CS287 Advanced Robotics (Fall 2019)
Lecture 5

Optimal Control for
Linear Dynamical Systems and Quadratic Cost

(“ LQR”)

Pieter Abbeel
UC Berkeley EECS

Bellman’s Curse of Dimensionality

n-dimensional state space

Number of states grows exponentially in n (for fixed number of
discretization levels per coordinate)

In practice

= Discretization is considered only computationally feasible upto 5 or 6
dimensional state spaces even when using

= Variable resolution discretization
= Highly optimized implementations

= Function approximation might or might not work, in practice often
somewhat local

This Lecture

= Optimal Control for Linear Dynamical Systems and Quadratic
Cost (aka LQ setting, or LQR setting)

= Very special case: can solve continuous state-space optimal control

problem exactly and only requires performing linear algebra
operations

= Running time: O(H n3)

Note 1: Great reference [optional] Anderson and Moore, Linear Quadratic Methods

Note2 : Strong similarity with Kalman filtering, which is able to compute the Bayes’ filter updates
exactly even though in general there are no closed form solutions and numerical solutions scale
poorly with dimensionality.

Linear Quadratic Regulator (LQR)

The LQR setting assumes a linear dynamical system:
Ti41 = Axy + Buy,

s state at time ¢
us: Input at time ¢
It assumes a quadratic cost function:

g, up) = SU;FQIBt + u;rRut

with @ > 0, R > 0.

For a square matrix X we have X > 0 if and only if for all vectors z we
have 2" Xz > 0. Hence there is a non-zero cost for any state different from the
all-zeros state, and any input different from the all-zeros input.

Extension to Non-Linear Systems

Value lteration

m Back-up step for i+1 steps to go:

Jit1(s) = ming(s,u) + > P(s|s, u) Ji(s")

m LQR:

Jit1(x) = min ' Qr 4+ u' Ru+ > J;(z)
r'=Ax+Bu

— min [J,TCQ.L -+ uTRu + J;(A.CL + Bu)]

u

LQR value iteration: J,

Jiv1(x) muin {:UTQ:E +u' Ru+ J;(Az + Bu)}

Initialize Jo(z) = 2" Pyz.

Ji(x) = muin [2"Qz + u' Ru+ Jo(Az + Bu)]
- muin [:I:TQ:C +u' Ru + (Az 4+ Bu)" Py(Az + Bu)] (1)
To find the minimum over u, we set the gradient w.r.t. u equal to zero:
Vul...] = 2Ru+2B" Py(Az 4+ Bu) =0,
hence: w = —(R+ B"PyB)"'BTPyAz (2)

(2) into (1): Ji(z) = ' P
for: Pl = Q+KIRK1+(A+BK1)TP0(A+BK1)
K, = —(R+B"PB) 'BTRA.

LQR value iteration: J, (ctd)

= Insummary: Jo(z) =z T Pyx
Lt41 = AIEt - B’U,t
g(z,u) =u'Ru+z"Qx

Ji(z) = x' Pz
for: P, = Q+ K, RK,+ (A+ BK,)' Py(A+ BK))
K, = —(R+B"PB)"'BTRA.

= J,(x) is quadratic, just like Jo(x).

-2 Value iteration update is the same for all times and can be done in closed form for this
particular continuous state-space system and cost!

Jo(z) = z' P
for: P, = Q+ Ky RKo+ (A+ BK,)' Pi(A+ BK>)
K = —(R+B'PB)"'B"PA.

Value iteration solution to LQR

Set P():O
fori=1,2,3,...
Ki = —(R+B"P,_B)"'B"P,_,A
P, = Q+ K'RK; + (A+ BK;)"P,_1(A + BK;)

The optimal policy for a i-step horizon is given by:
m(z) = K;x
The cost-to-go function for a i-step horizon is given by:

Ji(z) = 2" Px.

Fact: Guaranteed to converge to the infinite horizon optimal policy if and only if the
dynamics (A, B) is such that there exists a policy that can drive the state to zero.

Often most convenient to use the steady-state K for all times.

LQR assumptions revisited

Tir1 = Axi+ Buy
g(xy,uy) = .CE;ert-l-uz-Rut

= for keeping a linear system at the all-zeros state
while preferring to keep the control input small.

Extensions make it more generally applicable:
= Affine systems
= Systems with stochasticity
= Regulation around non-zero fixed point for non-linear systems
= Penalization for change in control inputs
= Linear time varying (LTV) systems

= Trajectory following for non-linear systems

LQR ExtO: Affine systems

Tiv1 = Axi+ Bup+c
g(zi,w) =) Quy+u) Ry

= Optimal control policy remains linear, optimal cost-to-go function remains
quadratic

= Two avenues to do derivation:
= 1. Re-derive the update, which is very similar to what we did for standard setting

= 2. Re-define the state as: z; = [x;; 1], then we have:

Ty A ¢ Ty B
e[][4 1) (3] 2 mnee

LQR Extl: stochastic system

Tip1 = Axy+ Buy + wy
g(xe,uy) = I:th ‘*‘U;I_Rut

wy,t =0,1,...are zero mean and independent

m Exercise: work through similar derivation as we did for the
deterministic case, but which will now have expectations.

m Result:

Same optimal control policy

Cost-to-go function is almost identical: has one additional term which
depends on the variance in the noise (and which cannot be influenced
by the choice of control inputs)

LQR Ext2: non-linear systems

Nonlinear system: Tip1 = f(:ct,ut)

We can keep the system at the state x* iff
Ju*st. xF = f(a",u”)

Linearizing the dynamics around x™ gives:
T =~ f(z*,u) + = (2", u™)(xy — ") + == (2", u*)(uy — u™)

ox ou

\ J \ J
| [

Equivalently: A B
Tip1 — " = A(xy — ") + B(ug — u™)

Let z, = x,— X", let v, = u, — u”, then:

zt+1 = Azt + By, cost = z; Qz; + v, Ry [Fstandard LOR]

vw=Kzi=u —u" =K(x;—2") = u =u" + K(z; —x")

LQR Ext3: Penalize for Change in Control Inputs

m Standard LQR:

A.fCt -1~ B’U,t
:c;ert + utTRut

Lt41
g(xta ut)

s When run in this format on real systems: often high frequency control inputs get
generated. Typically highly undesirable and results in poor control performance.

= Why?

m Solution: frequency shaping of the cost function. Can be done by augmenting the
system with a filter and then the filter output can be used in the quadratic cost
function. (See, e.g., Anderson and Moore.)

m Simple special case which works well in practice: penalize for change in control
inputs. ---- How ??

LQR Ext3: Penalize for Change in Control Inputs

m Standard LQR:
AZCt . But
] Qx + u, Ruy

Lt41
g(a:ta ut)

= How to incorporate the change in controls into the cost/reward function?

= Soln. method A: explicitly incorporate into the state by augmenting the state with the past
control input vector, and the difference between the last two control input vectors.

= Soln. method B: change of control input variables.

LQR Ext3: Penalize for Change in Control Inputs

m Standard LQR:
ACCt -1 But
] Qx + u, Ruy

Tt41
g(xs, uy)

= Introducing change in controls Au:

cost = — (2T Q'x’ + Au" R'Au) Q = [82 (])%]

R’ = penalty for change in controls
[If R’=0, then “equivalent” to standard LQR.]

LQR Ext4: Linear Time Varying (LTV) Systems

AtCCt -+ Btut

T T
Ty Qtil?t + Uy Rtut

LTt41
g(wta ut)

LQR Ext4: Linear Time Varying (LTV) Systems

Set Py = 0.
fori=1,2,3,...
K; = —(Ry_;+Bj_;P,_1By_;) 'B}_;Pi_1An_;
P, = Qu_i+ KZ'TRH—'L'Ki + (Ag—i + BH—iKz')TPi—1(AH—i + By K;)

The optimal policy for a i-step horizon is given by:
m(z) = Kz
The cost-to-go function for a i-step horizon is given by:

Ji(x) = z" Px.

LQR Ext5: Trajectory Following for Non-Linear Systems

m A state sequence xo*, x1%, ..., Xy* is a feasible target trajectory if and only if
Jus,uy, .. uyoq 2 VEE{0,1,. .., H =1} ¢ xp = f(zf,up)

m Problem statement:

. H—
Mgy, u g —1 Zt:Ol(xt - CC:)TQ(xt - ff??‘) + (ut - UI)TR(ut - u:)

S.t. Ti41 — f(a:t,ut)

m Transform into linear time varying case (LTV):

Ty ~ f(og,uf) + %(xt?ut)(xt —xy) + %(xtaut)(ut — uy)

| J \ J
/ |

A B,
Ti41 — $:+1 ~ A(ry — xy) + Be(ue — uy)

LQR Ext5: Trajectory Following for Non-Linear Systems

m Transformed into linear time varying case (LTV):
minuo,ul,...,u”_l Zf{:?)l(ﬂ?t - x:)TQ(xf - I:) + (ut o u:)TR(U’f - u;k)

S.t. Ty — :CIH = At(xt — ZEI) + Bt(ut - UI)

= Now we can run the standard LQR back-up iterations.
m Resulting policy at i time-steps from the end:

Upg—q — U*H—i — Ki(SEH—i - 'I*H—v)

m The target trajectory need not be feasible to apply this technique, however, if it
is infeasible then there will an offset term in the dynamics:

Tip1 — Ty = f(@e,ue) — x5 + Ae(2p — x7) + Be(ue — uy)

Most General Case

= How about this general optimal control problem?

H
min Z g(ZIZ‘t, ’U,t)
Uy, UH
t=0

Iteratively Apply LQR

Initialize the algorithm by picking either (a) A control policy 7(®) or (b) A
sequence of states :1:(()0), xg()), . ,:E(HO) and control inputs u(()o) : ugo), e ,ug). With
initialization (a), start in Step (1). With initialization (b), start in Step (2).

[terate the following:

(1) Execute the current policy 7(¥ and record the resulting state-input tra-
jectory III(()i), u(()i), :z:gi), ugi), e xg), u%)

(2) Compute the LQ approximation of the optimal control problem around
the obtained state-input trajectory by computing a first-order Taylor ex-
pansion of the dynamics model, and a second-order Taylor expansion of
the cost function.

(3) Use the LQR back-ups to solve for the optimal control policy 7(i+1) for
the LQ approximation obtained in Step (2).

(4) Set © =1+ 1 and go to Step (1).

lterative LQR in Standard LTV Format

Standard LTV is of the form:
21 = Az + Byog
g(z,v) =2"Qz+v Rv

Linearizing f around (fct ,ut) from the roll-out in iteration ¢ of the iterative
LQR algorithm gives us:

of
or

@ , @

i i f i i
wer S u?) + S5 @) -) + 5) -)

Keeping in mind that xﬁl = f(xg), ugl)) gives us:

of

i+1 f ; [i i [
Tt41 — l’§++1) a_(aiz))(ﬂ?t—xg))jL%(xg)vug))(ut—ui))

Hence we get the standard format if using:

w = [ma] 0 Gta) G
, = NT .
Ut = (u — U’tZ)) t <% (x(l))) g(x(l))
af (,.(1) (%) -
A, = a_(xt sup ') 0 r 2 .
¢ 0 1 99wy 99y
0f (40 @ Ry = T ;
B = [a <xto,ut)] _(gg(m >)) g(u®)

for simplicity and with
some abuse of notation we

assumed g(x,u)

= g(x) + g(u)

Iteratively Apply LQR: Convergence

= Need not converge as formulated!

= Reason: the optimal policy for the LQ approximation might end up not
staying close to the sequence of points around which the LQ
approximation was computed by Taylor expansion.

= Solution: in each iteration, adjust the cost function so this is the case,
i.e., use the cost function

(1 — @)g(@s, wr) + a(llz: — 213 + lue — u”|12)

Assuming g is bounded, for a close enough to one, the 2" term will
dominate and ensure the linearizations are good approximations
around the solution trajectory found by LQR.

l.e., the extra term acts like a trust region.

Iteratively Apply LQR: Practicalities

= fis non-linear, hence this is a non-convex optimization

problem. Can get stuck in local optima! Good initialization
matters.

= g could be non-convex: Then the LQ approximation can fail to
have positive-definite cost matrices.

= Practical fix: if Q, or R, are not positive definite = increase penalty for
deviating from current state and input (x,, u,) until resulting Q, and R,
are positive definite.

Differential Dynamic Programming (DDP)

m Often loosely used to refer to iterative LQR procedure.

s More precisely: Directly perform 2" order Taylor expansion of the Bellman
back-up equation [rather than linearizing the dynamics and 2"d order
approximating the cost]

m Turns out this retains a term in the back-up equation which is discarded in
the iterative LQR approach

m [It's a quadratic term in the dynamics model though, so even if cost is
convex, resulting LQ problem could be non-convex ...]

[Reference: Jacobson and Mayne, “Differential dynamic programming,” 1970]

Differential Dynamic Programming (DDP)

Let’s consider the case of scale control input u (to keep notation simple)

DDP

Lt41

Tet1

= flz,

S

Iterative LQR

Ji(xi11) =Ji(Ti41)
+ i (Te1) (Teg1 — Tegr)
+ 1J"’(Et+1)($t+1 — Zpy1)?
NJ (ZUt+1)
+ J’(f(@41) fu(z, w) (u —)
J"<at~ 1) (fulw, @) (u — @)’
— f(xa ’LL)

Can We Do Even Better?

Yes!

At convergence of iLQR and DDP, we end up with linearizations around the
(state,input) trajectory the algorithm converged to

In practice: the system could not be on this trajectory due to perturbations / initial
state being off / dynamics model being off / ...

Solution: at time ¢ when asked to generate control input ut, we could re-solve the
control problem using iLQR or DDP over the time steps ¢ through H

Replanning entire trajectory is often impractical = in practice: replan over horizon .
= receding horizon control

= This requires providing a cost to go J®" which accounts for all future costs. This
could be taken from the offline iLQR or DDP run

Multiplicative Noise

= In many systems of interest, there is noise entering the system
which is multiplicative in the control inputs, i.e.:

Xi+1 = AX¢ T (B + Byw)uy

= Exercise: LQR derivation for this setting

[optional related reading:Todorov and Jordan, nips 2003]

Cart-pole

H(q)i+ C(q,q) + G(q) = B(q)u

me +m, mpylcost
mpl cos 6 mz[)l2

X (J\l)e - Cla,q9) = ;8 5mpl9'sin9}
Lmﬂ G(q) = | ?n,,gz ey }
B = | (1)]

[See also Section 3.3 in Tedrake notes.]

Cart-pole --- LQR

Results of running LQR for the linear time-invariant system obtained from linearizing around
[0;0;0;0]. The cross-marks correspond to initial states. Green means the controller succeeded
at stabilizing from that initial state, red means not.

R S S S P R S P S P S PSP P S
LXXXXXKXXKAXXKXKXXKKXKX KKK XKXXKX XXX XX XXX
HKUKHAEKAEHAEHAH KKK AE A KA XK KA XA KA XK AX KK A KAKK
R S S S E I S IS I S I S S IS I S I S IS I S S I S I I S 1 4
HAUARXAAKAXAR AKX AKX KKK AKX AKX AKX KA K H KA XHAKE K AKX KKK KKK
HURXAXAKAXAR XKL AK AKX AKX AKX XA XA KA XA KA K H K AKX A K AH K AKX KK AH KKK KK
5_XX

HAURXXAKKK KKK AKX KKK AKX LKA XL KA X AKX AKX HX KX HAX KKK KKK KX
HUAAXAKAR KKK AKX KKK AKX AKX AR KA KA X H KA X HA K H K AKX KK AH KKK KX
R S S S B S S S I S S S I S S S I S S S S e 4
HKUKHAHHE KKK EAUE KKK HE KK A K KR KA E KKK A H AKX KA KKK
4_XXXXXXXX

[a3]

X X X

HKAAKXAKKKXKKKXKX
HKAEAKXAXKK KKK KX
HAUAKKAKK KKK KXK

XXX

theta

HKARXKAKXKKKX
2— HKUXKAEHAK KK KK AKX KKK KA KK KA XA XK KA K HAXH K AH KA X H K AH XA KKK
R S S S B S S S S I S S I S S I S I S S S I S e 4
HAUARXXAKAKAR KKK AKX AKX AKX LKA KL K AKX AKX AKX HAKE XA X AKX KKK X
HUARXAXAKAXAR KKK AKX KK AKX AKX AKX A XA K HT K AKX HA K E X AKX KKK AKAXAKKX
R S S S B S S S S S S S I S S S I S S S S e 4
THXX XXX KX KKK KKK KKK KKK KKK KX KKK KK KKK KKK KKK KKK KKK KKK X KX
HUARXXAKKR KKK AKX KKK AKX LKA KX A KA K E X AKX HTKE XA X KKK KKK
HUKHXAH KKK AEH KA AH KK A KA KKK A XK KA KKK KK H KA XH K AE XA X AH K AH XA AK AKX
R S S S B S S S I S S S I S S S I S S S S e 4
HKAUARXXAKKARKAKAK AKX KKK AKX LKA KA K A KA KK AKX HA KK AKX KKK KKK KX

s - - - - - & & s 3

5 -4 -3 -2 -1 0 1 2 3 4 5

Q=diag([1;1;1;1]); R =0; [x, theta, xdot, thetadot]

Cart-pole --- LQR

Results of running LQR for the linear time-invariant system obtained from linearizing around
[0;0;0;0]. The cross-marks correspond to initial states. Green means the controller succeeded
at stabilizing from that initial state, red means not.

7r-

R S S S 5 5 I H S I I 5 S IS I I S IS S IS I S IS I S S S I S e 4
6_xx
HKUARXKXAKAX AR AKX AKX KK A XA KKK H XA K H X AKX KK AE X AHAAXAH K AH X AH XK KR KKK KX
HKUARXHXAHHAX KK AKX KX KK ALK HAX KK AH X H K AH X H KA K AE X AHA X AH K AH XA XK HKAH KKK KK
XXXXKXKXKXKXKX XXX XXX XXXXXX X XXX XXX XXX XXX XXX XXX XXX XXX XXX
KUYXKXKKKKKX XXX XXX XXX XRXXXXXX XXX XXX KKK XXX KKK KX XXX XXX
5_XX

R S S S 5 S I S S I S I S IS I I I S S I S I I S S S I S 1 4
KXXXKKXK KKK XXX XXX XXX XXX XXX XXX XXX KKK XXX XXX XXX XXX XXX

R S S S S S S P S S S S S S S P L S S S 4
HKUARXHXAHHAX KK ALK AKX KK A K AKX A K AH X H K E KA X H K AE KA X AHKAE K AHHAHAKAH XK KKK
XXXXKXKXXKKX XXX XXX XXX XXXX XXX XXX XXX XXX KKK XXX XXX XXX XXX
4_XX

[R S S S S S S S S S S S P L S S S 4
B R S S S 5 S IS S I S 5 S I I S I S S I S I I S IS I S i e 4
= KXXXKKKKXX XXX XXX XXX XXX XXX XXX XXX KKK XXX XXX XXX XXX XXX
e HKURXKXAKAKAR KKK KKK KA KKK HEAKHAHXAH KK KA AX KKK HXAKHK KKK
3_XX
KXXXKKKXKKX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX
HKUARXKXAKAX KX AKX AKX KK A KA X A K H X H K AH XA X H K AE X HAXAH K AH X AH KKK XK KKK

R S S S S S S I S S S S S S S P L S S S 4

R S S S 5 I S I S S I S I S I I I I S S I S I I S IS S I 4
PHHUXXKAKX KKK KKK KKK KKK XXX KKK KKK KKK XXX KKK KKK KKK XXX XXX
HKHUARHXAKHAX AR AKX AKX KK A KA KKK H X H X AH K AKX H K AE K HA X AH K AH K AH XK KAH KKK KK

R S S S 5 S I S S I S I S IS I S I S S I S S S S I S i e 4
KXXXKXKXKXKKX XXX XXX XXX XXXX XXX XXX XXX XXX KKK XXX XXX XXX XXX
HURHXAKHX AR AKX AKX KK H XA X HA K AH X H K AH XA XA K AE K AHA X AH K AH X AHA XK KR KKK AKX
1-XX
XXXXKXKXKXKKXX XXX XXX XXXXXX X XXX XXX XXX XXX XXX XXX XXX XXX XXX
HKHUARXKXAKAX KR AKX AKX KK AKX KK H X HA K H XA KKK AE X AEAAXAH K AH X AH KR KKK AKX AKKK

R S S S S S S P S S S S S S S P L S S S 4
HKUKKAK KKK AKH KKK KK E XA KKK E KKK E KKK E K E XA KK E X AEAKEKAE KKK XK

0 A e e NN e NN & K Ak 4
5 -4 -3 2 -1 0 1 2 3 4 5

X

Q=diag([1;1;1;1]); R =1; [x, theta, xdot, thetadot]

Bounded Controls

s Often control input u is bounded, e.g., inside [-1, +1]

= Can be dealt with simply by redefining dynamics: ut:talf_l(vt)

Ter1 = f(we,ur) = f(xg, tanh(vg)) — / Vi

= Optimize over v instead of u, and apply tanh(v) when running the policy

= Note: often in addition helpful to penalize for v being too far away from zero,
to keep optimization well conditioned

[See, e.g., Slotine and Li, or Boyd lecture notes (pointers available on course website) if you want to find out more.]

Lyapunov’s linearization method

Once we designed a controller, we obtain an autonomous system, x,; = f(x,)

Defn. x* is an asymptotically stable equilibrium point for system f if there exists an € > 0 such
that for all initial states x s.t. | | x—x* || <€ we have that lim; 3 X; = x*

We will not cover any details, but here is the basic result:
Assume x* is an equilibrium point for f(x), i.e., x* = f(x*).

If x* is an asymptotically stable equilibrium point for the linearized system, then it is
asymptotically stable for the non-linear system.

If x* is unstable for the linear system, it’s unstable for the non-linear system.
If x* is marginally stable for the linear system, no conclusion can be drawn.

= additional justification for linear control design techniques

Controllability

= Asystem is t-time-steps controllable if from any start state, x,;, we can reach any target state,
x*, at time t.

m For alinear time-invariant systems, we have:

xy = Alxg + A1 Bug + A" 2Buy + ...+ ABuy_o + Buy_q

hence the system is t-time-steps controllable if and only if the above linear system of equations
in U, ..., U1 has a solution for all choices of xy and x;. This is the case if and only if

rank [A""'B A"?B ... A°B AB B]=n

n—1

The Cayley-Hamilton theorem says that for all A, forallt,n: ~ Jw € R, A=) "w; A’
1=0

Hence we obtain that the system (A,B) is controllable for all times t>=n, if and only if

rank [A"'B A" *B .- A°B AB B]=n

Feedback Linearization

Consider system of the form:

i = f(@) + g(z)u

If g(z) is square (i.e., number of control inputs = number of state variables)
and it is invertible, then we can linearize the system by a change of input
variables:

v = f(z) +g(x)u

gives us:
=

Prototypical example: fully actuated manipulators:
H(q)i+b(q,q) +9(q) =7
Feedback linearize by using the following transformed input:
v=H""(q) (- g(q) - (g, 4))

which results in

Feedback Linearization

r1 = —2T1 -+ ars+sinzy

To = —xocosx1 + ucos(2zy)

Feedback Linearization

Feedback Linearization

x = f(x)+ g(x)u (6.52)

Definition 6.6 A single-input nonlinear system in the form (6.52), with f(x) and g(x)
being smooth vecior fields on R”, is said to be input-state linearizable if there exists a
region Q in R", a diffeomorphism ¢ : Q — R”, and a nonlinear feedback control law

u =0ox) + B(x)v (6.53)

such that the new state variables £ = §(x) and the new input v satisfy a linear time-
invariant relation

z=Az+by (6.54)
where
[010..0] [0]
00T1... 0
A= o b=
000..1 0
[000..0 1)

[A function is called a di®Reomorphism if it is smooth and its inverse is

th.
smooth.] [From: Slotine and Li]

Feedback Linearization

Theorem 6.2 The nonlinear system (6.52), with f(x) and g(x) being smooth vector
fields, is input-state linearizable if, and only if, there exists a region Q such that the

following conditions hold:

s the vector fields (g, adp g , ..., ady"~1 g} are linearly independent in Q

o the set (g, ade g, ..., a'df"‘2 g} is involutive in Q

Definition 6.1 Let i : R" — R be a smooth scalar function, and {: R" — R” be a
smooth vector field on R", then the Lie derivative of h with respect to § is a scalar

Junction defined by Leh = Vh f.
Thus, the Lie derivative Lgh is simply the directional derivative of A along the

direction of the vector f.

Repeated Lie derivatives ¢an be defined recursively
LCh=h
Lith = L(Le=V Ry = V(L) f

Similarly, if g is another vector field, then the scalar function Lg Lg h(X) is

for i=1,2,..

LyLih=Y(Lch) g

Feedback Linearization

Theorem 6.2 The nonlinear system (6.52), with f(x) and g(x) being smooth vector
fields, is input-state linearizable if, and only if, there exists a region L such that the
following conditions hold:

s the vector fields (g, adp g , ..., ady"~1 g} are linearly independent in Q

o the set (g, ade g, ..., a'df"‘2 g} is involutive in Q

Definition 6.2 Let f and g be two vector fields on R The Lic bracket of fand g is a
third vector field defined by

[f,g] = Vg I~ Vig

The Lie bracket [f, g] is commonly written as ady g (where ad stands for "adjoint”).
Repeated Lie brackets can then be defined recursively by

adg®g=¢g
adg' g = [f, ad¢~! g] for i=1,2,.....

Feedback Linearization

Theorem 6.2 The nonlinear system (6.52), with f(x) and g(x) being smooth vector
fields, is input-state linearizable if, and only if, there exists a region L such that the
following conditions hold:

s the vector fields (g, adp g , ..., ady"~1 g} are linearly independent in Q

o the set (g, ade g, ..., adf"‘z g} is involutive in Q

Definition 6.5 A linearly independent set of vector fields (€ .15, ..., f,.) is said to
be involutive if, and only If, there are scalar functions e - R”? — R such that

(f; £)00 =Y o x) Vi (6.51)
k=1

Feedback Linearization

Theorem 6.2 The nonlinear system (6.52), with f(x) and g(x) being smooth vector
fields, is input-state linearizable if, and only if, there exists a region Q such that the
following conditions hold:

s the vecior fields (g, adeg , ..., ad"~1 g} are linearly independent in Q

* the set (g, ade g, ..., adf”‘z g} is involutive in Q

—This condition can be checked by applying the chain rule
and examining the rank of certain matrices!

- The proof is actually semi-constructive: it constructs a
set of partial differential equations to which the state

transformation is the solution.

Feedback Linearization

= Further readings:

= Slotine and Li, Chapter 6 — example 6.10 shows state-input linearization
in action

= Isidori, Nonlinear control systems, 1989.

Learning Linear Dynamics Latent Spaces

s Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images
Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, Martin Riedmiller
https://arxiv.org/abs/1506.07365

s Deep Spatial Autoencoders for Visuomotor Learning
Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel
https://arxiv.org/abs/1509.06113

s SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning
Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J. Johnson, Sergey Levine
https://arxiv.org/abs/1808.09105

https://arxiv.org/abs/1506.07365
https://arxiv.org/abs/1509.06113
https://arxiv.org/abs/1808.09105

