CS 287 Advanced Robotics (Fall 2019) Lecture 7: Constrained Optimization

Pieter Abbeel UC Berkeley EECS

[optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 – 11 [optional] Nocedal and Wright, Chapter 18

Outline

- Constrained Optimization
- Penalty Formulation
- Convex Programs and Solvers
- Dual Descent

Outline

- Constrained Optimization
- Penalty Formulation
- Convex Programs and Solvers
- Dual Descent

Constrained Optimization

$$\min_{x} g_0(x)$$
s.t. $g_i(x) \le 0 \quad \forall i$

$$h_j(x) = 0 \quad \forall j$$

Outline

- Constrained Optimization
- Penalty Formulation
- Convex Programs and Solvers
- Dual Descent

Penalty Formulation

Original:

$$\min_{x} g_0(x)$$
s.t. $g_i(x) \le 0 \quad \forall i$

$$h_i(x) = 0 \quad \forall j$$

constrained

Penalty Formulation:

$$\min_{x} |g_0(x) + \mu \sum_{i} |g_i(x)|^+ + \mu \sum_{j} |h_j(x)|$$

- now unconstrained
- same solution for mu large enough

Penalty Method

Inner loop: optimize merit function

er loop: optimize merit function
$$\min_x \ g_0(x) + \mu \sum_i |g_i(x)|^+ + \mu \sum_i |h_j(x)| = \min_x \ f_\mu(x)$$

and increase μ in an outer loop until the two sums equal zero.

- Inner loop optimization can be done by any of:
 - Gradient descent
 - Newton or quasi-Newton method
 - Trust region method

Penalty Method w/Trust Region Inner Loop

Inner loop: optimize merit function

merit function
$$\min_{x} g_0(x) + \mu \sum_{i} |g_i(x)|^+ + \mu \sum_{i} |h_j(x)| = \min_{x} f_\mu(x)$$

and increase μ in an outer loop until the two sums equal zero.

Trust region method repeatedly solves:

(trust region constraint)

WHILE ($\sum_i |g_i(ar{x})|^+ + \sum_j |h_j(ar{x})| \geq \delta$ AND $\mu < \mu_{ ext{MAX}}$)

$$\mu \leftarrow t \mu, \quad \varepsilon \leftarrow \varepsilon_0$$
 // increase penalty coefficient for constraints; re-init trust region size
WHILE (1) // [2] loop that optimizes

Compute terms of first-order approximations: $g_0(\bar{x}), \nabla_x g_0(\bar{x}), g_i(\bar{x}), \nabla_x g_i(\bar{x}), h_j(\bar{x}), \nabla_x h_j(\bar{x}), \forall i, j \in \mathbb{N}$

Inputs: $\bar{x}, \mu = 1, \varepsilon_0, \alpha \in (0.5, 1), \beta \in (0, 1), t \in (1, \infty)$

WHILE (1) //[3] loop that does trust-region size search

Call convex program solver to solve:
$$\bar{f}_{\mu}(\bar{x}_{\text{next?}}) = \min_{x} \quad g_{0}(\bar{x}) + \nabla_{x}g_{0}(\bar{x})(x-\bar{x}) + \mu \sum_{i} \left|g_{i}(\bar{x}) + \nabla_{x}g_{i}(\bar{x})(x-\bar{x})\right|^{+}$$

$$+\mu \sum_{j} |h_{j}(\bar{x}) + \nabla_{x} h_{j}(\bar{x})(x - \bar{x})| \quad \text{s.t.} \quad ||x - \bar{x}||_{2} \leq \varepsilon$$

IF
$$f_{\mu}(\bar{x}) - f_{\mu}(\bar{x}_{\mathrm{next?}}) \geq \alpha \left(\bar{f}_{\mu}(\bar{x}) - \bar{f}_{\mu}(\bar{x}_{\mathrm{next?}}) \right)$$

THEN: Update $\bar{x} \leftarrow \bar{x}_{next?}$ **AND** Update (Grow) trust region: $\varepsilon \leftarrow \varepsilon/\beta$ **AND** BREAK out of while [3]

ELSE: No update to \Bar{x} AND Update (Shrink) trust region $\Bar{\varepsilon} \leftarrow \beta \Bar{\varepsilon}$

IF \mathcal{E} below some threshold **THEN: BREAK** out of while [3] and while [2]

Tweak: Retain Convex Terms Exactly

Non-convex optimization with convex parts separated:

$$\min_{x} f_0(x) + g_0(x)$$
 with: s.t. $f_i(x) \leq 0 \quad \forall i$ f_i convex $Ax - b = 0 \quad \forall j$ g_k non-convex $h_l(x) \leq 0 \quad \forall k$ h_l nonlinear

Retain convex parts and in inner loop solve:

$$\min_{x} f_0(x) + g_0(x) + \mu \sum_{k} |g_k(x)|^+ + \mu \sum_{l} |h_l(x)|$$
s.t. $f_i(x) \le 0 \quad \forall i$

$$Ax - b = 0 \quad \forall j$$

Outline

- Constrained Optimization
- Penalty Formulation
- Convex Programs and Solvers
- Dual Descent

Convex Optimization Problems

 Convex optimization problems are a special class of optimization problems, of the following form:

$$\min_{x \in \mathbb{R}^n} f_0(x)$$
s.t. $f_i(x) \le 0$ $i = 1, ..., n$

$$Ax = b$$

with $f_i(x)$ convex for i = 0, 1, ..., n

Convex Functions

A function f is convex if and only if

$$\forall x_1, x_2 \in \text{Domain}(f), \forall t \in [0, 1]:$$

$$f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2)$$

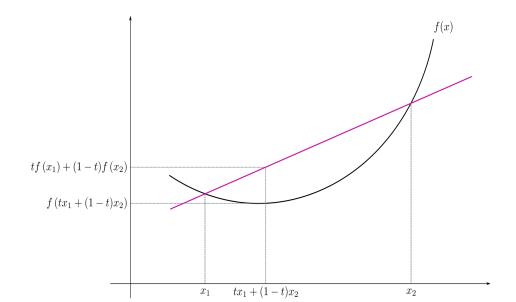
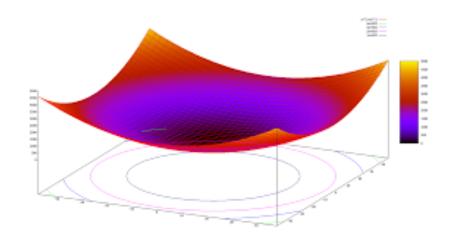


Image source: wikipedia

Convex Functions



- Unique minimum
- Set of points for which f(x) <= a is convex

Outline

- Constrained Optimization
- Penalty Formulation
- Convex Programs and Solvers
 - Equality Constraints
 - Inequality Constraints
- Dual Descent

Convex Problems: Equality Constrained Minimization

Problem to be solved:

$$\min_{x} f(x)$$
s.t. $Ax = b$

- We will cover three solution methods:
 - Elimination
 - Newton's method
 - Infeasible start Newton method

Method 1: Elimination

From linear algebra we know that there exist a matrix F (in fact infinitely many) such that:

$$\{x|Ax = b\} = \{x|x = \hat{x} + Fz\}$$

 \hat{x} : any solution to Ax = b

F: spans the null-space of A

A way to find an F: compute SVD of A, A = U S V', for A having k nonzero singular values, set F = U(:, k+1:end)

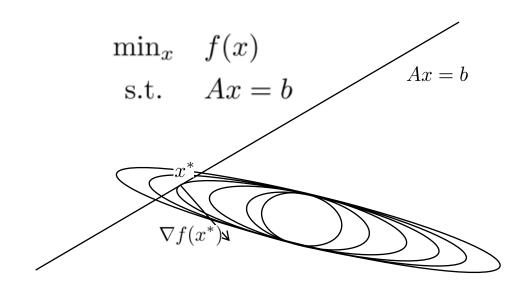
So we can solve the equality constrained minimization problem by solving an unconstrained minimization problem over a new variable z:

$$\min_{z} f(\hat{x} + Fz)$$

Potential cons: (i) need to first find a solution to Ax=b, (ii) need to find F, (iii) elimination might destroy sparsity in original problem structure

Methods 2 and 3 --- First Consider Optimality Condition

Recall problem to be solved:

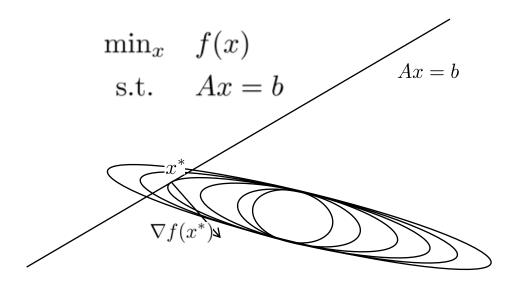


x* with Ax*=b is (local) optimum if and only if: $\forall \Delta x$ if $A\Delta x = 0$ then $\nabla f(x^*)^{\top} \Delta x = 0$.

Equivalently: $\nabla f(x^*)^\top = \nu^\top A$

Methods 2 and 3 --- First Consider Optimality Condition

Recall problem to be solved:



Optimality Condition: $Ax^* = b$ and $\nabla f(x^*) + A^{\top} \nu = 0$

Method 2: Newton's Method

Problem to be solved:

$$\min_{x} f(x)
s.t. Ax = b$$

- Optimality Condition: $Ax^* = b$ and $\nabla f(x^*) + A^{\top} \nu = 0$
- Assume x is feasible, i.e., satisfies Ax = b, now use 2^{nd} order approximation of f:

$$\min_{\Delta x} \quad f(x) + \nabla f(x)^{\top} \Delta x + \frac{1}{2} \Delta x^{\top} \nabla^2 f(x) \Delta x$$

s.t. $A(x + \Delta x) = b$

Optimality condition for 2nd order approximation:

$$\begin{bmatrix} \nabla^2 f(x) & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \nu \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

Method 2: Newton's Method

given starting point $x \in \operatorname{dom} f$ with Ax = b, tolerance $\epsilon > 0$. repeat

- 1. Compute the Newton step and decrement $\Delta x_{\rm nt}$, $\lambda(x)$.
- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{\rm nt}$.

With Newton step obtained by solving a linear system of equations:

$$\begin{bmatrix} \nabla^2 f(x) & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ \nu \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

Feasible descent method: $x^{(k)}$ feasible and $f(x^{(k+1)}) \leq f(x^{(k)})$

Method 3: Infeasible Start Newton Method

Problem to be solved: $\min_x f(x)$ s.t. Ax = b

- Optimality Condition: $Ax^* = b$ and $\nabla f(x^*) + A^{\top} \nu = 0$
- Use 1st order approximation of the optimality conditions at current x:

$$A(x + \Delta x) = b$$
$$\nabla f(x) + \nabla^2 f(x) \Delta x + A^{\top} \nu = 0$$

Equivalently:

$$\begin{bmatrix} \nabla^2 f(x) & A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \nu \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ b - Ax \end{bmatrix}$$

Outline

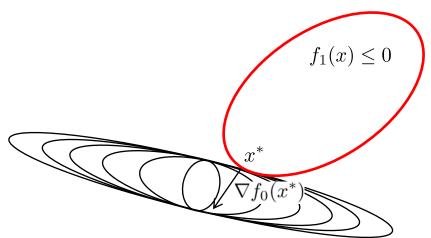
- Constrained Optimization
- Penalty Formulation
- Convex Programs and Solvers
 - Equality Constraints
 - Inequality Constraints: Barrier Method
- Dual Descent

Convex Problems: Equality and Inequality Constrained Minimization

Recall the problem to be solved:

$$\min_{x} f_0(x)$$

s.t. $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$



Equality and Inequality Constrained Minimization

Problem to be solved:

$$\min_{x} f_0(x)$$
s.t. $f_i(x) \le 0, \quad i = 1, \dots, m$

$$Ax = b$$

Reformulation via indicator function

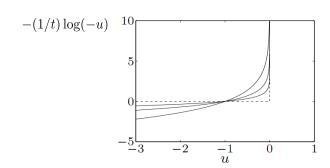
$$\min_{x} f_0(x) + \sum_{i=1}^{m} I_{-}(f_i(x))$$
$$Ax = b$$

→ No inequality constraints anymore, but very poorly conditioned objective function

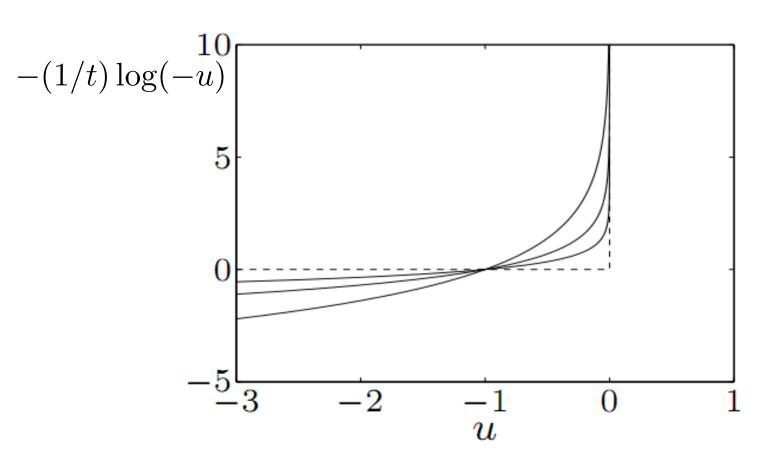
Approximation via logarithmic barrier:

$$\min_{x} \quad f_0(x) - (1/t) \sum_{i=1}^{m} \log(-f_i(x))$$
s.t.
$$Ax = b$$

- * for t > 0, $-(1/t) \log(-u)$ is a smooth approximation of $I_{-}(u)$
- * approximation improves for $t \rightarrow$ infinity
- * better conditioned for smaller t



Equality and Inequality Constrained Minimization



Barrier Method

- Given: strictly feasible x, $t=t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$
- Repeat
 - 1. *Centering Step.* Compute x*(t) by solving

$$\min_{x} f_0(x) - (1/t) \sum_{i=1}^{m} \log(-f_i(x))$$
s.t. $Ax = b$

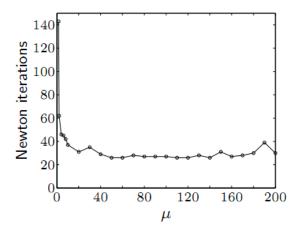
starting from x

- 2. *Update.* $x := x^*(t)$.
- 3. Stopping Criterion. Quit if $m/t < \varepsilon$
- 4. Increase t. $t := \mu t$

Example 1: Inequality Form LP

inequality form LP (m = 100 inequalities, n = 50 variables)





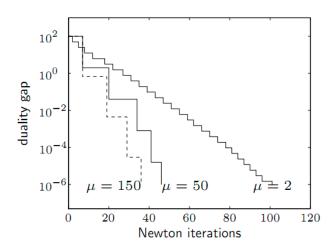
- starts with x on central path $(t^{(0)} = 1$, duality gap 100)
- terminates when $t = 10^8$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- ullet total number of Newton iterations not very sensitive for $\mu \geq 10$

Example 2: Geometric Program

geometric program (m = 100 inequalities and n = 50 variables)

minimize
$$\log \left(\sum_{k=1}^{5} \exp(a_{0k}^T x + b_{0k})\right)$$

subject to $\log \left(\sum_{k=1}^{5} \exp(a_{ik}^T x + b_{ik})\right) \le 0, \quad i = 1, \dots, m$



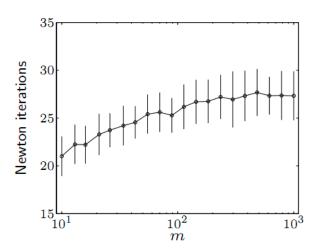
Example 3: Standard LPs

family of standard LPs $(A \in \mathbb{R}^{m \times 2m})$

minimize
$$c^T x$$

subject to $Ax = b$, $x \succeq 0$

 $m = 10, \dots, 1000$; for each m, solve 100 randomly generated instances



number of iterations grows very slowly as m ranges over a 100:1 ratio

Initialization

Basic phase I method:

Initialize by first solving:

$$\min_{x,s}$$
 s
s.t. $f_i(x) \le s$, $i = 1, ..., m$

$$Ax = b$$

- Easy to initialize above problem, pick some x such that Ax = b, and then simply set $s = max_i f_i(x)$
- Can stop early---whenever s < 0

Initialization

- Sum of infeasibilities phase I method:
- Initialize by first solving:

$$\min_{x,s} \quad \sum_{I=1}^{m} s_i$$
s.t.
$$f_i(x) \le s_i, \quad i = 1, \dots, m$$

$$s_i \ge 0, \quad i = 1, \dots, m$$

$$Ax = b$$

- Easy to initialize above problem, pick some x such that Ax = b, and then simply set $S_i = max(0, f_i(x))$
- For infeasible problems, produces a solution that satisfies many more inequalities than basic phase I method

Other methods for convex problems

- We have covered a primal interior point method / barrier method
 - one of several optimization approaches
- Examples of others:
 - Primal-dual interior point methods
 - Primal-dual infeasible interior point methods

Outline

- Constrained Optimization
- Penalty Formulation
- Convex Programs and Solvers
 - Equality Constraints
 - Inequality Constraints: Barrier Method
- Dual Descent

Formulation					
Original:	Penalty Formulation:	Dual-Descent Formulation:			
$\min_{x} g_0(x)$	$\min_{x} g_0(x) + \mu \sum_{i} g_i(x) ^+ + \mu \sum_{j} h_j(x) $	$\max_{\lambda \ge 0, \nu} \min_{x} g_0(x) + \sum_{i} \lambda_i g_i(x) + \sum_{j} \nu_j h_j(x)$			
s.t. $g_i(x) \leq 0 \forall i$					

 $h_i(x) = 0 \quad \forall j$ Penalty Method iterates:

- Optimize over x
- Increase mu as needed $\mu \leftarrow t * \mu$

Dual Descent iterates:

- Optimize over x
- Gradient descent step for lambda and nu

 $\max_{\lambda \ge 0, \nu} \min_{x} g_0(x) + \sum_{i} \lambda_i |g_i(x)|^+ + \sum_{i} \nu_j |h_j(x)|$

Dual-Descent Formulation of new, equivalent problem almost

identical to penalty formulation, but individual additive updates to lambda and nu, rather than scaling up of a single mu

$$\lambda_i \leftarrow \lambda_i + \alpha g_i(x)$$

$$\nu_j \leftarrow \nu_j + \alpha h_j(x)$$

New, equivalent problem with same solution:

$$min \qquad q_0(x)$$

s.t.

$$_{\cap}(x)$$

$$_0(x)$$

$$f_0(x)$$

$$g_0(x)$$

$$\leq 0 \ \forall i$$

$$|g_i(x)|^+ \le 0 \ \forall$$

 $|h_i(x)| = 0 \ \forall j$

$$|g_i(x)|^+ \le 0 \ \forall i$$

Next Lecture

Optimization-based Optimal Control! ©