
CS287 Advanced Robotics
Lecture 4 (Fall 2019)

Function Approximation

Pieter Abbeel
UC Berkeley EECS

Value Iteration
Algorithm:

Start with for all s.

For i = 1, … , H

For all states s in S:

This is called a value update or Bellman update/back-up

= expected sum of rewards accumulated starting from state s, acting optimally for i steps

= optimal action when in state s and getting to act for i steps

Impractical for
large state spaces

Similar issue for policy iteration and linear programming

n Function approximation

n Value iteration with function approximation

n Policy iteration with function approximation

n Linear programming with function approximation

Outline

n state: board configuration + shape of the falling piece ~2200 states!

n action: rotation and translation applied to the falling piece

n 22 features aka basis functions

n Ten basis functions, 0, . . . , 9, mapping the state to the height h[k] of each column.

n Nine basis functions, 10, . . . , 18, each mapping the state to the absolute difference
between heights of successive columns: |h[k+1] − h[k]|, k = 1, . . . , 9.

n One basis function, 19, that maps state to the maximum column height: maxk h[k]

n One basis function, 20, that maps state to the number of ‘holes’ in the board.

n One basis function, 21, that is equal to 1 in every state.

[Bertsekas & Ioffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD); Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]

V̂�(s) =
21X

i=0

�i⇥i(s) = �>⇥(s)

�i

Function Approximation Example 1 : Tetris

Function Approximation Example 2: Pacman

V(s) =

+ “distance to closest ghost”
+ “distance to closest power pellet”
+ “in dead-end”
+ “closer to power pellet than ghost”
+ …

=

✓0
✓1
✓2
✓3

nX

i=0

�i⇥i(s) = �>⇥(s)

✓4

n 0’th order approximation (1-nearest neighbor):

Function Approximation Example 3: Nearest Neighbor

. . . .

. . . .

. . . .

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

.s
V̂ (s) = V̂ (x4) = �4

Only store values for x1, x2, …, x12
– call these values

Assign other states value of nearest “x” state
�1, �2, . . . , �12

�(s) =

0

BBBBBBBB@

0
0
0
1
0
. . .
0

1

CCCCCCCCA

V̂ (s) = �>⇥(s)

n 1’th order approximation (k-nearest neighbor interpolation):

Only store values for x1, x2, …, x12
– call these values

Assign other states interpolated value of nearest 4 “x” states
�1, �2, . . . , �12

V̂ (s) = �>⇥(s)

V̂ (s) = ⇥1(s)�1 + ⇥2(s)�2 + ⇥5(s)�5 + ⇥6(s)�6

�(s) =

0

BBBBBBBBBBBB@

0.2
0.6
0
0

0.05
0.15
0
. . .
0

1

CCCCCCCCCCCCA

. . . .

. . . .

. . . .

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

.s

Function Approximation Example 4: k-Nearest Neighbor

n Examples:

n

n

n

n (e.g. neural net)

S = R, V̂ (s) = �1 + �2s

S = R, V̂ (s) = �1 + �2s+ �3s
2

S = R, V̂ (s) =
nX

i=0

�is
i

More Function Approximation Examples

n Main idea:

n Use approximation of the true value function ,

n is a free parameter to be chosen from its domain

n Representation size: downto

+ : less parameters to estimate

- : less expressiveness,
because typically there exist many V* for which there is no such that

Function Approximation

|S| |⇥|

⇥✓

✓

V̂✓

n Given:

n set of examples

n Asked for:
n “best”

n Representative approach: find through least squares

Supervised Learning

V̂✓

min
�2�

mX

i=1

(V̂�(s
(i))� V (s(i)))2

✓

(s(1), V (s(1))), (s(2), V (s(2))), . . . , (s(m), V (s(m))),

n Linear regression

Supervised Learning Example

0 20
0

Error or “residual”

Prediction
Observation

min
�0,�1

nX

i=1

(�0 + �1x
(i) � y(i))2

n Neural Nets

Supervised Learning Example

Full Stack Deep Learning (March 2019) Pieter Abbeel, Sergey Karayev, Josh Tobin L0: Background

Single (Biological) Neuron

[image source: cs231n.stanford.edu]

Full Stack Deep Learning (March 2019) Pieter Abbeel, Sergey Karayev, Josh Tobin L0: Background

Single (Artificial) Neuron

g
g

[image source: cs231n.stanford.edu]

Full Stack Deep Learning (March 2019) Pieter Abbeel, Sergey Karayev, Josh Tobin L0: Background

Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com]

Full Stack Deep Learning (March 2019) Pieter Abbeel, Sergey Karayev, Josh Tobin L0: Background

Neural Network

x z(1) z(2) z(3) y = f(x,w)Notation:
Choice of w determines the function from x --> y

1
9

Full Stack Deep Learning (March 2019) Pieter Abbeel, Sergey Karayev, Josh Tobin L0: Background

What Functions Can a Neural Net Represent?

[images source: neuralnetworksanddeeplearning.com]

Does there exist a choice for w to make this work?

Full Stack Deep Learning (March 2019) Pieter Abbeel, Sergey Karayev, Josh Tobin L0: Background

Universal Function Approximation Theorem

n In words: Given any continuous function f(x), if a 2-layer neural network has enough hidden
units, then there is a choice of weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation Functions Can Approximate Any Function”

Full Stack Deep Learning (March 2019) Pieter Abbeel, Sergey Karayev, Josh Tobin L0: Background

Universal Function Approximation Theorem

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation Functions Can Approximate Any Function”

Overfitting

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

n Reduce number of features or size of the network

n Regularize

n Early stopping: stop training updates once loss
increases on hold-out data

Avoiding Overfitting

✓

n Function approximation through supervised learning

BUT: where do the supervised examples come from?

Status

Value Iteration with Function Approximation

n Initialize by choosing some setting for

n Iterate for i = 0, 1, 2, …, H:
n Step 0: Pick some (typically)

n Step 1: Bellman back-ups

n Step 2: Supervised learning

find as the solution of:

S0 ✓ S |S0| << |S|

✓(0)

min
�

X

s2S0

⇣
V̂�(i+1)(s)� V̄i+1(s)

⌘2

✓(i+1)

8s 2 S0 : V̄i+1(s) max
a

X

s0

T (s, a, s0)
h
R(s, a, s0) + �V̂�(i)(s0)

i

n Mini-tetris: two types of blocks, can only choose translation (not rotation)

n Example state:

n Reward = 1 for placing a block

n Sink state / Game over is reached when block is placed such that part of it extends above the
red rectangle

n If you have a complete row, it gets cleared

Value Iteration w/Function Approximation --- Example

Value Iteration w/Function Approximation --- Example

S’ = { , , , }

S’ = { , , , }

n 10 features (also called basis functions) φi

n Four basis functions, 0, . . . , 3, mapping the state to the height h[k] of each of the four columns.

n Three basis functions, 4, . . . , 6, each mapping the state to the absolute difference between
heights of successive columns: |h[k+1] − h[k]|, k = 1, . . . , 3.

n One basis function, 7, that maps state to the maximum column height: maxk h[k]

n One basis function, 8, that maps state to the number of ’holes’ in the board.

n One basis function, 9, that is equal to 1 in every state.

n Init with θ(0) = (-1, -1, -1, -1, -2, -2, -2, -3, -2, 10)

Value Iteration w/Function Approximation --- Example

n Bellman back-ups for the states in S’:

V() = max {0.5 *(1+ γ V()) + 0.5*(1 + γ V()) ,

0.5 *(1+ γ V()) + 0.5*(1 + γ V()) ,

0.5 *(1+ γ V()) + 0.5*(1 + γ V()) ,

0.5 *(1+ γ V()) + 0.5*(1 + γ V()) }

Value Iteration w/Function Approximation --- Example

0.5 *(1+ γ V()) + 0.5*(1 + γ V()) }

n Bellman back-ups for the states in S’:

V() = max {0.5 *(1+ γ V()) + 0.5*(1 + γ V()) ,

0.5 *(1+ γ V()) + 0.5*(1 + γ V()) ,

0.5 *(1+ γ V()) + 0.5*(1 + γ V()) ,

Value Iteration w/Function Approximation --- Example

S’ = { , , , }

n 10 features aka basis functions φi

n Four basis functions, 0, . . . , 3, mapping the state to the height h[k] of each of the four columns.

n Three basis functions, 4, . . . , 6, each mapping the state to the absolute difference between
heights of successive columns: |h[k+1] − h[k]|, k = 1, . . . , 3.

n One basis function, 7, that maps state to the maximum column height: maxk h[k]

n One basis function, 8, that maps state to the number of ’holes’ in the board.

n One basis function, 9, that is equal to 1 in every state.

n Init with θ(0) = (-1, -1, -1, -1, -2, -2, -2, -3, -2, 10)

Value Iteration w/Function Approximation --- Example

n Bellman back-ups for the states in S’:

V() = max { 0.5 *(1 + γ ()) + 0.5 *(1 + γ ()) ,

0.5 *(1 + γ ()) + 0.5 *(1 + γ ()) ,

0.5 *(1 + γ V ()) + 0.5*(1 + γ V ()) ,

0.5 *(1 + γ ()) + 0.5*(1 + γ ()) }

(6,2,4,0, 4, 2, 4, 6, 0, 1) (6,2,4,0, 4, 2, 4, 6, 0, 1)

(2,6,4,0, 4, 2, 4, 6, 0, 1) (2,6,4,0, 4, 2, 4, 6, 0, 1)

(sink-state, V=0) (sink-state, V=0)

(0,0,2,2, 0,2,0, 2, 0, 1) (0,0,2,2, 0,2,0, 2, 0, 1)

Value Iteration w/Function Approximation --- Example

✓>� ✓>�

✓>� ✓>�

✓>�✓>�

n Bellman back-ups for the states in S’:

V() = max { 0.5 *(1 + γ (-30)) + 0.5 *(1 + γ (-30)) ,

0.5 *(1 + γ (-30)) + 0.5 *(1 + γ (-30)) ,

0.5 *(1 + γ (0)) + 0.5*(1 + γ (0)) ,

0.5 *(1 + γ (6)) + 0.5*(1 + γ (6)) }

Value Iteration w/Function Approximation --- Example

= 6.4 (for γ = 0.9)

n Bellman back-ups for the second state in S’:

V() = max { 0.5 *(1 + γ V ()) + 0.5 *(1 + γ V ()) ,

0.5 *(1 + γ V ()) + 0.5 *(1 + γ V ()) ,

0.5 *(1 + γ V ()) + 0.5*(1 + γ V ()) ,

0.5 *(1 + γ ()) + 0.5*(1 + γ ()) }

(sink-state, V=0) (sink-state, V=0)

Value Iteration w/Function Approximation --- Example

✓>�✓>�

�(0) = (�1,�1,�1,�1,�2,�2,�2,�3,�2, 20)

(sink-state, V=0)

(sink-state, V=0)

(sink-state, V=0)

(sink-state, V=0)

(0,0,0,0, 0,0,0, 0, 0, 1) (0,0,0,0, 0,0,0, 0, 0, 1)
-> V = 20 -> V = 20= 19

n Bellman back-ups for the third state in S’:

V() = max {0.5 * (1 + γ ()) + 0.5 * (1 + γ ()) ,

0.5 *(1 + γ ()) + 0.5 * (1 + γ ()) ,

0.5 *(1 + γ ()) + 0.5 * (1 + γ ()) }
(0,0,0,0, 0,0,0, 0, 0, 1) (0,0,0,0, 0,0,0, 0, 0, 1)

-> V = 20 -> V = 20

= 19

(2,4,4,0, 2,0,4, 4, 0, 1) (2,4,4,0, 2,0,4, 4, 0, 1)
-> V = -14 -> V = -14

(4,4,0,0, 0,4,0, 4, 0, 1) (4,4,0,0, 0,4,0, 4, 0, 1)
-> V = -8 -> V = -8

Value Iteration w/Function Approximation --- Example
�(0) = (�1,�1,�1,�1,�2,�2,�2,�3,�2, 20)

✓>� ✓>�

✓>�

✓>�

✓>�

✓>�

V() = max { 0.5 * (1 + γ ()) + 0.5 * (1 + γ ()) ,

0.5 * (1 + γ ()) + 0.5 * (1 + γ ()) ,

0.5 * (1 + γ ()) + 0.5 * (1 + γ ()) }
(4,0,6,6, 4,6,0, 6, 4, 1) (4,0,6,6, 4,6,0, 6, 4, 1)

-> V = -42 -> V = -42

= -29.6

(4,6,6,0, 2,0,6, 6, 4, 1) (4,6.6,0, 2,0,6, 6, 4, 1)
-> V = -38 -> V = -38

(6,6,4,0, 0,2,4, 6, 4, 1) (6,6,4,0, 0,2,4, 6, 4, 1)
-> V = -34 -> V = -34

Value Iteration w/Function Approximation --- Example
�(0) = (�1,�1,�1,�1,�2,�2,�2,�3,�2, 20)

n Bellman back-ups for the fourth state in S’:

✓>�✓>�

✓>�✓>�

✓>�✓>�

min
✓

(6.4� �>⇥())2

+(19� �>⇥())2

+(19� �>⇥())2

+((�29.6)� �>⇥())2

n After running the Bellman back-
ups for all 4 states in S’ we have:

V()= 6.4

V()= -29.6

V()= 19

V()= 19

n We now run supervised learning on
these 4 examples to find a new θ:

Running least squares gives:

(2,2,4,0, 0,2,4, 4, 0, 1)

(4,4,4,0, 0,0,4, 4, 0, 1)

(2,2,0,0, 0,2,0, 2, 0, 1)

(4,0,4,0, 4,4,4, 4, 0, 1)

�(1) = (0.195, 6.24,�2.11, 0,�6.05, 0.13,�2.11, 2.13, 0, 1.59)

Value Iteration w/Function Approximation --- Example

Value Iteration with Neural Net Function Approximation

n Initialize by choosing some setting for

n Iterate for i = 0, 1, 2, …, H:
n Step 0: Pick some (typically)

n Step 1: Bellman back-ups

n Step 2: Supervised learning

find as the solution of:

To avoid overfitting: only small number of gradient updates on objective
or early stopping based on hold-out set

S0 ✓ S |S0| << |S|

✓(0)

min
�

X

s2S0

⇣
V̂�(i+1)(s)� V̄i+1(s)

⌘2

✓(i+1)

8s 2 S0 : V̄i+1(s) max
a

X

s0

T (s, a, s0)
h
R(s, a, s0) + �V̂�(i)(s0)

i

Potential Guarantees?

n We’ll consider the following varation on the algorithm:

n Assume we iterate over:
n VI back-up for ALL states
n Function approximation

Note: For ALL states is not practical (that’s why we do function
approximation). But (i) it’s helpful to theoretically think through
things; (ii) if we have a negative result, it’s an even stronger
negative result

Theoretical Analysis of Value Iteration + Function Approximation

Simple Example

Function approximator: [1 2] * θ

θ 2θ

x1 x2r=0

r=0

Simple Example

n Definition. An operator G is a non-expansion with respect to a
norm || . || if

n Fact. If the operator F is a γ-contraction with respect to a norm
|| . || and the operator G is a non-expansion with respect to the
same norm, then the sequential application of the operators G
and F is a γ-contraction, i.e.,

n Corollary. If the supervised learning step is a non-expansion,
then value iteration with function approximation is a γ-
contraction, and in this case we have a convergence guarantee.

Composing Operators

n Examples:

n nearest neighbor (aka state aggregation)

n linear interpolation over triangles (tetrahedrons, …)

Averager Function Approximators Are Non-Expansions

Averager Function Approximators Are Non-Expansions

n I.e., if we pick a non-expansion function approximator which can approximate
J* well, then we obtain a good value function estimate.

n To apply to discretization: use continuity assumptions to show that J* can be
approximated well by chosen discretization scheme

Guarantees for Fixed Point

Example taken from Gordon, 1995

Linear Regression L

n Function approximation

n Value iteration with function approximation

n Policy iteration with function approximation

n Linear programming with function approximation

Outline

Policy Iteration

n Repeat until policy converges

n At convergence: optimal policy; and converges faster under some conditions

One iteration of policy iteration:

Insert Function
Approximation Here

n IF we do weighted linear regression, weighted by the state
visitation frequencies under the current policy

n THEN the resulting projection is a contraction w.r.t. the
weighted 2-norm

n Policy Evaluation Bellman update is a contraction w.r.t. the same
norm

à Guaranteed convergence JJJ

n Want to see the math:
https://inst.eecs.berkeley.edu/~cs294-40/fa08/scribes/lecture5.pdf

Approximate Policy Evaluation is a Contraction!

https://inst.eecs.berkeley.edu/~cs294-40/fa08/scribes/lecture5.pdf

Extra Intermezzo on Incompatible Norms

n Towards Characterizing Divergence in Deep Q-Learning,
Joshua Achiam, Ethan Knight, Pieter Abbeel.
arXiv 1903.08894

Recent Related Paper**

https://arxiv.org/abs/1903.08894

n Function approximation

n Value iteration with function approximation

n Policy iteration with function approximation

n Linear programming with function approximation

Outline

μ0 is a probability distribution over S, with μ0(s)> 0 for all s in S.

Infinite Horizon Linear Program**

Theorem. V* is the solution to the above LP.

min
V

X

s2S

µ0(s)V (s)

s.t. V (s) �
X

s0

T (s, a, s0) [R(s, a, s0) + �V (s0)] , 8s 2 S, a 2 A

Let , and consider S’ rather than S:

Infinite Horizon Linear Program**

V (s) = �>⇥(s)

min
�

X

s2S0

µ0(s)⇥
>⇤(s)

s.t. ⇥>⇤(s) �
X

s0

T (s, a, s0)
⇥
R(s, a, s0) + �⇥>⇤(s0)

⇤
, 8s 2 S0, a 2 A

V̂✓(s) = �>⇥(s)

min
V

X

s2S

µ0(s)V (s)

s.t. V (s) �
X

s0

T (s, a, s0) [R(s, a, s0) + �V (s0)] , 8s 2 S, a 2 A

We find approximate value function

n LP solver will converge

n Solution quality: [de Farias and Van Roy, 2002]

Assuming one of the features is the feature that is equal to one for all states,
and assuming S’=S we have that:

(slightly weaker, probabilistic guarantees hold for S’ not equal to S, these
guarantees require size of S’ to grow as the number of features grows)

Approximate Linear Program – Guarantees**
min
�

X

s2S0

µ0(s)⇥
>⇤(s)

s.t. ⇥>⇤(s) �
X

s0

T (s, a, s0)
⇥
R(s, a, s0) + �⇥>⇤(s0)

⇤
, 8s 2 S0, a 2 A

kV ⇤ � �⇥k1,µ0 2

1� �
min
�

kV ⇤ � �⇥k1

