12 || 13| transpose)

0

1

exchange

0 2 7 1
9|12 |13 1

)
WR oo W

0
2
7
9
2
3

e

9| Step8:
10 | exchange
(inverse
12|  shifty

3|10 Step6: 15
5|/11| exchange |16
8|14 (shift) 17
15 0

9 0
12 |Step7: | 1
13| sort 2
10 15

Step 5:
sort

12 || 16 1
13|17 2

Figure 2. [llustration of column sort algorithm. Each column rep-
resents an encrypted partition. Column sort enables oblivious dis-
tributed sorting using four intra-partition sorts (steps 1, 3, 5, 7) and
four data exchanges (2, 4, 6, 8) in fixed patterns. An attacker only
sees exchanges of encrypted records. Since the pattern of exchanges
is fixed, it cannot leak data contents.

11 16
14 17

v wao e
©uo 0w
wewnRo

6
7
8
9
0
1

O e
©

2.1 Hardware enclaves

Hardware enclaves or trusted execution environments
(TEEs) such as Intel SGX [50], AMD Memory Encryp-
tion [41], Keystone [44], Sanctum [22], MI6 [12] and
others [3, 72] enable code to run in an isolated environment
where other processes on the same host, including the OS
and hypervisor, cannot tamper with its execution or access
its memory. Enclaves also provide remote attestation, which
allows the enclave to prove to a client that it is running the
desired code and to establish a secure channel to a client. We
discuss in §4 the enclave threat model we build OCQ on.

2.2 Oblivious algorithms

As we discuss in §4, enclaves suffer from side channels
exploiting memory access patterns to data and traffic patterns.
OCQ protects against these side channels with oblivious com-
putation and appropriate padding. Oblivious algorithms aim
to process data while ensuring that their memory accesses
are independent of the contents of the data; this also implies
that the network traffic patterns are also independent of data
content. For example, basic matrix multiplication is oblivious,
because its access pattern depends only on the size of the
inputs and not their numerical values. In contrast, quicksort
is not oblivious because its access pattern depends on the
ordering of the data: in each iteration, records smaller than
the pivot are swapped to one memory region, while records
larger than the pivot are swapped to another. The choice of
where to swap each record depends on the record contents.

Because sorting is at the heart of most database operators,
efficient oblivious sorting algorithms are of particular interest.
Single-machine oblivious sorting can be done using sorting
networks that perform a fixed sequence of compare-exchange
operations. Asymptotically more compare-exchange opera-
tions are needed for oblivious sorting than for traditional
sorting. An oblivious compare-exchange can be implemented
via a comparison followed by a conditional swap of two equal-
length buffers depending on the result of the comparison.

For data partitioned across multiple machines, oblivious
sorting can be accomplished using a two-level sorting algo-
rithm in which each partition is individually sorted using a
sorting network, and records are sorted across partitions using

[ spark driver [ ] Spark worker

Replicated query planning
and orchestration

Opaque clusters ‘\ Encrypte;)’ data
Process other parties’ data - - transfer
SGX || SGX [ == mmeeam oo

w/ oblivious operators;
Process own data w/
authenticated operators
Sensitive data [ EJJ E_JJ
Figure 3. Architecture of OCQ. OCQ’s replicated federated plan-

ner executes operators on Opaque and Spark clusters at each party.
Sensitive data never leaves its originating party in plaintext.

0CQ planners [ Party 1

an algorithm called column sort [47]. Column sort consists of
a fixed sequence of data exchange and intra-machine sorting
that uses only 4 shuffles, compared to O(n log® n) shuffles for
a sorting-network-based distributed sort. It is thus well suited
to oblivious distributed sorting, where it was previously ap-
plied by Opaque [81]. OCQ also uses it for sorting sensitive
data; the algorithm is illustrated in Figure 2.

2.3 Spark SQL and Opaque

OCQ’s planner and federated execution engine are built
on Spark SQL [4, 79], a distributed SQL analytics frame-
work, and Opaque [81], an extension of Spark SQL for secure
outsourced computation via hardware enclaves.

Spark SQL offers distributed plaintext query execution.
Queries can be written in SQL or an embedded Scala DSL
called DataFrames. The user submits queries to the Spark
SQL driver, which parses them into logical plan format. Spark
SQL’s extensible rule-based query planner, Catalyst, which
also runs at the driver, optimizes these plans and generates
a physical plan for execution on a Spark cluster. Catalyst is
primarily rule-based, but offers limited statistics collection
and cost-based optimization. The physical plan breaks the
query into stages consisting of parallel tasks that are executed
on workers. Each worker writes results to distributed storage
or returns them to the driver.

Opaque extends Spark SQL to the untrusted cloud setting,
where the driver is trusted but the workers are not. By ex-
tending Catalyst with encrypted operators which result in
tasks that run inside SGX enclaves rather than in plaintext, it
enables distributed queries on encrypted data.

OCQ’s federated planner is an extension of Catalyst, and
OCQ leverages Opaque to process encrypted data within a
single party. This enables OCQ to inherit Spark SQL’s query
languages and optimizations, and Opaque’s secure distributed
query processing. However, OCQ must implement rules and
orchestration logic specific to secure federated queries.

3 Architecture

Figure 3 shows OCQ’s architecture. Each party maintains
a Spark cluster with at least one hardware enclave-enabled
machine, on which Opaque tasks are scheduled. OCQ’s query
planner is deterministic and runs outside the enclave at every



oca ocQ Wide-Area |)
Result
@—{ Planner Optimizer Execution
Per-Party Spark SQL
Sensitivity Rules
Opaque l

Figure 4. Lifecycle of a query. Queries and sensitivity annotations
are submitted to OCQ’s federated planner and optimizer. The result-
ing federated plan contains operators running at different locations
across the federation, and satisfies all parties’ sensitivity annota-
tions. The plan executes securely, and the user only learns the result
and cannot access sensitive intermediate relations. Stacked blocks
indicate that a component is present at each party.

party. This is because our query planner builds on Spark
SQL’s planner, which is a large Scala codebase that would
significantly broaden the enclave’s attack surface and require
heavyweight sandboxing techniques. To reduce coordination
between parties at query time, each party runs a replica of
OCQ’s federated planner; we describe the mechanism for
verifying the plan’s integrity in §3.1. Each planner replica
maintains an audit log of all queries issued by any party.

The role of each party’s Opaque clusters is to (1) give as-
surance that the computation at each party happens correctly,
and (2) safely mix multiple parties’ data. Therefore it is es-
sential for enclave code to be trusted by all parties. OCQ
accomplishes this by granting all parties the ability to invoke
pre-approved routines on all enclaves, but ensuring that each
enclave verifies that the deployed code is approved by all the
parties via remote attestation.

In OCQ, parties own different tables; a logical table con-
sisting of rows from different parties can be implemented
using union. Parties annotate their tables as either public or
sensitive. The query planner determines the sensitivity level
of intermediate results using sensitivity propagation rules
discussed in §5.

3.1 Setup phase

Parties must share the cryptographic hash of each encrypted
partition of each of their input relations with all other parties.
Once the setup phase has completed, no party can change its
input data, and the enclaves will ensure this.

Parties setup their enclaves using OCQ’s code, and per-
form remote attestation amongst all these clusters. Consider a
logical enclave at each party (which can be implemented via
a cluster of enclaves). The result of this stage is:

e Every party and its enclave know the public keys of every
party, the schema and sensitivity of every table of each
party, and the hashes of each party’s encrypted data.

e Each enclave checks that the enclaves at the other parties
were correctly setup with OCQ with the same information.

e The enclaves agree on symmetric keys for a secure channel
amongst themselves.

Queriers may attempt to submit malicious queries designed
to extract sensitive data, and a compromised planner replica

may produce a physical plan that reveals sensitive informa-
tion. We prevent both of these by requiring all parties to agree
on the allowed set of queries, the resulting query plans, and
size bounds for sensitive input and intermediate data sets. The
agreed-upon configuration is represented as a set of DDL
statements, queries, and physical plans that is signed by all
parties and passed to each party’s instance of the OCQ fed-
erated planner and enclave. Before signing the configuration,
each party should check that it matches expectations.

3.2 Query lifecycle

Figure 4 shows the lifecycle of a query. A user submits
a query to a federated query planner replica, which broad-
casts it to all the others, one planner instance per party. Each
planner first checks that the query conforms to the set of
approved queries and then performs the same planning and
optimization steps, deterministically generating a federated
plan with operators running at different locations. The gen-
erated plan satisfies all parties’ sensitivity annotations and
performs as much computation as possible in plaintext at each
party. The party signs the plan, and enclaves will execute only
plans signed by all the parties. Each planner runs the relevant
operators at its local Spark and Opaque clusters.

Special data movement operators trigger data exchange
with other parties across the wide area, or between one party’s
Spark and Opaque clusters, when allowed by the sensitivity
annotations. The final operator collects the results back to the
originating replica and returns them to the user.

A party can observe network traffic generated by compu-
tation on other parties’ data when that computation is run
within their Opaque cluster, such as during final aggregation.
To prevent size leakage in this case, OCQ automatically de-
termines appropriate public upper bounds for all intermediate
results and ensures that each operator pads its output to the
appropriate bounds. §5.4 describes this process in more detail.

Our integrity mechanism for ensuring that a malicious party
cannot tamper with the integrity of the computation or input
data is similar to that of Opaque [81]’s self-verifying compu-
tation, so we only describe it at a high level. At query time,
the signed physical plans are loaded into the enclaves, which
check that all parties signed every plan. When an enclave is
requested to execute part of a query plan, it verifies that each
of the inputs to the plan fragment were either authentic input
data or were generated by the expected child plan, depend-
ing on the expected input source. To check that the input is
authentic, when scanning a party’s input data, the scanning
enclave checks the partition’s hash against the party’s hash
from setup to ensure that the party has not tampered with
the input data. If the hashes do not match, the enclave sig-
nals failure and the query will abort. After executing the plan
fragment, the enclave certifies that its output was correctly
produced by running the requested plan fragment.



4 Threat model and security guarantees

4.1 Abstract enclave model

OCQ considers an attacker who can see memory accesses
to data and/or messages sent over the network. Such an at-
tacker arises from a large class of attacks: attacks leveraging
page faults [16, 74, 77], the branch predictor [46], cache
timing [14, 69], the memory bus [43], network traffic pat-
terns [59], and others. Oblivious algorithms are impressively
effective against such a large variety of attacks [35] because
they address the core leakage of these channels: memory ac-
cesses based on sensitive data. OCQ contributes oblivious
algorithms for the federated analytics setting to thrwart such
attacks. We group the attackers in two categories:

— A network attacker that sees all network traffic but has no
access to the machines. In particular, this attacker does not
see any memory accesses inside any of the machines.

— A malicious party attacker that sees all memory accesses
made by enclaves in addition to the network traffic. For
this party we assume the oblivious row-level conditional-
exchange primitive from §2.2.

OCQ builds on top of an abstract enclave model; OCQ’s de-
sign is not tied to Intel SGX even if our prototype implemen-
tation in §7 builds on it. There are many different proposals
for hardware enclaves, such as Intel SGX [50], AMD Mem-
ory Encryption [41], Keystone [44], Sanctum [22], MI6 [12]
and others [3, 72], with more upcoming as researchers make
rapid progress towards more secure hardware enclaves. OCQ
assumes that the attacker cannot access or undetectably mod-
ify data or code inside the hardware enclave, that it cannot
exploit side-channels different from the memory addresses
discussed above, subvert the remote attestation process or oth-
erwise the integrity or secrecy of the enclave; if the attacker
could, OCQ does not protect against such attacks. Such side-
channel attacks indeed exist in some enclave implementations
(such as in Intel SGX); addressing them should be done at
a different level of abstraction than OCQ operates at, for
example, through better enclave design. For instance, Intel
SGX suffers from various vulnerabilities or side channels,
such as attacks based on speculative execution [15, 19, 68],
power consumption [56, 71], rollback [63], intra cache line
memory accesses [54, 78], denial-of-service attacks [32, 38],
and others (e.g., [45, 76]). Many defenses or mitigations have
been proposed, such as for closing hyperthreading-based at-
tacks [20, 61], rollback defenses [13, 49], and importantly,
improved enclave designs that remove a wide array of the
attacks above, such as KeyStone [44] or MI6 [12] (the latter
even protects against speculative-execution attacks). We hope
that OCQ’s design will be ported to better and better enclaves
as research progresses on this front.

We remark that our implementation prototype of OCQ de-
scribed in §7 focuses on obliviousness with respect to data
at the cache-line granularity. While OCQ’s oblivious algo-
rithms are oblivious even when it comes to accesses to OCQ’s

pseudocode, we have not ensured that our implementation
and the generated binary preserve this property. Also, while
OCQ’s oblivious algorithms could be applied at the intra-
cache-line granularity [54, 78], our prototype implementation
does not implement them at this level. Both of these can be
addressed in the implementation with existing mechanisms
(e.g., [20, 23, 31, 48, 61]) at a performance cost.

4.2 Party threat model

In the coopetitive setting, a malicious party could attempt
to tamper with the other parties’ data during joint computa-
tion, or it could attempt to inspect other party’s data using
the attacker capabilities we discussed in §4.1. A party can
also observe and modify network traffic generated by such
outsourced computation. Given the assumption of an abstract
enclave model, OCQ guarantees integrity of outsourced oper-
ators and data.

Each party is free to input data of its choice, and OCQ does
not protect against low-quality or maliciously-crafted data.
OCQ ensures the integrity of each party’s computation and
data after the data has been inputted. The parties, if they wish
to, could include checks for each other’s data in the queries
given to OCQ.

Query results often leak some information about the data
from which they were computed. This is why we require the
parties to agree on what queries they permit to run on their
data and whose results they are agreeing to release. OCQ
ensures that all parties agreed to running some query before
running that query and releasing the result. Deciding which
queries are safe to run is outside the scope of our system,
and is largely an unsolved research problem. Nevertheless,
existing work in differentially private analytics [8, 39, 40]
(discussed further in §9.4) and inference detection [24, 34, 65]
could aid parties to transform the queries into a safer form or
to detect particularly revealing queries.

4.3 Security guarantees

OCAQ guarantees obliviousness for sensitive tables, namely
that there is no information leakage about the sensitive data
content from the trace of memory accesses and traffic mes-
sages other than size, schema, and query information. We
use a standard definition of obliviousness, which states that
the trace of memory accesses and messages can be simulated
without access to the data, while only knowing a bound on the
data size, the schema, parties’ configuration, and the query
plans to execute.

The proof that OCQ meets this guarantee follows from the
observation that for all our protocols (query planner, over-
all query plan, and individual operators), all the accesses to
memory and the schedule of messages on the network are
performed according to a predefined schedule, fixed ahead of
time before the data is input, and which is determined accord-
ing to our planner’s rules based on data size, schema, query
and party’s configuration.



Like in much prior work in oblivious computation, our
formalism captures only addresses and lengths, and not the
actual data content. The reason is that hardware enclaves
as used in OCQ and other works, encrypt the content and
re-encrypt it upon every access.

We remark that OCQ’s query planner runs entirely using
non-sensitive information to produce a physical plan; hence,
the planning process is oblivious by definition.

We now focus on showing that the execution of each physi-
cal plan of a query is oblivious w.r.t. sensitive tables. OCQ’s
definition of obliviousness differs from that of Opaque be-
cause there are multiple parties in addition to the network
attacker. A malicious party attacker may see the content of its
own sensitive tables and perform non-oblivious computation
on them, but not the content of other parties’ sensitive tables.
We formalize this by constructing two types of simulators:

o Simypgty has access to a party’s sensitive data, but does not
have access to the sensitive data of other parties, yet must
simulate this party’s memory and network access patterns.

e Sim,.; does not have access to any party’s sensitive data
and must simulate the network communication patterns
among all parties.

The fact that the simulators can simulate the memory and

network patterns without seeing all the sensitive tables im-

plies that these patterns do not leak information about these

sensitive tables.

Let D be the set of tables of all parties. As we discussed in
§3, tables are of two types: sensitive and public. Let S; be the
set of tables of party i that are sensitive (including those OCQ
marks as sensitive after propagating sensitivity as discussed
in §5). Let Public(D) be all the non-sensitive information
about the datasets, such as the content of all public tables and
publicly known metadata about the sensitive tables, such as
the names and owners of the tables, the names and schema
of columns, an upper bound on the number of rows in each
table, the set of unique key and foreign key constraints, and
others. This metadata does not include the actual values in
any column.

Let P be the set of publicly known cluster configurations
of the parties, including the number of workers and their
IP addresses, the untrusted memory size and EPC size of
each machine, the oblivious sorting block size, etc. Let g
be a query with any user-specified padding bounds (§5.5).
Let Trace;(D, P, q) be the access pattern trace visible to the
malicious attacker at party i: an ordered sequence of memory
accesses of the form (read/write, addr, length) and
network messages of the form (dst, length). These do
not contain timestamps because OCQ does not protect against
timing attacks. Tracepet(D, P, g) is the ordered sequence of
network messages across all parties.

Theorem 4.1. For all parties i, datasets D, with party i’s
sensitive tables S;, for all cluster configurations P, for all
queries q there exist polynomial-time simulators Simp,, and

Simyet such that
Vi, Simparty(Public(D), i, S;, P, q) = Trace;(D, P, q),
Simpet(Public(D), P, q) = Tracenet(D, P, q).

We provide a proof sketch in §6.

S Query Planning

We next explore OCQ’s federated query planner, which
finds query plans that satisfy security properties while mini-
mizing the scope of expensive oblivious operators.

5.1 Overview

The federated query planner accepts sensitivity annotations
on each party’s base tables. It supports two sensitivity levels:

o Public: the table can be processed at any site with integrity
verification. Confidentiality is not required, and data con-
tents and cardinality may safely be exposed.

o Sensitive: if exported from the originating site, the table
must be processed with confidentiality and integrity ver-
ification, including protection against access pattern side
channels and cardinality leakage.

When executing a query, the planner propagates sensitiv-
ities through the plan to determine the sensitivity level of
each intermediate result, such as a set of partial aggregates.
OCQ uses the same two-part sensitivity propagation scheme
as Opaque. First, since tables could be correlated via their re-
lationships (e.g., foreign keys), OCQ uses second-path analy-
sis [34] on the user-provided sensitivity annotations to capture
these correlations: user-specified base tables are initialized
as sensitive, and all tables reachable from a sensitive table
via primary—foreign key relationships are recursively marked
as sensitive as well. Second, OCQ assigns each operator a
sensitivity level determined by the sensitivity levels of its in-
puts. Operators that process more than one input relation (e.g.,
join) receive the highest sensitivity level of all their inputs.

The federated query planner uses these two sensitivity lev-
els to determine where to execute each operator. Recall that
each party has an Opaque site/cluster. Operators may execute
in two locations: federated or single-site. The federated oper-
ators execute in every site in parallel, whereas the single-site
ones execute only at one party. For example, for an aggre-
gation, each site can perform a partial aggregation within
their site using the federated operator and the results are then
sent to the querying party for final aggregation, which occurs
using the single-site operator. OCQ supports the following
operator execution modes:

e Federated. The operator executes partitioned and encrypt-
ed/authenticated in each site’s Opaque cluster using SGX.
Datasets are encrypted and authenticated for integrity veri-
fication, but operators will reveal data cardinality and may
leak data contents through side channels.

o Federated-Oblivious. The operator executes partitioned
and encrypted in each site’s Opaque cluster using oblivious
algorithms in SGX to hide access pattern side channels.



The operator reveals nothing beyond the cardinality of the
input, such as filter and join selectivities.

e Single-Site-Oblivious. The operator executes obliviously
with Opaque at the site where the query originated. This pro-
vides the same security guarantees as Federated-Oblivious
and is used for final aggregation on sensitive data.

e Single-Site. The operator executes encrypted using Opaque
at the site where the query originated. This provides the
same security guarantees as the Federated mode and is used
for final aggregation on public data.

The query planner ensures data of a particular sensitivity
level is never processed using an operator with insufficient
protections. For example, Sensitive data may be processed
with a Federated operator if it has not left its originating
site, but after an exchange, the same data must be processed
using Federated-Oblivious or Single-Site-Oblivious opera-
tors only. The planner can always produce a secure plan for
any supported query by running all operators in the Single-
Site-Oblivious mode with naive worst-case padding, but the
resulting overhead can be prohibitive so its goal is to find
secure plans with much lower overhead when possible.

In the remainder of this section, we describe our query
planning algorithm and rules (§5.2, §5.3), then discuss how
the planner hides intermediate cardinalities (§5.4). The strict
sensitivity levels and the use of padding together simplify
physical operator selection. This traditionally depends on ac-
curate cardinality estimation, which is much easier in OCQ
than in traditional databases due to OCQ’s use of padding.
OCQ introduces padding rules that exploit foreign key con-
straints in the database schema to minimize padding overhead.

5.2 Algorithm

Respecting the constraints described above, the federated
query planner applies rules to produce a physical plan that
specifies the necessary algorithms and data movement for all
three levels of the federation: between parties, within each
party, and within each machine. Planning occurs as follows:

1. Obtain the logical plan for the query using Spark SQL.

2. Apply rules to transform the logical plan into a fed-
erated physical plan respecting sensitivity annotations
and with “ShipTo” operators indicating data movement.

3. Eliminate redundant ShipTo operators.

4. Insert padding operators based on the rules in §5.4.

5. Execute the federated plan and return the results.

The rules used in step 2 apply recursively to the logical
plan in bottom-up order starting with the base tables. For each
logical operator (e.g., Project, Filter, Join, Aggregate) and its
input plans, the rules produce a physical sub-plan that re-
spects the operator’s sensitivity level and avoids unnecessary
encryption or data movement overhead.

OCQ’s rules require operators to be planned in order of
execution, because it uses the execution mode chosen for
earlier operators in determining the execution mode for later

operators. This is implemented using a postorder traversal on
subplans referencing sensitive data.

5.3 Query planner rules

We now examine rules for the four common logical opera-
tors (Project, Filter, Join, and Aggregate). We express rules
in Scala’s pattern match syntax, where each rule is a case
that may match the logical operator being planned. Rules can
specify subtyping constraints with : syntax. We use these
constraints to discriminate based on the execution mode (ab-
breviated as Fed, FedObl, SSObl, and SS) of an operator’s
inputs. Each rule ensures the resulting physical operator re-
spects sensitivity levels, so the entire plan also will.

To illustrate how OCQ converts a query into a physical
plan, take the example of Query 1 in Table 1. For each log-
ical operator that matches a rule, Scala binds the operator’s
contents to parameters listed after the case keyword. It then
executes the body of the case, which comes after the => ar-
row, and the planner uses the return value as the physical
plan for the given logical operator. For example, the logi-
cal operator Filter(diagnosis, diag="c. diff") in Query
1 (Table 1), will be mapped to OCQ’s physical operator
FedEncFilter[diag="c. diff"]. We do not describe what
each one of OCQ’s physical operators run (because they are
many), but instead describe only the more novel operator
algorithms in §6.

Project. The input to the projection is referred to as child,
and the projected columns as p. Because a projection never
requires data movement and does not leak access patterns, the
resulting operator uses the same execution mode as its input.

case Project(p, child: Fed) => FedEncProject(p, child)
case Project(p, child: FedObl) => FedOblProject(p, child)
case Project(p, child: SSObl) => OblProject(p, child)
case Project(p, child: SS) => EncProject(p, child)

Filter. The input to the filter is referred to as child, and
the filter predicate as f. As with projection, filtering never
requires data movement. However, unlike projection, filtering
leaks access pattern information by default, so depending
on the execution mode and sensitivity level of the input, we
use an oblivious filter operator to hide which input records
matched the predicate.

case Filter(f, child: Fed) => FedEncFilter(f, child)
case Filter(f, child: FedObl) => FedOblFilter(p, child)
case Filter(f, child: SSObl) => OblFilter(p, child)
case Filter(f, child: SS) => EncFilter(p, child)

Join. OCQ currently only supports inner joins. The inputs
to the join are referred to as left and right, and the join
columns as c. Joining does require data movement, and we
choose between a broadcast join where one input is broad-
cast to all parties and joined separately with each portion of
the other input, and a single-site join where both inputs are
brought to the querier’s cluster. Both types of joins can be
executed with or without obliviousness; we additionally im-
plement a mixed-sensitivity broadcast join (§6.1). For brevity,



we only list half the rules for Join; the other half are the same
up to swapping left and right. When multiple join rules apply,
such as when there is a choice between broadcasting the left
side and the right side, the planner currently chooses one
of them arbitrarily, but a cost-based planner could consider
both and choose the lower-cost option. In addition, we benefit
from Spark SQL'’s existing planner rules. For example, Spark
SQL’s broadcast exchange reuse ensures that when a plan
indicates that the same relation should be broadcast more
than once, it will only be shipped over the WAN once.
case Join(c, left: Fed, right: Public) =>
FedEncJoin(c, left, BcastToFed(right))
case Join(c, left: Fed, right: Sensitive) =>
FedMixedSensJoin(c, left, BcastToFed(right))
case Join(c, left: FedObl, right: Public) =>
FedMixedSensJoin(c, left, BcastToFed(right))
case Join(c, left: FedObl, right: Sensitive) =>
OblJoin(c, EncCollect(left), EncCollect(right))
case Join(c, left: SSObl, right: Public) =>
MixedSensJoin(c, EncCollect(left), EncCollect(right))
case Join(c, left: SSObl, right: Sensitive) =>
OblJoin(c, left, EncCollect(right))

Aggregate. The input to the aggregation is referred to as
child (which is a query subplan), the grouping attributes as g,
and the aggregation attributes as a. Partial and final aggregates
are assigned the same sensitivity level as the input data. The
attributes resulting from partial aggregation are referred to
using partial (a) and the attributes from final aggregation
as final (a). The execution mode of partial aggregation is
the same as its input, while final aggregation always occurs at
the querier’s site in SSObI or SS modes. The with keyword
indicates the child’s execution mode as well as its sensitivity.

case Aggregate(g, a, child: Fed with Public) =>
EncAgg(g, final(a),
EncCollect(FedAgg(g, partial(a), child)))

This rule applies to an aggregation over Public data which
will reside in a Fed manner as a result of running the child
subplan. Because the data is public, we can execute both
the partial and the final aggregation in Enc mode (without
oblivious operators).
case Aggregate(g, a, child: Fed with Sensitive) =>

OblAgg(g, final(a),
EncCollect(FedAgg(g, partial(a), child)))
case Aggregate(g, a, child: FedObl) =>
OblAgg(g, final(a),
EncCollect(FedOblAgg(g, partial(a), child)))

Both rules apply to sensitive federated data. In the first
case, each sensitive data slice has not left its originating party,
while in the second case, the sensitive data has been com-
mingled with other parties’ sensitive data and is protected by
obliviousness in addition to encryption. Therefore, in the first
case only the final aggregation needs to be oblivious, while in
the second case, both the partial and final aggregation must
be oblivious. The remaining rules are as follows:

case Aggregate(g, a, child: SSObl) => OblAgg(g, a, child)
case Aggregate(g, a, child: SS) => EncAgg(g, a, child)

Query planning example. Table 1 shows the results of
OCQ’s federated planning on two sample medical queries [7].
The queries refer to two tables: a diagnosis table contain-
ing patient SSNs and the diseases they were diagnosed with,
and a medication table containing patient SSNs and the
medications they were prescribed. Given these two relations,
Query 1 computes comorbidity of the disease c. diff: the most
common diseases that c. diff patients are also diagnosed with.
Query 2 counts the number of patients with heart disease
who were prescribed aspirin. Tables and intermediate results
containing identifiable patient information (here SSN) were
specified as Sensitive; tables without SSNs but with more
than one column as Sensitive to prevent correlation attacks;
and tables with only one non-identifiable column as Public.

For Query 1, the planner runs the initial Filter operator in
Federated mode. Subsequently, only the diag2 column of the
result is needed for the Aggregate operator, so Spark SQL
automatically inserts a projection to drop the other columns.
The resulting table is collected to a single site for the final
aggregation and sort.

For Query 2, the planner likewise runs the initial filters in
Federated mode. As in Query 1, the right side is Public, so the
planner uses a mixed-sensitivity broadcast join. The oblivious
aggregation returns the number of distinct patients.

5.4 Determining padding upper bounds

Sensitive operators must pad their output to avoid leak-
ing information about the input. For example, a bank may
want to hide how many customers it has, so the data sizes
of any cross-site communication must be padded to a bound
greater than the number of customers. Alternatively, to hide
the number of customers with revenue >$1 million, computa-
tion downstream of all revenue-based filters must be padded.

The federated query planner ensures queries’ intermediate
cardinalities do not leak information about sensitive attributes.
The final cardinality is handled the same as the intermediate
cardinalities, depending on which parties can see the final
result. After producing an unpadded plan using the rules
above, it adds padding to Sensitive operators that could leak
information about the table’s contents. This section describes
this rule-based process using the same rule syntax as §5.3.
Though these rules match physical operators, we use logical
plan names in some pattern specifications to denote match-
ing all physical operators implementing a logical operator.
Additionally, we refer to certain specific join types such as
referential integrity inner equi-joins as a shorthand for pattern
specifications that check that these constraints are satisfied. Fi-
nally, we use Scala’s @ operator to denote binding the physical
operator under consideration to a named variable.

Base tables. Base tables are padded using tiered padding
to hide their exact cardinality, encapsulated by the round
function, specified by the parties. We refer to the table scan



Query 1 (comorbidity of c. diff):

Sort(
Aggregate (
Join(
Filter(diagnosis, diag="c. diff"),
Project(diagnosis, diag as diag2),
col="patientSSN"),
groupby="diag2", agg="count"), col="count")

Federated plan for Query 1:

OblSort [diag_count]
OblAgg groupby[diag2] agg[count(*) as diag_count]
OblCollect
FedOblProject [diag2]
FedMixedSensJoin [patientSSN]

BcastToFed

FedEncFilter [diag="c. diff"]
FedEncProject [diag]
FedEncScan diagnosis

FedEncProject [diag as diag2]

FedEncScan diagnosis

Query 2 (aspirin count):
Count (
Aggregate(
Join(
Filter(diagnosis, diag="heart disease"),
Filter(medication, med="aspirin"),
col="patientSSN"),
groupby="patientSSN")

Federated plan for Query 2:

OblCount
OblAgg groupby[patientSSN]
OblCollect
FedOblProject [patientSSN]
FedMixedSensJoin [patientSSN]

FedEncFilter [diag="heart disease"]
FedEncScan diagnosis

BcastToFed
FedEncFilter [med="aspirin"]

FedEncScan medication

Table 1. Example queries and resulting federated plans. Queries (top) are specified in Spark SQL’s logical plan notation, which is similar
to relational algebra. The resulting plans (bottom) are specified in Spark SQL’s physical plan notation with OCQ’s physical operator names.
Nesting indicates a child relationship; sub-plans nested under a physical operator provide input to that operator. Physical operators take
parameters, listed on the same line as the operator name. Most operator parameters are expression lists, listed in square brackets.

operator as t. The rule wraps t with a Pad operator that
inserts dummy rows to inflate the result cardinality. The base
table data must already be padded to an equal or greater
bound when writing it to disk to avoid revealing the true
cardinality through the file size. This enables this operator
to make dummy accesses to the input when generating the
dummy output rows.

case t @ TableScan() => Pad(round(t.cardinality), t)

Filters. Most filters must be padded to the input size to
avoid leaking selectivity. The else clause of the rule below
transforms the filter into a projection that adds a boolean
field with the value of the filter predicate using Scala’s :+
operator, which appends this column to the existing columns.
Later operators will use this tombstone-like field to determine
whether or not to include the record in their operations.

When at most one record is being selected, such as to
extract the record of a single patient based on SSN, padding to
the input size would be very wasteful. OCQ identifies this case
by checking if the predicate is an equality comparison against
a unique key using the uniquelyReferences method. The
if clause below pads the result to a cardinality of 1 to avoid
leaking whether or not the predicate matched a row. Within
this rule, which branch is taken depends only on the schema
and query, not the underlying data, so it does not reveal any
new information to an attacker.

case f @ Filter(pred, child) =>
if (pred.uniquelyReferences(child.keys)) Pad(l, f)
else Project(child.cols :+ pred, child)

Joins. Arbitrary joins must be padded to the product of
table sizes, but common join types have much smaller upper
bounds. Unique key equijoins are a very common join type
where one side’s join attribute is known unique. We pad these
joins to the size of the other table; the unique key ensures
each record in the latter matches at most one record in the
former. For brevity, we omit the code listing for this rule.

Aggregations. Arbitrary aggregations must be padded to
the input size, because each input record could belong to a
different group. However, foreign key constraints let us re-
fine this bound. For example, an aggregation over patients’
diseases can yield at most one row per disease if there is a for-
eign key constraint between the (sensitive) patient diagnosis
table and the (public) disease table, because the foreign key
constraint implies that all patients’ diseases correspond to a
record in the disease table. Without the foreign key constraint,
we must pad the aggregate output to the number of patient
diagnoses, which could be large. With the constraint, we can
instead pad to the number of diseases.

We search for such foreign key constraints using
publicTableKeys in the rule below. If there is a matching
foreign key, the Some (. . .) case determines the appropriate
cardinality, using min to ensure the new bound is smaller.
Otherwise, the None case pads to the input cardinality.

case a @ Aggregate(groupCols, aggExprs, child) =>
publicTableKeys.find(groupCols.output) match {
case Some(tbl, key) =>
Pad(min(tbl.cardinality(key), child.cardinality), a)
case None =>



Pad(child.cardinality, a) }

5.5 Pre-specified padding bounds

Automatic padding bound search cannot always find the
optimal bound. First, it assumes that while the exact cardinal-
ity of a base table is sensitive, rounded cardinalities are safe
to share. Yet, for some tables, even an order-of-magnitude
approximation of the cardinality is sensitive. Second, it relies
on foreign key constraints to determine padding bounds for
individual columns. However, many columns use implicit do-
mains without foreign key constraints, such as ages, genders,
letter grades, salaries, and ZIP codes. Third, most relational
operators cannot reduce the padding bounds of their output,
potentially resulting in large slowdowns.

We therefore support pre-specified padding bounds in
schemas and queries. When defining the shared schema,
parties can specify cardinality bounds for any table or column.
When defining the allowed queries, a query may contain
padding bounds for any intermediate result, for example the
result of a filter expected to be highly selective. We exposed
this functionality using extension methods on Spark SQL’s
DataFrame API. Below is an example of specifying table and
column cardinality bounds and a bound for a filter operator.

val diseaseDF = spark.load(".../disease/")
. sizeBound(70000)
val employeeDF = spark.load(".../employee/™)
.colBounds("salary" -> 20, "addressZIP" -> 42000)
val singleEmployee =

employeeDF.filter($"name" = "John Doe").sizeBound(1l)

In case a query-specific operator underestimates the actual
output cardinality, OCQ silently truncates the result to avoid
leakage. If the parties wish to know when this has occurred,
they can express this using subqueries.

6 Coopetitive algorithms

The coopetitive setting affects the performance of secure
operators because it implies mixed-sensitivity computation
and wide-area communication. Mixed-sensitivity computa-
tion occurs when a party combines its own data with sensitive
data from another party. Wide-area communication occurs for
operators such as aggregation and join that require combining
data from multiple parties. We describe two algorithms that
leverage the coopetitive setting to reduce the amount of obliv-
ious computation needed compared to previous approaches.
6.1 Mixed-sensitivity join

Like Opaque’s oblivious join algorithm, OCQ performs
oblivious joins using bitonic sorting networks, which have
traditionally been used in databases for SIMD parallelism [6]
but which we use to protect against access pattern side chan-
nels. However, unlike in Opaque, oblivious joins in OCQ are
very likely to be of mixed sensitivity. For example, a federated
join between two Sensitive relations will be executed as an
oblivious partial join at each party between that party’s slice
of one relation and the entire federation’s records for the other

3.0

N
=}
T
L

Speedup
&

1.0 1

0.5 1

0.0 !
102 10°

>—4¢
*—o —9 0—9 09

. . .
10*  10° 10° 107
Join input size

(a) Bitonic merge (b) Speedup from mixed-sensitivity join

Figure 5. (a) Bitonic merge network for 8 elements. (b) Speedup
from mixed-sensitivity join compared to standard oblivious join
for two relations of equal size. The x axis indicates the size of
each relation in number of records. For small joins, other costs
dominate, but once each relation contains more than 10° records, the
mixed-sensitivity join shows a speedup of up to 2.5x compared to
conventional oblivious join.

relation. In this case, it is unnecessary to handle the former
relation obliviously, since the owner of that relation is also
the party processing it.

We therefore introduce a mixed-sensitivity join algorithm.
We refer to the former relation as the non-sensitive relation
and the latter as the sensitive relation. First, the non-sensitive
relation is sorted using a conventional external sort. Next, the
sensitive relation is obliviously sorted using the algorithm
described in §2.2. The two sorted relations are then merged
using an oblivious bitonic merge, illustrated in Figure 5a.

When joining two relations of equal size, asymptotic
analysis shows that mixed-sensitivity join represents a
constant-factor improvement. If the two relations contain
5 elements each, an oblivious sort of the union requires
O(nlog® n) comparisons, while the mixed-sensitivity algo-
rithm requires O( log ) comparisons for the conventional
external sort, O(§ log? %) comparisons for the sensitive-
relation oblivious sort, and O(5 log n) comparisons for the
bitonic merge. Figure 5b demonstrates an empirical speedup
due to mixed-sensitivity join of up to 2.5x for large inputs.
In addition, when the sensitive relation is relatively small,
mixed-sensitivity join becomes arbitrarily faster than a
standard oblivious join.

6.2 Coopetitive aggregation

Opaque implements aggregation using an initial distributed
oblivious sort based on the grouping attributes to colocate
records that belong to the same group. However, in the coopet-
itive setting, this results in excessive wide-area data move-
ment. Instead, we implement aggregation by computing par-
tial aggregates at each party and sorting only those partial
aggregates across the wide area, with padding to hide the
exact number of groups from each party. The partial ag-
gregates from each party are padded as described in Sec-
tions 5.4 and 5.5. The final aggregation is then performed as
in Opaque, with a boundary processing step, a parallel scan
over the sorted partial aggregates to produce final aggregates



and dummy records, and, if a user-specified padding bound on
the output is provided, an oblivious sort and filter to remove
the appropriate number of dummies.

The speedup from this approach comes from avoiding the
initial global oblivious sort in favor of an oblivious sort over
the partial aggregates. When the bound of the number of
groups is small, this produces a substantial performance gain.

6.3 Obliviousness proofs

Now that we presented OCQ’s algorithms, we proceed to
sketch the proof of its obliviousness, formulated in §4.3.

Proof of Theorem 4.1. In this proof, we will invoke the simu-

lators for the oblivious building blocks that previously existed:

bitonic sort, bitonic merge, column sort primitives, and the

Opaque operators in oblivious-pad mode. A query g can con-

sist of different tasks. It suffices to prove that the simulators

can simulate the trace for each task. Here, we present sim-
ulators for the more complex algorithms OCQ contributes:
mixed-sensitivity join and and coopetitive aggregation. For
each physical operator O in the physical plan, the planner

rules ensure that O runs in oblivious mode if the inputs to O

contain any sensitive table owned by a party other than i.
Without loss of generality, consider party i. Recall that

mixed-sensitivity join occurs between party i’s own input A;

and a slice of the other parties’ input B;. If O is a mixed-

sensitivity join, it proceeds as follows:

1. Simpgy sorts A; using quicksort because it receives A; as
input. Let Public(A; sorteq) be the public metadata of the
sorted result.

2. Simyp,ty, invokes the simulators for bitonic sort and col-
umn sort on Public(B) to simulate an oblivious distributed
sort of B on the equijoin keys. Let Public(B; sorted) be the
metadata of the sorted result.

3. Simpyty invokes the simulator for bitonic merge on
Public(A; sorted) and Public(B; sorted)- Let Public(U; sorted)
be the metadata of the sorted union.

4. Simyp,ty invokes Opaque’s simulator for oblivious padded
join on Public(U; sorted) With the padding bound specified
in the query.

Simpe; runs similarly to Simyp,ty: it performs the last three

steps above.

For coopetitive aggregation, if O is the partial phase of
coopetitive aggregation at party i, let the padding bound for
O be b. Simy,,ty for party i extracts the data of the sensitive
input A; and executes a conventional hash aggregation on it,
then pads its size to b. Let Public(Agg(A;)) be the metadata
of the padded partial aggregates.

If O is the final phase of coopetitive aggregation, Simparty
for party i and Simy; invokes the simulator for the bitonic sort
and column sort on | Jy; Public(Agg(A;)). Simy; then invokes
Opaque’s simulator for the oblivious padded aggregation on
this metadata.

[m]

7 Implementation

We implemented OCQ on top of Intel SGX and as an ex-
tension to Apache Spark SQL’s Catalyst query planner and
execution engine using 2,000 lines of Scala code. OCQ builds
on a version of Opaque we modified, which uses 11,000
lines of C++ enclave code and 3,000 lines of Scala code. No
code changes to Spark SQL were required; both OCQ and
Opaque extend Catalyst only by adding rules and strategies.
The schema-aware padding requires that tables be annotated
with primary and foreign key hints; since Spark SQL does
not natively support key annotations, we added them as a sep-
arate extension. We implemented the row-level conditional-
exchange primitive in SGX using the x86 conditional move
instructions on data in registers, for which we assume that
the attacker cannot see accesses to registers inside enclaves.
Federated query execution is coordinated by the querying
JVM, which maintains a connection to each cluster in the
federation using Spark’s remote query functionality via the
SparkSession.

8 Evaluation

In this section we evaluate OCQ’s performance against out-
sourced and multi-party computation. We measure the over-
head of OCQ’s security guarantees. We explore an alternative
design where SGX-enabled machines are required at only
one site, and show that requiring SGX at all sites provides
a significant speedup. We explore the speedup of our query
planner compared to a traditional query planner unaware of
security. Finally, we evaluate the benefit of schema-aware
padding versus the conventional filter push-up approach.

8.1 Setup

We performed benchmarks across 5 parties located in AWS
us-east-1, AWS us-west-1, AWS eu-west-1, and AWS ap-
northeast-1, and in our organization. Each party has approx-
imately 10 MB/s bandwidth to each other party. Our orga-
nization’s site has an SGX cluster with 5 machines, while
the AWS sites use 5-node r5.large clusters with Intel’s
SGX simulation driver. We use a federated query workload
derived from previous papers on federated analytics. From
SMCQL [7] we use the comorbidity and aspirin count queries
described in §5.3. From DJoin [57] we use queries 1-5. The
DJoin queries are listed in Table 2. We generated synthetic
table data with the following total size per table:

1. diagnosis - 1,024,000 rows, 10 GB
2. medication - 142,972 rows, 4.3 MB
3. DJoin A - 15,000 rows, 15 MB
4. DJoin B - 15,000 rows, 15 MB

8.2 Comparison to other systems

Figure 6 compares OCQ to Opaque (outsourced compu-
tation) as well as SMCQL and DJoin (secure multi-party
computation). For the first, since Opaque’s implementation as-
sumes at least 2MB of non-observable memory which speeds
up its oblivious protocols considerably, we ran OCQ with the



ne,n

Count (GroupBy (Join(A, B, "x" == "y"),

Ql "x"))
Q5 Count (GroupBy (Filter(
Join(A, B, "w"),
Contains("A.x", "xyz")
&& ("B.x" + "B.y" > 10)

& ("A.y" > "B.y"), "x")

Table 2. DJoin queries.

T
I Comorbidity
| BB Aspirin count

[ DJoin Q1

[ DJoin Q5
104 b 4

3000

200000
10000f

27000

10° b i

74
39
27
il -
1 L
ocQ

SMCQL

Running time (s)

270 530

2L
) Ilﬁ )
10! |_|

Opaque

DJoin

Figure 6. OCQ vs. competing systems. OCQ is orders of magnitude
faster than SMCQL and DJoin due to its use of trusted hardware,
and is faster than Opaque for most queries because it can execute
initial filters in plaintext.

same configuration. For the second, we report the numbers
from the SMCQL and DJoin papers because they are too slow
to run on our dataset or not open source. They are also insuf-
ficient for the coopetitive setting (as explained in §9.1). OCQ
is 1-4 orders of magnitude faster than SMCQL and DJoin
due to its use of trusted hardware. Meanwhile, OCQ gains a
performance advantage over Opaque, which also uses trusted
hardware, for queries that begin with a substantially selective
filter operation. Because the initial filter requires no commu-
nication between parties, it can be executed in plaintext at
each party. The cardinality of the input to subsequent oblivi-
ous operators is then greatly reduced. For our synthetic data,
the initial c. diff filter for the comorbidity query has = 1%
selectivity, as does the result of the selection and join to find
patients with heart disease who were prescribed aspirin for the
aspirin count query. For OCQ we specified padding bounds
that reflect this selectivity, because we do not wish to treat the
selectivity parameter as sensitive. In contrast, Opaque must
first perform an oblivious filter over each full relation. Be-
cause intermediate relation sizes within our query workload
tend to shrink as the query progresses, this initial oblivious
filter tends to dominate the running time.

Our reported query times include network transfer time,
including the time required to transfer the full relations to the
cloud for each Opaque query. Figure 7 shows the proportion
of query time spent in network transfer. These transfers occur
in parallel, so 5-node cluster uses its full aggregate bandwidth
to transfer each relation. For the medical queries, this transfer
is the dominant factor in Opaque’s query times due to the
large data sizes involved. Although the uploaded data could

350

I Comorbidity
[ Aspirin count 7|
[ DJjoin Q1
[ DJjoin Q5
ZZ1 WAN transfer |

300 |
250 |- B

200 |-

150 -

Running time (s)

100 |-

50 |

0

Opaque

Figure 7. OCQ vs. Opaque, highlighting network transfer time.
OCQ retains an advantage even assuming an infinitely fast network
because it can execute initial filters in plaintext rather than using
oblivious operators on the full inputs.

140 T T
120l o AgMPC |
0CQ (register-
100 | oblivious mode)
80 |- B

60 - B

AAAAAAA L

0
10? 10° 10* 10° 10° 107
Input rows per join table

a0t

Running time (s)

20

Figure 8. Performance of register-oblivious OCQ versus AgMPC.
OCQ provides the same level of memory access pattern protection
as AgMPC, but scales much better and is up to 219x faster.

be reused across queries, we include it in the query times for
consistency with the other systems. Data reuse is not always
possible, for example in case of frequently-changing data.

We also evaluated OCQ without any non-observable mem-
ory assumption (namely, the attacker can observe any party
table data in any part of memory) to show that its performance
remains much better than MPC-based systems. We compared
OCQ against AgMPC [75], a state-of-the-art maliciously se-
cure MPC framework (§9.1). We ran a query consisting of a
referential integrity inner equi-join on two equal-sized syn-
thetic tables, each containing two 32-bit integers. The first
integer in each table was the join key. Figure 8 shows that
OCQ is up to 219x faster than AgMPC on this query.

8.3 Overhead of security

Figure 9 compares OCQ to alternative uses of Opaque
with varying security guarantees to show the overhead of
OCQ’s security. “Outsourced Opaque” is as before. “Plaintext
federated” refers to an alternative federated configuration
where all computation runs in plain text rather than within
SGX. This configuration might be suitable for a network of
non-competing entities. “Outsourced Spark SQL” refers to
a configuration similar to Opaque but where computation is
run in plaintext rather than in SGX. This option provides no
security guarantees, as a server-side attacker could access the
data in full.

Figure 9 shows that OCQ introduces 2.2—12x overhead
compared to a plaintext federated configuration due to its



T T

Hl Outsourced Opaque

I Plaintext federated

3 oCQ

[ 0OCQ w/padding

I Outsourced Spark SQL
74 74

56

102

Running time (s)

10°

Comorbidity

Aspirin count DJjoin Q1 DJoin Q5

Figure 9. Overhead of OCQ’s security. OCQ incurs 2.2-25% over-
head compared to the federated and outsourced Spark SQL baselines,
which provide no security.

103

T
I Comorbidity
w [ Aspirin count
> =3 Djoin Q1 g 230
£ 1 Djoin Q5
2L .
g‘ 10 74 74 74
= 54 56
g 39 -
é 27
16 16
10*
0ocQ w/ 0oCQ w/ Opaque
all SGX one SGX

Figure 10. Availability of SGX enclaves at all sites provides 1.3—
1.6x speedup compared to having SGX at only one site.

use of oblivious operators. Additionally, outsourced Spark
SQL outperforms OCQ by up to 25x for the DJoin queries,
which use small relations without any initial filters, and whose
complexity is entirely in the core join computation, which
is expensive to perform obliviously. However, OCQ outper-
forms the outsourced configurations for the medical queries,
which do contain initial filters. Note that as before, we in-
clude network transfer time in query time, including the time
to upload full tables for the outsourced configurations.
8.4 Benefit of having SGX at each site

We next explore the design choice in OCQ that each site
must have its own local SGX cluster. This represents a con-
straint to its adoption, since SGX deployments are not wide-
spread. However, we observe that some queries significantly
benefit from this choice. Figure 10 compares OCQ to an al-
ternative design (“OCQ w/ one SGX”’) where operations on
multiple parties’ data such as joins and aggregations require
the data to be collected to a single SGX cluster first. We ob-
serve a 1.3—1.6x speedup over the alternative design for the
medical queries because the use of broadcast joins allows the
components of the broadcast join, namely an oblivious join
at each party, to operate on less data. Since all oblivious joins
run in parallel, this results in a speedup for the initial join,
which dominates the query plans.
8.5 Benefit of schema-aware padding

We compare the performance of our schema-aware padding
approach to a baseline query without padding and to an im-
plementation of Opaque’s “filter push-up” approach. In the

80

74 T

=70} Top |
wn
o 60 1 giseases |
E sof E
=
o 40 [ i
£ 30} 29 i
< 20 =
< 20| |
10} i

0 L

No pz;dding Filter p‘ush-up Schema-aware

padding
Figure 11. Schema-aware padding provides a 2.5X speedup com-
pared to filter push-up, and is only 26% slower than the baseline
plan without padding.

latter, filters and aggregations on sensitive relations always
return one output row for each input row, with rows that did
not match the predicate or rows other than the first one in each
group resulting in a dummy output row. All dummy rows are
filtered out at once as the final step of the query, thus hiding
intermediate result sizes. This approach results in large costs
when intermediate output is transferred over the network.

With appropriate sensitivity step-down hints for the medi-
cal dataset, schema-aware padding on the aspirin count and
comorbidity queries results in the same plan as a suitably
designed filter push-up approach. We therefore introduce a
plausible new query on the medical dataset that finds the most
costly diseases by grouping the diagnosis table on disease
id and computing the total cost for each disease:

diagnosis.groupBy("disease™)
.agg(sum("cost") as "total_cost")
.sort("total_cost").select("disease™).take(5)

This query results in the physical plan without padding:

OblLimit 5
OblProject [disease_id]
OblSort [total_cost]
OblAgg groupby[disease_id]
agg[sum(cost_partial_sum) as total_cost]
OblCollect
FedAgg groupby[disease_id]
agg[sum(cost) as cost_partial_sum]
FedEncScan diagnosis

Though the top-level aggregation occurs within SGX because
its input is sensitive, this plan may leak the cardinality of the
partial aggregates through SGX side channels. Our reimple-
mentation of filter push-up results in the following:

OblLimit 5
OblProject [disease_id]
OblSort [total_cost]
OblAggPadded groupby[disease_id]
agg[sum(cost_partial_sum) as total_cost]
OblCollect
FedPad diagnosis.cardinality
FedAgg groupby[disease]
agg[sum(cost) as cost_partial_sum]
FedEncScan diagnosis



This plan pads both levels of aggregation to the input size,
hiding their cardinalities, but resulting in two costly oblivious
sort operations on padded data. In contrast, our schema-aware
padding recognizes that the cardinalities of the partial and
final aggregates are bounded by the number of known disease
codes, which is much smaller than the cardinality of the in-
put diagnosis table and is public knowledge. It generates a
nearly identical plan to filter push-up, with the difference that
both aggregation operations pad to disease.cardinality
instead of diagnosis.cardinality. Figure 11 compares
the performance of all three plans using the input described
in §8.1. The lower padding bound and consequently reduced
oblivious sort cardinality give our schema-aware padding
approach a 2.5x speedup compared to the filter push-up ap-
proach, and it is only 26% slower than the baseline plan
without padding.

9 Related work

9.1 Cryptographic approaches

SMCQL [7] and Conclave [73] use secure multi-party com-
putation (instead of hardware enclaves) to achieve federated
analytics queries. Unlike OCQ, SMCQL and Conclave do
not protect against a malicious attacker (the attacker is semi-
honest), and their implementation is for only two or three par-
ties. Further, their join scheme relies on joining non-sensitive
attributes, unlike OCQ, which can join on sensitive data.

AgMPC [75] is likely the most relevant cryptographic
framework to OCQ because it is n-party, maliciously-secure,
and supports generic computation. As we show in §8, though,
AgMPC is orders of magnitude slower than OCQ.

DJoin [57] and private intersection-sum [37] use multi-
party computation to provide certain SQL operators. DJoin
supports only count queries over equi-joins, while private
intersection-sum supports sum queries over set intersections.
Both assume a passive attacker and incur high overhead.

UnLynx [29] and MedCo [66] use partially-homomorphic
encryption to provide filter-aggregate queries over multiple
parties’ data and are secure against malicious queriers. Com-
pared to these systems, OCQ offers a greater range of func-
tionality, but requires trust in hardware enclaves.

Cryptographic approaches have also been used for coopet-
itive machine learning training and prediction, which often
involve secure aggregation [11, 21, 30, 33, 55, 58]. These
approaches do not offer general analytics, and they largely
assume a passive attacker or two non-colluding servers.

Encrypted databases such as CryptDB [64], AlwaysEn-
crypted [52], and Seabed [62] perform queries over encrypted
data, but are not suited for the coopetitive setting.

9.2

Systems for single-machine or distributed computation
using hardware enclaves include SCONE [5], Graphene [18],
Ryoan [36], Haven [9], VC3 [67], Cipherbase [2], and
Opaque [81]. These systems assume a setting where all

Hardware enclave approaches

data is controlled by one party and are not designed for the
coopetitive setting. Prochlo [10] offers privacy-preserving
outsourced computation over many users’ data using
hardware enclaves. However, it requires centralizing the data,
which encounters regulatory and logistical challenges in the
coopetitive setting. Ohrimenko et al. [60] provides oblivious
machine learning in SGX, but does not consider analytics in
the federated setting and query planning. Oblix [53] focuses
on oblivious point queries and does not support analytics and
the decentralized setting.

9.3 Unencrypted federated databases

Collaborative query planning (CQP) [80] is a proposal
for decentralized query planning in a multi-party setting
where information sharing policy restricts centralized plan-
ning. Queries are instead broken into subqueries, indepen-
dently planned by each party, and reassembled into a feder-
ated plan. CQP shares a setting with OCQ and complements it
in the case where query planning information such as statistics
must be treated as sensitive. Preference-aware query optimiza-
tion (PAQO) [27, 28] is a proposal to extend SQL with users’
declarations for where their data should be processed in a
distributed database, with applications including restricting
certain data from untrusted servers. PAQO allows the user to
treat these declarations, called intensional descriptions [27],
as preferences to be optimized rather than hard constraints. In
future work, a similar approach could be applied to OCQ.

9.4 Differential privacy

A complementary and synergetic direction to OCQ are
differential-privacy systems like Flex [39] and Chorus [40],
which offer differential privacy for SQL queries via query
rewriting. The queries they produce can be used as input
to OCQ. Hence, one could add differential privacy to a
query result before sharing it among the parties in OCQ.
Shrinkwrap [8] provides differential privacy specifically for
federations, and can be used with OCQ to reduce the amount
of padding for intermediate results.

10 Conclusion

In this paper we proposed OCQ, an efficient framework
for oblivious coopetitive analytics using hardware enclaves.
OCQ’s contributions are its query planner design, which sup-
ports flexible party-specific sensitivity rules, its mechanism
for propagating and refining padding upper bounds based on
foreign key constraints, and its mixed-sensitivity algorithms.

Acknowledgements

We are grateful for the helpful comments from the anony-
mous reviewers and from our shepherd, Manuel Costa. This
work has been supported by NSF CISE Expeditions Award
CCF-1730628, as well as gifts from the Sloan Foundation,
Bakar, Alibaba, Amazon Web Services, Ant Financial, Capital
One, Ericsson, Facebook, Futurewei, Google, Intel, Microsoft,
Nvidia, Scotiabank, Splunk, and VMware.



References

[1]

[2

—

-
B9

[5

=

[6

=

[7

—

[8

=

[9

—

[10]

[11]

(12]

[13]

[14]

[15

[16]

Rakesh Agrawal and Ramakrishnan Srikant. 2000. Privacy-preserving
data mining. SIGMOD Rec. (2000).

Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald
Kossmann, Ravi Ramamurthy, and Ramaratnam Venkatesan. 2013. Or-
thogonal Security with Cipherbase. In Proceedings of the 6th Biennial
Conference on Innovative Data Systems Research (CIDR). Asilomar,
CA.

ARM. [n.d.]. TrustZone. https://developer.arm.com/ip-products/
security-ip/trustzone.

Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies
Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J.
Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational
Data Processing in Spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’15).
Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Riidiger
Kapitza, Peter Pietzuch, and Christof Fetzer. 2016. SCONE: Secure
Linux Containers with Intel SGX. In 12¢th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16).

Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Ozsu.
2013. Multi-core, Main-memory Joins: Sort vs. Hash Revisited. Proc.
VLDB Endow. (2013).

Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho,
and Jennie Rogers. 2017. SMCQL: Secure Querying for Federated
Databases. Proc. VLDB Endow. (2017).

Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and
Jennie Rogers. 2018. Shrinkwrap: Efficient SQL Query Processing
in Differentially Private Data Federations. Proc. VLDB Endow. 12, 3
(2018).

Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding
Applications from an Untrusted Cloud with Haven. In 71th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14).

Andrea Bittau, Ulfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth
Raghunathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien
Tinnes, and Bernhard Seefeld. 2017. Prochlo: Strong Privacy for Ana-
lytics in the Crowd. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17).

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. 2017. Practical Secure Aggregation for Privacy-Preserving
Machine Learning. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’17).

Thomas Bourgeat, Ilia A. Lebedev, Andrew Wright, Sizhuo Zhang,
Arvind, and Srinivas Devadas. 2019. MI6: Secure Enclaves in a Specu-
lative Out-of-Order Processor. In IEEE/ACM Internationl Symposium
on Microarchicture.

Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Riidi-
ger Kapitza. 2017. Rollback and forking detection for trusted execution
environments using lightweight collective memory. In 2017 47th An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN).

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand
Exposure: SGX Cache Attacks Are Practical. In WOOT.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. 2018. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution. In
USENIX Security.

Jo Van Bulck, Nico Weichbrodt, Riidiger Kapitza, Frank Piessens,

and Raoul Strackx. 2017. Telling Your Secrets without Page Faults:
Stealthy Page Table-Based Attacks on Enclaved Execution. In USENIX

(17]

[18]

(19]

[20]

[21]

[22]

(23]

[24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

SECURITY.

Centers for Medicare & Medicaid Services. 1996. The Health Insur-
ance Portability and Accountability Act of 1996 (HIPAA). Online at
http://www.cms.hhs.gov/hipaa/.

Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX:
A Practical Library OS for Unmodified Applications on SGX. In 2017
USENIX Annual Technical Conference (USENIX ATC 17). USENIX
Association. https://www.usenix.org/conference/atc17/technical-
sessions/presentation/tsai

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhigiang
Lin, and Ten H. Lai. 2019. SgxPectre Attacks: Stealing Intel Secrets
from SGX Enclaves via Speculative Execution. In 2019 IEEE European
Symposium on Security and Privacy (EuroS P).

Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yingian
Zhang, XiaoFeng Wang, Ten-Hwang Lai, and Dongdai Lin. 2018. Rac-
ing in hyperspace: Closing hyper-threading side channels on sgx with
contrived data races. In 2018 IEEE Symposium on Security and Privacy
(SP).

Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust,
and Scalable Computation of Aggregate Statistics. In /4th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17).

Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum:
Minimal Hardware Extensions for Strong Software Isolation. Usenix
Security Symposium. https://eprint.iacr.org/2015/564.

Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum:
Minimal Hardware Extensions for Strong Software Isolation. In 25th
USENIX Security Symposium (USENIX Security 16).

Harry S. Delugach and Thomas H. Hinke. 1996. Wizard: A Data-
base Inference Analysis and Detection System. /EEE Transactions on
Knowledge and Data Engineering (1996).

Erez Eizenman. 2019. Scotiabank’s chief risk officer on the state of
anti-money laundering. In McKinsey Company.

Saba Eskandarian and Matei Zaharia. 2017. An Oblivious General-
Purpose SQL Database for the Cloud. CoRR abs/1710.00458 (2017).
arXiv:1710.00458 http://arxiv.org/abs/1710.00458

Nicholas L. Farnan, Adam J. Lee, Panos K. Chrysanthis, and Ting
Yu. 2011. Don’t Reveal My Intension: Protecting User Privacy Using
Declarative Preferences During Distributed Query Processing. In Pro-
ceedings of the 16th European Conference on Research in Computer
Security (ESORICS’11).

Nicholas L. Farnan, Adam J. Lee, Panos K. Chrysanthis, and Ting Yu.
2014. PAQO: Preference-aware query optimization for decentralized
database systems. In 2014 IEEE 30th International Conference on Data
Engineering.

David Froelicher, Patricia Egger, Jodo Sa Sousa, Jean Louis Raisaro,
Zhicong Huang, Christian Vincent Mouchet, Bryan Ford, and Jean-
Pierre Hubaux. 2017. UnLynx: A Decentralized System for Privacy-
Conscious Data Sharing. Proceedings on Privacy Enhancing Technolo-
gies 4 (2017), 152-170. http://infoscience.epfl.ch/record/229308
Adria Gascon, Phillipp Schoppmann, Borja Balle, Mariana Raykova,
Jack Doerner, Samee Zahur, and David Evans. 2017. Privacy-Preserving
Distributed Linear Regression on High-Dimensional Data. PoPETs
2017, 4 (2017), 345-364.

Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan
Haller, and Manuel Costa. 2017. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. In 26th
USENIX Security Symposium (USENIX Security 17).

Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. 2018.
Another flip in the wall of rowhammer defenses. In IEEE Symposium
on Security and Privacy (SP).

Rob Hall, Stephen E. Fienberg, and Yuval Nardi. 2011. Secure Multiple
Linear Regression Based on Homomorphic Encryption.


https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://eprint.iacr.org/2015/564
http://arxiv.org/abs/1710.00458
http://arxiv.org/abs/1710.00458
http://infoscience.epfl.ch/record/229308

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Thomas H. Hinke. 1988. Inference aggregation detection in database
management systems. In Proceedings. 1988 IEEE Symposium on Secu-
rity and Privacy.

Tyler Hunt, Zhipeng Jia, Vance Miller, Christopher J. Rossbach, and
Emmett Witchel. 2019. Isolation and Beyond: Challenges for System
Security. In Proceedings of the Workshop on Hot Topics in Operating
Systems (HotOS ’19).

Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett
Witchel. 2016. Ryoan: A Distributed Sandbox for Untrusted Computa-
tion on Secret Data. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX Association.
Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Sax-
ena, Karn Seth, David Shanahan, and Moti Yung. 2017. Private
Intersection-Sum Protocol with Applications to Attributing Aggre-
gate Ad Conversions. Cryptology ePrint Archive, Report 2017/738.
https://eprint.iacr.org/2017/738.

Yeongjin Jang, Jachyuk Lee, Sangho Lee, and Taesoo Kim. 2017.
SGX-Bomb: Locking Down the Processor via Rowhammer Attack.
In Proceedings of the 2nd Workshop on System Software for Trusted
Execution.

Noah Johnson, Joseph P. Near, and Dawn Song. 2018. Towards Practical
Differential Privacy for SQL Queries. Proc. VLDB Endow. (2018).
Noah M. Johnson, Joseph P. Near, Joseph M. Hellerstein, and Dawn
Song. 2018. Chorus: Differential Privacy via Query Rewriting. CoRR
abs/1809.07750 (2018). arXiv:1809.07750 http://arxiv.org/abs/1809.
07750

David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD Memory
Encryption. White paper.

Alan F Karr, Xiaodong Lin, Ashish P Sanil, and Jerome P Reiter. 2005.
Secure regression on distributed databases. Journal of Computational
and Graphical Statistics (2005).

Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-Che Tsai, and Raluca Ada
Popa. 2019. An Off-Chip Attack on Hardware Enclaves via the Memory
Bus. arXiv:cs.CR/1912.01701

Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and
Dawn Song. 2020. Keystone: An Open Framework for Architecting
Trusted Execution Environments. In European Conference on Computer
Systems (Eurosys). https://keystone-enclave.org/.

Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi,
Changho Choi, Taesoo Kim, Marcus Peinado, and Brent Byunghoon
Kang. 2017. Hacking in darkness: Return-oriented programming
against secure enclaves. In 26th USENIX Security Symposium (USENIX
Security 17).

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. 2017. Inferring Fine-grained Control Flow Inside
SGX Enclaves with Branch Shadowing. In USENIX SECURITY.

Tom Leighton. 1984. Tight bounds on the complexity of parallel sorting.
In Proceedings of the sixteenth annual ACM symposium on Theory of
computing. ACM, 71-80.

Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari,
and Elaine Shi. 2015. GhostRider: A Hardware-Software System for
Memory Trace Oblivious Computation. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’15).

Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David
Sommer, Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE:
Rollback protection for trusted execution. In 26th USENIX Security
Symposium (USENIX Security 17).

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday Savagaonkar. 2013.
Innovative Instructions and Software Model for Isolated Execution.
In Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy.

H. Brendan McMahan, Eider Moore, Daniel Ramage, and
Blaise Agiiera y Arcas. 2016. Federated Learning of Deep Networks us-
ing Model Averaging. CoRR abs/1602.05629 (2016). arXiv:1602.05629

16

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

http://arxiv.org/abs/1602.05629

Microsoft. 2019. Always Encrypted Database Engine. https://msdn.
microsoft.com/en-us/library/mt163865.aspx.

Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and
Raluca Ada Popa. 2018. Oblix: An Efficient Oblivious Search Index.
In 2018 IEEE Symposium on Security and Privacy (SP). 279-296.
Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk
Sunar. 2019. Memjam: A false dependency attack against constant-time
crypto implementations. International Journal of Parallel Program-
ming (2019).

Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for
Scalable Privacy-Preserving Machine Learning. In 2017 IEEE Sympo-
sium on Security and Privacy (SP).

Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel
Gruss, and Frank Piessens. 2020. Plundervolt: Software-based Fault
Injection Attacks against Intel SGX. In 2020 IEEE Symposium on
Security and Privacy (SP).

Arjun Narayan and Andreas Haeberlen. 2012. DJoin: Differentially Pri-
vate Join Queries over Distributed Databases. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation
(OSDI'12).

Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan
Boneh, and Nina Taft. 2013. Privacy-Preserving Ridge Regression on
Hundreds of Millions of Records. In 2013 IEEE Symposium on Security
and Privacy.

Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos Gkantsidis,
Markulf Kohlweiss, and Divya Sharma. 2015. Observing and Prevent-
ing Leakage in MapReduce. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security (CCS ’15).
Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Se-
bastian Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious
Multi-Party Machine Learning on Trusted Processors. In 25th USENIX
Security Symposium (USENIX Security 16).

Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and
Christof Fetzer. 2018. Varys: Protecting SGX enclaves from practical
side-channel attacks. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18).

Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ra-
machandran Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek
Modi, and Saikrishna Badrinarayanan. 2016. Big Data Analytics over
Encrypted Datasets with Seabed. In 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 16).

Bryan Parno, Jay Lorch, John (JD) Douceur, James Mickens, and
Jonathan M. McCune. 2011. Memoir: Practical State Continuity for
Protected Modules. In Proceedings of the IEEE Symposium on Security
and Privacy.

Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and
Hari Balakrishnan. 2011. CryptDB: Protecting Confidentiality with
Encrypted Query Processing. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (SOSP ’11).

Xiaolei Qian, Mark E. Stickel, Peter D. Karp, Teresa F. Lunt, and
Thomas D. Garvey. 1993. Detection and elimination of inference
channels in multilevel relational database systems. In Proceedings
1993 IEEE Computer Society Symposium on Research in Security and
Privacy. IEEE, 196-205.

Jean Louis Raisaro, Juan Troncoso-Pastoriza, Mickael Misbach,
Joao Sa Sousa, Sylvain Pradervand, Edoardo Missiaglia, Olivier
Michielin, Bryan Ford, and Jean-Pierre Hubaux. 2019. MedCo: En-
abling Secure and Privacy-Preserving Exploration of Distributed Clin-
ical and Genomic Data. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (2019).

Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis,
Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015.


https://eprint.iacr.org/2017/738
http://arxiv.org/abs/1809.07750
http://arxiv.org/abs/1809.07750
http://arxiv.org/abs/1809.07750
http://arxiv.org/abs/cs.CR/1912.01701
https://keystone-enclave.org/
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://msdn.microsoft.com/en-us/library/mt163865.aspx
https://msdn.microsoft.com/en-us/library/mt163865.aspx

[68]

[69]

[70]

[71]

[72]

[73]

[74]

VC3: Trustworthy Data Analytics in the Cloud Using SGX. In Proceed-
ings of the 2015 IEEE Symposium on Security and Privacy (SP ’15).
IEEE Computer Society.

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. 2019. ZombielLoad:
Cross-Privilege-Boundary Data Sampling. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security.
Michael Schwarz, Samuel Weiser, Daniel Gruss, Clementine Maurice,
and Stefan Mangard. 2017. Malware Guard Extension: Using SGX to
Conceal Cache Attacks. In DIMVA.

Michael Stonebraker, Paul M Aoki, Robert Devine, Witold Litwin, and
Michael Olson. 1994. Mariposa: A new architecture for distributed
data. In Data Engineering, 1994. Proceedings. 10th International Con-
ference.

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2017.
CLKSCREW: Exposing the Perils of Security-Oblivious Energy Man-
agement. In 26th USENIX Security Symposium (USENIX Security 17).
Komodo: Using verification to disentangle secure-enclave hard-
ware from software. 2017. Andrew Ferraiuolo and Andrew Baumann
and Chris Hawblitzel and Bryan Parno. In SOSP.

Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia,
Andrei Lapets, and Azer Bestavros. 2019. Conclave: Secure Multi-party
Computation on Big Data. In Proceedings of the Fourteenth EuroSys
Conference 2019 (EuroSys ’19).

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yingian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. 2017.
Leaky Cauldron on the Dark Land: Understanding Memory Side-
Channel Hazards in SGX. In CCS.

(751

[76]

(771

(78]

[79]

[80]

[81]

[82]

Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-Scale
Secure Multiparty Computation. Cryptology ePrint Archive, Report
2017/189. https://eprint.iacr.org/2017/189.

Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Riidiger Kapitza.
2016. AsyncShock: Exploiting synchronisation bugs in Intel SGX
enclaves. In European Symposium on Research in Computer Security.
Springer.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Operating
Systems. In IEEESP.

Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed:
a timing attack on OpenSSL constant-time RSA. Journal of Crypto-
graphic Engineering (2017).

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In NSDI.

Mingyi Zhao, Peng Liu, and Jorge Lobo. 2015. Towards Collabora-
tive Query Planning in Multi-party Database Networks. In Data and
Applications Security and Privacy XXIX, Pierangela Samarati (Ed.).
Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and
Encrypted Distributed Analytics Platform. In /4th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17).
Wenting Zheng, Raluca Ada Popa, Joseph E. Gonzalez, and Ion Stoica.
2019. Helen: Maliciously Secure Coopetitive Learning for Linear
Models. In 2019 2019 IEEE Symposium on Security and Privacy (SP).


https://eprint.iacr.org/2017/189

	Abstract
	1 Introduction
	2 Background
	2.1 Hardware enclaves
	2.2 Oblivious algorithms
	2.3 Spark SQL and Opaque

	3 Architecture
	3.1 Setup phase
	3.2 Query lifecycle

	4 Threat model and security guarantees
	4.1 Abstract enclave model
	4.2 Party threat model
	4.3 Security guarantees

	5 Query Planning
	5.1 Overview
	5.2 Algorithm
	5.3 Query planner rules
	5.4 Determining padding upper bounds
	5.5 Pre-specified padding bounds

	6 Coopetitive algorithms
	6.1 Mixed-sensitivity join
	6.2 Coopetitive aggregation
	6.3 Obliviousness proofs

	7 Implementation
	8 Evaluation
	8.1 Setup
	8.2 Comparison to other systems
	8.3 Overhead of security
	8.4 Benefit of having SGX at each site
	8.5 Benefit of schema-aware padding

	9 Related work
	9.1 Cryptographic approaches
	9.2 Hardware enclave approaches
	9.3 Unencrypted federated databases
	9.4 Differential privacy

	10 Conclusion
	References

