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[optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 – 11
[optional] Nocedal and Wright, Chapter 18
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Constrained Optimization

min
x

g0(x)

s.t. gi(x)  0 8i
hj(x) = 0 8j
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Penalty Formulation

min
x

g0(x)

s.t. gi(x)  0 8i
hj(x) = 0 8j

min
x

g0(x) + µ
X

i

|gi(x)|+ + µ
X

j

|hj(x)|

Original: Penalty Formulation:

- now unconstrained
- same solution for mu large enough

- constrained



n Inner loop: optimize merit function

and increase μ in an outer loop until the two sums equal zero.

n Inner loop optimization can be done by any of:
n Gradient descent

n Newton or quasi-Newton method

n Trust region method

Penalty Method

min
x

g0(x) + µ
X

i

|gi(x)|+ + µ
X

j

|hj(x)| = min
x

fµ(x)

merit function



n Inner loop: optimize merit function

and increase μ in an outer loop until the two sums equal zero.

n Trust region method repeatedly solves:

Penalty Method w/Trust Region Inner Loop

min
x

g0(x) + µ
X

i

|gi(x)|+ + µ
X

j

|hj(x)| = min
x

fµ(x)

merit function

: current pointx̄(trust region constraint)

min
x

g0(x̄) +rxg0(x̄)(x� x̄) + µ
X

i

|gi(x̄) +rxgi(x̄)(x� x̄)|+ + µ
X

j

|hj(x̄) +rxhj(x̄)(x� x̄)|

s.t. kx� x̄k2  "



Inputs:

WHILE ( AND ) 

// increase penalty coefficient for constraints; re-init trust region size

WHILE (1) // [2]  loop that optimizes 

Compute terms of first-order approximations:

WHILE (1) // [3]  loop that does trust-region size search

Call convex program solver to solve:

IF 

THEN: Update AND Update (Grow) trust region: AND BREAK out of while [3]

ELSE: No update to AND Update (Shrink) trust region:

IF below some threshold   THEN: BREAK out of while [3] and while [2]

x̄, µ = 1, ⇤0,� 2 (0.5, 1),⇥ 2 (0, 1), t 2 (1,1)
X

i

|gi(x̄)|+ +
X

j

|hj(x̄)| � � µ < µMAX

µ tµ, � �0

g0(x̄),rxg0(x̄), gi(x̄),rxgi(x̄), hj(x̄),rxhj(x̄), 8i, j

x̄ x̄next? ⇥ ⇥/�

"



Tweak: Retain Convex Terms Exactly
n Non-convex optimization with convex parts separated:

n Retain convex parts and in inner loop solve:

with:
fi convex
gk non-convex
hl nonlinear

min
x

f0(x) + g0(x)

s.t. fi(x)  0 8i
Ax� b = 0 8j
gk(x)  0 8k
hl(x) = 0 8l

min
x

f0(x) + g0(x) + µ
X

k

|gk(x)|+ + µ
X

l

|hl(x)|

s.t. fi(x) ⇥ 0 ⇤i
Ax� b = 0 ⇤j
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n Convex optimization problems are a special class of 
optimization problems, of the following form:

with fi(x) convex for i = 0, 1, …, n

Convex Optimization Problems

min
x2Rn

f0(x)

s.t. fi(x)  0 i = 1, . . . , n

Ax = b



n A function f is convex if and only if

Convex Functions

8x1, x2 2 Domain(f), 8t 2 [0, 1] :

f(tx1 + (1� t)x2)  tf(x1) + (1� t)f(x2)

Image source: wikipedia



Convex Functions

Source: Thomas Jungblut’s Blog

• Unique minimum
• Set of points for which f(x) <= a is convex
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n Problem to be solved:

n We will cover three solution methods:
n Elimination

n Newton’s method

n Infeasible start Newton method

Convex Problems: Equality Constrained Minimization



n From linear algebra we know that there exist a matrix F (in fact infinitely many) 
such that:

A way to find an F: compute SVD of A, A = U S V’, for A having k nonzero singular 
values, set F = U(:, k+1:end)

n So we can solve the equality constrained minimization problem by solving an 
unconstrained minimization problem over a new variable z:

n Potential cons: (i) need to first find a solution to Ax=b, (ii) need to find F, (iii) 
elimination might destroy sparsity in original problem structure

Method 1: Elimination

: any solution to Ax = b

F: spans the null-space of A



n Recall problem to be solved:

Methods 2 and 3 --- First Consider Optimality Condition

x* with Ax*=b is (local) 
optimum if and only if:

Equivalently:  



n Recall problem to be solved:

Methods 2 and 3 --- First Consider Optimality Condition



n Problem to be solved:

n

n Assume x is feasible, i.e., satisfies Ax = b, now use 2nd order approximation of f:

n Optimality condition for 2nd order approximation:

Method 2: Newton’s Method



With Newton step obtained by solving a linear system of equations:

Feasible descent method: 

Method 2: Newton’s Method



n Problem to be solved: 

n

n Use 1st order approximation of the optimality conditions at current x:

n Equivalently:

Method 3: Infeasible Start Newton Method
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n Recall the problem to be solved:

Convex Problems: Equality and Inequality Constrained Minimization



n Approximation via logarithmic barrier:

* for t > 0, -(1/t) log(-u) is a smooth approximation of I_(u)
* approximation improves for t à infinity
* better conditioned for smaller t

n Problem to be solved:

Equality and Inequality Constrained Minimization

n Reformulation via indicator function

à No inequality constraints anymore, but 
very poorly conditioned objective function



Equality and Inequality Constrained Minimization



n Given: strictly feasible x, t=t(0) > 0, μ > 1, tolerance ε > 0 

n Repeat

1.  Centering Step. Compute x*(t) by solving

starting from x

2. Update. x := x*(t).

3. Stopping Criterion.  Quit if m/t < ε

4. Increase t. t := μt

Barrier Method



Example 1: Inequality Form LP



Example 2: Geometric Program



Example 3: Standard LPs



n Basic phase I method:

Initialize by first solving:

n Easy to initialize above problem, pick some x such that Ax = b, and then simply set s = maxi fi(x)

n Can stop early---whenever s < 0

Initialization



n Sum of infeasibilities phase I method:

n Initialize by first solving:

n Easy to initialize above problem, pick some x such that Ax = b, and then simply set si = 
max(0, fi(x))

n For infeasible problems, produces a solution that satisfies many more inequalities than 
basic phase I method

Initialization



n We have covered a primal interior point method / barrier method

n one of several optimization approaches

n Examples of others:
n Primal-dual interior point methods

n Primal-dual infeasible interior point methods

Other methods for convex problems
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Formulation

min
x

g0(x)

s.t. gi(x)  0 8i
hj(x) = 0 8j

min
x

g0(x) + µ
X

i

|gi(x)|+ + µ
X

j

|hj(x)|

Original: Penalty Formulation:

Penalty Method iterates:
- Optimize over x

- Increase mu as needed

Dual-Descent Formulation:

Dual Descent iterates:
- Optimize over x
- Gradient descent step for lambda and nu

New, equivalent problem with same solution:

Dual-Descent Formulation of new, equivalent problem almost 
identical to penalty formulation, but individual additive updates 

to lambda and nu, rather than scaling up of a single mu



Optimization-based Optimal Control! J

Next Lecture


