CS287 Advanced Robotics
Lecture 4 (Fall 2019)
Function Approximation

Pieter Abbeel
UC Berkeley EECS

Value lteration

Impractical for
large state spaces

Algorithm:
Start with V(s) =0 foralls.
Fori=1,..,H
For all statessin S:

Vi1 (s) < maxy_ T(s,a,5) [R(s,a,s") + V()]

S

771 1(s) arg Teaj(ZT(s,a, s") [R(s,a, s') + 'y‘/;*(s’)}
S/

This is called a value update or Bellman update/back-up

V*

i (S) = expected sum of rewards accumulated starting from state s, acting optimally for i steps

7T;k (S) = optimal action when in state s and getting to act for i steps

Similar issue for policy iteration and linear programming

Outline

Function approximation
Value iteration with function approximation
Policy iteration with function approximation

Linear programming with function approximation

Function Approximation Example 1 : Tetris

state: board configuration + shape of the falling piece ~2200 states!

action: rotation and translation applied to the falling piece

22 features aka basis functions gbz

Ten basis functions, O, . . ., 9, mapping the state to the height h[k] of each column.

Nine basis functions, 10, . . ., 18, each mapping the state to the absolute difference
between heights of successive columns: |h[k+1] - h[k]|, k=1,..., 9.

One basis function, 19, that maps state to the maximum column height: max, h/k]
One basis function, 20, that maps state to the number of ‘holes’ in the board.

One basis function, 21, that is equal to 1 in every state.

Vo(s) = Z 0idi(s) = 6" p(s)

[Bertsekas & loffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD); Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]

000

880088

O
O
U
O
88
80
00

Function Approximation Example 2: Pacman

V(s) = 6,

+ 61 “distance to closest ghost”
+ 65 “distance to closest power pellet”
+ @3“in dead-end”

+ 04 “closer to power pellet than ghost”
+

= Zeiqx(s) =0 ¢(s)

Function Approximation Example 3: Nearest Neighbor

= 0’th order approximation (1-nearest neighbor):

Only store values for x1, x2, ..., x12
— call these values 0,0, ...,0;5
Assign other states value of nearest “x” state

Function Approximation Example 4: k-Nearest Neighbor

= 1'th order approximation (k-nearest neighbor interpolation):

V(s) = ¢1(5)01 + d2(5)02 + b5(5)05 + b6 (5)06

0.2
0.6
0

0 .
o(s) = [0.05 Vi(s)=0"g¢(s)

0.15

Only store values for x1, x2, ..., x12
— call these values9,,0,,...,0:5
Assign other states interpolated value of nearest 4 “x” states

More Function Approximation Examples

= Examples:
n S:R, V(S):61—|—928

= S5 = R, ‘A/(S) — (91 + 928 -+ (9382

« S=R, V(s Zes

A

= S =R" V(S) — fg(S) (e.g. neural net)

Function Approximation

= Mainidea:

LT : *
= Use approximation VQ of the true value function V
« () is a free parameter to be chosen from its domain @

= Representation size: ‘S‘ downto ’@|
+ : less parameters to estimate

- : less expressiveness, ~ *
. . . . —
because typically there exist many V* for which there is no 9 such that L 6 — L

Supervised Learning

= Given:

= set of examples (s(l), V(s(l))), (3(2), V(S(Q))), Ceey (S(m)7 V(S(m)))7

s Asked for:
= “best” VQ

= Representative approach: find 6 through least squares
: 7 (1)) _ (4)))2
min »_(Va(s™) = V(s*))

1=1

Supervised Learning Example

= Linear regression

Observation Y |

Prediction fj

Supervised Learning Example

= Neural Nets

Single (Biological) Neuron

impulses carried
toward cell body

branches
dendrites of axon
axon
nucleus terminals
iImpulses carried
away from cell body
cell body

[image source: cs231n.stanford.edu]

Single (Artificial) Neuron

L wo

*@® synapse
axon from a neuron ™\
. WoeIo

cell body

\ g(z wW;T; + b)
Zwiwi + b l

|
output axon

activation
function

w121

W22

[image source: cs231n.stanford.edu]

Common Activation Functions

Sigmoid Function

9@ |

0.8/ 9@ |

06}

04}

0.2}

ol - .

-5 0 5

1
9()= 1+e7

9'(z)= g(2)(1-g(2))

[source: MIT 6.5191 introtodeeplearning.com]

Hyperbolic Tangent

1¢ —

05}
o
-5 0
e? — e~ %
90 = e

g'(z)=1-g(2)*

o) |

9@ | |

Rectified Linear Unit (ReLU)

, ~y
9@ |]

o — N w R 1]

g(z)=max (0, z)

"(z) = 1, z>0
9 1o, otherwise

—

Neural Network

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

= = output layer
:
Notation: X 2 Z(2) 2(3) y = [f(z,w)

Choice of w determines the function from x -->y

What Functions Can a Neural Net Represent?

Does there exist a choice for w to make this work?

M
/ / /;',:T' -
‘|| /“/)
J
J \
]
™ '\
1// \-\’\ \\\\
, | — W
l/' \\‘ ' -z > > f(fC)
[™M\ .’ o 7
I’ \| | /_/' /,/
f \ I'I /
7\ -/"' \ / ’)
/ \ \
\ /' \\ \ ,/— 'l. / e
/ \ / \ /
\ \ / b Y-
\ / {
\/ .
> T

[images source: neuralnetworksanddeeplearning.com]

Universal Function Approximation Theorem

Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then,
for any finite measure g, standard multilayer feedforward networks can approximate any
function in LP(u) (the space of all functions on R* such that [p« |f(z)[Pdpu(z) < oo) arbi-

trarily well, provided that sufficiently many hidden units are available.

Hornik theorem 2: Whenever the activation function is continuous, bounded and non-
constant, then, for arbitrary compact subsets X C R*, standard multilayer feedforward
networks can approximate any continuous function on X arbitrarily well with respect to

uniform distance, provided that sufficiently many hidden units are available.

= In words: Given any continuous function f(x), if a 2-layer neural network has enough hidden
units, then there is a choice of weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”"Multilayer Feedforward Networks with Non-Polynomial Activation Functions Can Approximate Any Function”

Universal Function Approximation Theorem

Math. Control Signals Systems (1989) 2: 303314 M athematics of Comrol,
Signals, and Systems

© 1989 Springer-Verlag New Yorkinc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. n this paper we demonstrate that it lnear combinations of com-
positions of a fixed,
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
Iage vl setworks. In pamculu we show that arbitrary decision regions can
feedforward neural networks with
i The

onlyasinglei iddentayer and
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.
1. Introduction
A number of diverse ication areas are with the ion of

general functions of an n-dimensional real variable, x € R, by finite linear combina-
tions of the form

N
/):- ao(y]x + 6)), (1)

where y; € R"and o), 0 € Rare fixed. (7 is the transpose of y so that y"x is the inner
product of y and x.) Here the univariate function o depends heavily on the context
of the application. Our major concern is with so-called sigmoidal o’s:

©— 1 as t— +oo,
° 0 as t— —oco.

Such functions arise naturally in neural network theory as the activation function
of a neural node (or unit as is becoming the preferred term) [L1], [RHM]. The main
result of this paper is a demonstration of the fact that sums of the form (1) are dense
in the space of continuous functions on the unit cube if ¢ is any continuous sigmoidal

* Date received: October 21, 1988. Date revised: February 17, 1989. This rescarch was supported
in part by NSF Grant DCR-8619103, ONR Contract N000-86-G-0202 and DOE Grant DE-FGO02-
8SER25001.

1 Centerfor Department of Electri te
Engineering, University of Illinois, Urbana, Illinois 61801, US.A.

303

Neural Networks. Vol. 4
P VA A s s

ORIGINAL CONTRIBUTION

Approximation Capabilities of Multilayer
Feedforward Networks

KURT HORNIK
Technische Universitat Wien. Vienna, Austria
(Received 30 January 1990: revised and accepied 25 October 1990)

ract—We show that standard mulilayer feedforward networks with as few as a single hidden layer and
arbitrary bounded and nonconstant activation function are universal approximators with respect 1o L' (n) per-
formance criteria, for arbitrary finite input environment measures . provided only that sufficiently many hidden
units are available. If the activation function is continuous. bounded and nonconstant. then continuous mappings
can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks
with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to0 a function and

9 L1 300 +
Copyright © 1991 Pergamon Press plc

its derivatives.

Ke vwmds—Mumlanr(Lcd(urwud networks. Activation function, Um\er\.\lAppmxnmdmr\\dpdhx]lllm Input
L Uniforr

environment measure

1. INTRODUCTION

‘The approximation capabilities of neural network ar-
chitectures have recently been investigated by many
authors, including Carroll and Dickinson (1989), Cy-
benko (1989). Funahashi (1989). Gallant and White
(1988). Hecht-Niclsen (1989), Hornik, Stinchcombe,
and White (1989, 1990), Irie and Miyake (1988)
Lapedes and Farber (1988), Stinchcombe and White
(1989, 1990). (This list is by no means complete.)

1f we think of the network architecture as a rule
for computing values at / output units given values
at k input units. hence implementing a class of map-
pings from R to K, we can ask how well arbitrary
mappings from R* to R’ can be approximated by the
network, in particular, if as many hidden units as
required for internal representation and computation
may be employed.

How to measure the accuracy of approximation

measured by the uniform distance between functions
on X, that is,

2] 8) = sup [f(x) - &)l

In other applications. we think of the inputs as ran-
dom variables and are interested in the average per-
formance where the average is taken with respect to
the input environment measure i, where (R < =.
In this case, closeness is measured by the L(x) dis-
tances

pedf8) I (F(x) ~ g(x)" dutx)

< =, the most popular choice being p = 2.
corresponding to mean square error.

Of course, there are many more ways of measur-
ing closeness of functions. In particuiar, in many ap-
plications, it is also necessary that the derivatives of

depends on how w fune-
tions. which in turn varies sngmhcnmly it the spe-
cific problem to be dealt with. In many applicatio
it is necessary to have the network perform simul-
taneously well on all input samples taken from some
compact input set X in R*. In this case, closeness is

Reguests for reprints should be sent to Kurt Hornik., Institut
fur Statistik und Wahrscheinlichkeitstheorie. Technische Ui
versitat Wien, Wiedner HauptstraBe 8-10/107. A-1040 Wien. Aus
ria

the function by the net-
work closely resemble those of the function to be
approximated, up to some order. This issue was first
taken up in Homnik et al. (1990). who discuss the
sources of need of smooth functional approximation
in more detail. Typical examples arisc in robotics
(learning of smooth movements) and signal process-
ing (analysis of chaotic time series): for a recent ap-
plication to problems of nonparametric inference in
statistics and econometrics, sec Gallant and White
(1989)

All papers establishing certain approximation ca-

MULTILAYER FEEDFORWARD NETWORKS
‘WITH NON-POLYNOMIAL ACTIVATION
FUNCTIONS CAN APPROXIMATE ANY FUNCTION

by
Moshe Leshno
Faculty of Management
Tel Aviv University
Tel Aviv, Israel 69978

and

Shimon Schocken
Leonard N. Stern School of Business
New York University
New York, NY 10003

September 1991

Center for Research on Information Systems
Information Systems Department
Leonard N. Stern School of Business
New York University

‘Working Paper Series
STERN 15-91-26

Appeared previously as Working Paper No. 21/91 at The Israel Institute Of Business Research

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”"Multilayer Feedforward Networks with Non-Polynomial Activation Functions Can Approximate Any Function”

Overfitting

30—

25~

20~

15+

10~

gree 15 polynomial

|
12

|
14

!
16

!
18

|
20

Avoiding Overfitting

m Reduce number of features or size of the network
= Regularize @

= Early stopping: stop training updates once loss
increases on hold-out data

Status

= Function approximation through supervised learning

BUT: where do the supervised examples come from?

Value Iteration with Function Approximation

= Initialize by choosing some setting for g(0)

m lteratefori=0,1, 2, ..., H:
= Step 0: Picksome S’ C S (typically|S’| << |S])
= Step 1: Bellman back-ups
Vs €S : Vigi(s) —maxy T(s,a,s) [R(s, a,s') + 7179@)(8')}
= Step 2: Supervised Iear;/ing

: . . _ 2
find 9(*t1) as the solution of: min Z (me) (s) — V7;+1(s)>

seS’

Value Iteration w/Function Approximation --- Example

= Mini-tetris: two types of blocks, can only choose translation (not rotation)

= Example state:

= Reward =1 for placing a block

= Sink state / Game over is reached when block is placed such that part of it extends above the
red rectangle

= If you have a complete row, it gets cleared

Value Iteration w/Function Approximation --- Example

Value Iteration w/Function Approximation --- Example

S’={@,, :': :, @:, “}

m 10 features (also called basis functions) ¢;

= Four basis functions, O, . . ., 3, mapping the state to the height h[k] of each of the four columns.

= Three basis functions, 4, . . ., 6, each mapping the state to the absolute difference between
heights of successive columns: |h[k+1] - h[k]|, k=1, ..., 3.

= One basis function, 7, that maps state to the maximum column height: max, h[k]
= One basis function, 8, that maps state to the number of "holes’ in the board.

= One basis function, 9, that is equal to 1 in every state.

= Init with 90 =(-1,-1,-1,-1,-2,-2,-2,-3,-2, 10)

Value Iteration w/Function Approximation --- Example

= Bellman back-ups for the states in S’:

I

V(@)) = max {0.5 *(1+ vy V(| B

LS

N+05*(1+y V(i),

Value Iteration w/Function Approximation --- Example

= Bellman back-ups for the states in S’:

[|

[

[
|

N+05*(1+y V(i),

V(@) = max {0.5 *(1+ vy V(| B

Value Iteration w/Function Approximation --- Example

S’={@,, :': :, @:, “}

m 10 features aka basis functions ¢;

= Four basis functions, O, . . ., 3, mapping the state to the height h[k] of each of the four columns.

= Three basis functions, 4, . . ., 6, each mapping the state to the absolute difference between
heights of successive columns: |h[k+1] - h[k]|, k=1, ..., 3.

= One basis function, 7, that maps state to the maximum column height: max, h[k]
= One basis function, 8, that maps state to the number of "holes’ in the board.

= One basis function, 9, that is equal to 1 in every state.

= Init with 90 =(-1,-1,-1,-1,-2,-2,-2,-3,-2, 10)

Value Iteration w/Function Approximation --- Example

= Bellman back-ups for the states in S’:

V(BB Y) -maxt o5y oTo (] L)) 40541 +y 0o ([),

(6,2,4, 0 4 2 4,6,0,1) (6,2,4,0,4,2,4,6,0,1)

| I

)+05*(1+y 0T ¢ (FE

(2,6,4,0,4,2,4,6,0,1) (2,6,4,0,4,2,4,6,0,1)
0.5 *(1 +y V(@I)HO.S*UH{ V(@
(sink-state, V=0) (sink-state, V=0)

| I

05+(1+y 67 ([Nrosrary 670 ([

(0,0,2,2,0,2,0, 2,0, 1) (0,0,2,2,0,2,0,2,0,1)

Value Iteration w/Function Approximation --- Example

= Bellman back-ups for the states in S’:

V(@ i)=max{0.5*(1+y(-30) +0.5*1 +vy (-30)),

05*1+y (-30)) +0.5*(1+y (-30)),
0.5*1+y (0)) +0.5%(1+y | 0)),
0.5*1+y | 6)) +0.5%(1+y (6)) }

= 6.4 (fory =0.9)

Value Iteration w/Function Approximation --- Example

V(B)=max{ 0.5 *(1+vy V(=

(sink-state,

1--F
| | |
0.5*%1+y V (B |

(sink-state, V=0)

00 = (-1,-1,-1,-1,-2, -2, -2, -3, —2,20)
= Bellman back-ups for the second state in S’:
| B

)) +0.5*(1 +vy

))+05*1+y

0.5*(1+y V(E:EI)) +0.5%(1 +vy

(sink-state, V=0)

05*(1+y 07 o @

) +05*1+y 61 (@:

(0,0,0,0,0,0,0,0,0, 1)

19 >V =20

v(H

(sink-state, V=0)
§

V(:ﬂ:

(sink-state, V=0)

A= -

(sink-state, V=0)

(0,0,0,0,0,0,0,0,0, 1)

->V=20

),

),

)),

)) }

Value Iteration w/Function Approximation --- Example

00 = (-1,-1,-1,-1,-2, -2, -2, -3, —2,20) ‘
= Bellman back-ups for the third state in S’:

= sl H
V(@)=max{0.5* (1+y QTgb('))+0.5*(1+y9T¢()),
(4,4,0,0,0,4,0,4,0,1) (4,4,0,0,0,4,0,4,0, 1)
>V=-8 >V=-8
05*(1+y 07 ¢ (@ N+05*(1+y 0T ¢ (@),
(2,4,4,0,2,0,4,4,0,1) (2,4,4,0,2,0,4,4,0,1)
>V=-14 >V=-14
* T | * T
0.5*(1+y 6' ¢ (@))+05*(1+y 6O cb(@
(0,0,0,0,0,0,0,0,0,1) (0,0,0,0,0,0,0,0,0, 1)
->V=20 ->V=20

19

Value Iteration w/Function Approximation --- Example

00 = (-1,-1,-1,-1,-2, -2, -2, -3, —2,20)
= Bellman back-ups for the fourth state in S:

L]) | -
V([H)=max{05*(1+y 0T (fHH ~) +05*(1+y0'¢ (EH)),
- (6,6,4,0,0,2,4,6,4,1) (6,6,4,0,0,2,4,6,4,1)
>V=-34 :I ->V=-34
| =
05*(1+y 0T (JHE)+05*(1+vhTo (HH)),
(4,6,6,0,2,0,6,6,4,1) (4,6.6,0,2,0,6, 6, 4, 1)
->V=-38 I ->V=-38
] 1
05*(1+y 0 o (JHH N+05*(1+voTo (HH)))
(4,0,6,6,4,6,0,6,4,1) (4,0,6,6,4,6,0, 6,4, 1)
>V=-42 SV =42

=-29.6

Value Iteration w/Function Approximation --- Example

m After running the Bellman back- = We now run supervised learning on
ups for all 4 states in S” we have: these 4 examples to find a new O:
| : T i
V([=64 min(6.4 - 60" o(fq))°
(2,2,4,0,0,2,4,4,0,1) 0 |
| |
| |
| |
V(ER)= 19 +(19-0"o(EH))?
1 (4,4,4,0,0,04,4,0,1) L
Ly T)2
V(@—Fm +(19 -0 (@)
(2,2,0,0,0,2,0, 2, 0, 1) o 9
+((-29.6)~ 0T o(E)
V()=-29.6 _ _
Sl (404.0,444.4.0,1) Running least squares gives:

o) = (0.195,6.24, —2.11,0, —6.05,0.13, —2.11, 2.13, 0, 1.59)

Value Iteration with Neural Net Function Approximation

= Initialize by choosing some setting for g(0)

m |teratefori=0,1, 2, .., H:
= Step 0:Picksome S’ C § (typically |S'| << |S])
= Step 1: Bellman back-ups
Vs€S': Vipa(s) ¢ max) T(s,a,s) [R(s, a,s') + ng(s')}

= Step 2: Supervised learning
2

find 9(t+1) as the solution of: mein Z (Ve<i+1> (s) — ViH(S))

To avoid overfitting: only small number of gradient updates on objective
or early stopping based on hold-out set

Potential Guarantees?

Theoretical Analysis of Value Iteration + Function Approximation

= We'll consider the following varation on the algorithm:

m Assume we iterate over:
= VI back-up for ALL states

= Function approximation

Note: For ALL states is not practical (that’s why we do function
approximation). But (i) it’s helpful to theoretically think through

things; (ii) if we have a negative result, it's an even stronger
negative result

Simple Example

r=0

O——r @Y

Function approximator: [12] * 6

Simple Example

- 1

Jp = [5]9
JO(z1) = 04~Jpo (z2) = 2900
JD(zg) = 0+47Jpo (z2) = 2900

Function approximation with least squares fit:
0
1]) o 276
2 260
Least squares fit results in:

6
o) = 2190
5

Repeated back-ups and function approximations result in:

‘ 6 *
ol (_7> §(0)
5

5

which diverges if v > ¢
represent the true value function.|

even though the function approximation class can

Composing Operators

= Definition. An operator G is a non-expansion with respect to a
norm || .|| if ||GJy — GJs|| < ||J1 — J2

= Fact. If the operator F is a y-contraction with respect to a norm
|| . || and the operator G is a non-expansion with respect to the
same norm, then the sequential application of the operators G
and F is a y-contraction, i.e.,|GFJ1 — GF Jo| < 7||J1 — J2|

= Corollary. If the supervised learning step is a non-expansion,
then value iteration with function approximation is a y-
contraction, and in this case we have a convergence guarantee.

Averager Function Approximators Are Non-Expansions

DeFINITION: A real-valued function approximation scheme is an averager if every fitted value is the weighted
average of zero or more target values and possibly some predetermined constants. The weights involved in

calcufating the fitted value Y; may depend on the sample vector Xy, but may not depend on the target values
Y. More precisely, for a fixed Xg, if Y has n elements, there must exist n real numbers k;, n? nonnegative
real numbers 3;;, and n nonnegative real numbers J;, so that for each ¢ we have 3; 4 Zj F; = 1 and

= Examples:

= nearest neighbor (aka state aggregation)

= linear interpolation over triangles (tetrahedrons, ...)

Averager Function Approximators Are Non-Expansions

Proof: Let J; and J; be two vectors in R"™. Consider a particular entry s of
I1.J; and I1.J5:

(TL1) (s) — (ILT2)(s)| = \5so+2ﬁss Ji(s 5so+2/3ss Jo(s
- |Z¢Bss Jl ())l

SIMHM) J2(s")]
- ||J1 J2||oo

This holds true for all s, hence we have

LTy = Tz[lee < [[J1 = oo

Guarantees for Fixed Point

Theorem. Let J* be the optimal value function for a finite MDP with discount
factor . Let the projection operator II be a non-expansion w.r.t. the infinity
norm and let J be any fixed point of II. Suppose |J — J*||oc < €. Then IT
converges to a value function .J such that:

2ve
-

|T =) < 2¢ +

= l.e, if we pick a non-expansion function approximator which can approximate
J* well, then we obtain a good value function estimate.

= To apply to discretization: use continuity assumptions to show that J* can be
approximated well by chosen discretization scheme

Linear Regression ®

2
[

I I

(a) (b)

Figure 2: The mapping associated with linear regression when samples are taken at the points 2 = 0,1.2. In
(a) we see a target value function (solid line) and its corresponding fitted value function (dotted line). In (b)
we see another target function and another fitted function. The first target function has values y = 0,0,0
at the sample points; the second has values y = 0,1,1. Regression exaggerates the difference between the
two functions: the largest difference between the two target functions at a sample point is 1 (at @ = 1 and
x = 2), but the largest difference between the two fitted functions at a sample point is I (at z = 2).

Example taken from Gordon, 1995

Outline

4 Function approximation
4 Value iteration with function approximation
= Policy iteration with function approximation

= Linear programming with function approximation

Policy Iteration

One iteration of policy iteration:

= Policy evaluation: with fixed current policy =, find values

with simplified Bellman updates: e B lien
= |terate until values converge Approximation Here

Vb (8) — YT (s, mi(s),8') |R(s,m(s),s) + v V(s

= Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

Tr4+1(s) = argmax > T(s,a, s") [R(S, a,s’) + yV”k:(s/)}

= Repeat until policy converges

= At convergence: optimal policy; and converges faster under some conditions

Approximate Policy Evaluation is a Contraction!

= |F we do weighted linear regression, weighted by the state
visitation frequencies under the current policy

= THEN the resulting projection is a contraction w.r.t. the
weighted 2-norm

= Policy Evaluation Bellman update is a contraction w.r.t. the same
norm

= Guaranteed convergence © © ©

s Want to see the math:
https://inst.eecs.berkeley.edu/~cs294-40/fa08/scribes/lecture5.pdf

https://inst.eecs.berkeley.edu/~cs294-40/fa08/scribes/lecture5.pdf

Extra Intermezzo on Incompatible Norms

V(2) A ////(
verges

s E T/ ; -

Sy

Recent Related Paper**

= Towards Characterizing Divergence in Deep Q-Learning,
Joshua Achiam, Ethan Knight, Pieter Abbeel.
arXiv 1903.08894

https://arxiv.org/abs/1903.08894

Outline

[

Function approximation
Value iteration with function approximation
Policy iteration with function approximation

Linear programming with function approximation

Infinite Horizon Linear Program™*

s.t. Vi(s) > ZT(S, a,s')[R(s,a,s") +~V(s")], Vse€ S,ae A

S/

Theorem. V' is the solution to the above LP.

W is a probability distribution over S, with py(s)> 0 for all sin S.

Infinite Horizon Linear Program™*

st. 0" o(s) > ZT(S, a,s') [R(s,a,8)+~0" ¢(s')], Vs€ S a€ A

We find approximate value function f/@(s) = HTgb(s)

Approximate Linear Program — Guarantees™**

st. 0" p(s) > ZT(S, a,s') [R(s,a,8') +70" ¢(s)], Vs€ S ac A

m LP solver will converge

= Solution quality: [de Farias and Van Roy, 2002]

Assuming one of the features is the feature that is equal to one for all states,
and assuming S’=S we have that:
[V = @01, < mmemﬂv — @0

(slightly weaker, probabilistic guarantees hold for S’ not equal to S, these
guarantees require size of S’ to grow as the number of features grows)

