CS287 Advanced Robotics

Lecture 4 (Fall 2019)

Function Approximation

Pieter Abbeel
UC Berkeley EECS

Value Iteration

Algorithm:
Start with $V_{0}^{*}(s)=0$ for all s.
For $\mathrm{i}=1, \ldots, \mathrm{H}$
For all states s in S :

$$
\begin{aligned}
& V_{i+1}^{*}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{i}^{*}\left(s^{\prime}\right)\right] \\
& \pi_{i+1}^{*}(s) \leftarrow \arg \max _{a \in A} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{i}^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

This is called a value update or Bellman update/back-up
$V_{i}^{*}(s)=$ expected sum of rewards accumulated starting from state s, acting optimally for i steps $\pi_{i}^{*}(s)=$ optimal action when in state s and getting to act for i steps

Similar issue for policy iteration and linear programming

Outline

- Function approximation
- Value iteration with function approximation
- Policy iteration with function approximation
- Linear programming with function approximation

Function Approximation Example 1 : Tetris

- state: board configuration + shape of the falling piece $\sim 2^{200}$ states!
- action: rotation and translation applied to the falling piece
- 22 features aka basis functions ϕ_{i}
- Ten basis functions, $0, \ldots, 9$, mapping the state to the height $h[k]$ of each column.
- Nine basis functions, $10, \ldots, 18$, each mapping the state to the absolute difference between heights of successive columns: $|h[k+1]-h[k]|, k=1, \ldots, 9$.
- One basis function, 19, that maps state to the maximum column height: $\max _{k} h[k]$
- One basis function, 20, that maps state to the number of 'holes' in the board.
- One basis function, 21, that is equal to 1 in every state.

$$
\hat{V}_{\theta}(s)=\sum_{i=0}^{21} \theta_{i} \phi_{i}(s)=\theta^{\top} \phi(s)
$$

Function Approximation Example 2: Pacman

$$
V(s)=\quad \theta_{0}
$$

$+\theta_{1}$ "distance to closest ghost"
$+\theta_{2}$ "distance to closest power pellet"
$+\theta_{3}$ "in dead-end"
$+\theta_{4}$ "closer to power pellet than ghost"
$+\quad .$.
$=\sum_{i=0}^{n} \theta_{i} \phi_{i}(s)=\theta^{\top} \phi(s)$

Function Approximation Example 3: Nearest Neighbor

- 0'th order approximation (1-nearest neighbor):

Only store values for $\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{x} 12$

- call these values $\theta_{1}, \theta_{2}, \ldots, \theta_{12}$

Assign other states value of nearest " x " state

Function Approximation Example 4: k-Nearest Neighbor

- 1'th order approximation (k-nearest neighbor interpolation):

Only store values for $\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{x} 12$

- call these values $\theta_{1}, \theta_{2}, \ldots, \theta_{12}$

Assign other states interpolated value of nearest 4 " x " states

More Function Approximation Examples

- Examples:
- $S=\mathbb{R}, \hat{V}(s)=\theta_{1}+\theta_{2} s$
- $S=\mathbb{R}, \quad \hat{V}(s)=\theta_{1}+\theta_{2} s+\theta_{3} s^{2}$
- $S=\mathbb{R}, \quad \hat{V}(s)=\sum_{i=0}^{n} \theta_{i} s^{i}$
- $S=\mathbb{R}^{n} \hat{V}(s)=f_{\theta}(s) \quad$ (e.g. neural net)

Function Approximation

- Main idea:
- Use approximation \hat{V}_{θ} of the true value function V^{*}
- θ is a free parameter to be chosen from its domain Θ
- Representation size: $|S|$ downto $|\Theta|$
+ : less parameters to estimate
- : less expressiveness,
because typically there exist many V^{*} for which there is no θ such that $\hat{V}_{\theta}=V^{*}$

Supervised Learning

- Given:
- set of examples $\quad\left(s^{(1)}, V\left(s^{(1)}\right)\right),\left(s^{(2)}, V\left(s^{(2)}\right)\right), \ldots,\left(s^{(m)}, V\left(s^{(m)}\right)\right)$,
- Asked for:
- "best" \hat{V}_{θ}
- Representative approach: find θ through least squares

$$
\min _{\theta \in \Theta} \sum_{i=1}^{m}\left(\hat{V}_{\theta}\left(s^{(i)}\right)-V\left(s^{(i)}\right)\right)^{2}
$$

Supervised Learning Example

- Linear regression

Supervised Learning Example

- Neural Nets

Single (Biological) Neuron

Single (Artificial) Neuron

Common Activation Functions

Sigmoid Function

$$
g(z)=\frac{1}{1+e^{-z}}
$$

$$
g^{\prime}(z)=g(z)(1-g(z))
$$

Hyperbolic Tangent

$g(z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}$
$g^{\prime}(z)=1-g(z)^{2}$

Rectified Linear Unit (ReLU)

$$
g(z)=\max (0, z)
$$

$$
g^{\prime}(z)=\left\{\begin{array}{lc}
1, & z>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Neural Network

Choice of w determines the function from x--> y

What Functions Can a Neural Net Represent?

Does there exist a choice for w to make this work?

[images source: neuralnetworksanddeeplearning.com]

Universal Function Approximation Theorem

> Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then, for any finite measure μ, standard multilayer feedforward networks can approximate any function in $L^{p}(\mu)$ (the space of all functions on R^{k} such that $\int_{R^{k}}|f(x)|^{p} d \mu(x)<\infty$) arbitrarily well, provided that sufficiently many hidden units are available.
> Hornik theorem 2: Whenever the activation function is continuous, bounded and nonconstant, then, for arbitrary compact subsets $X \subseteq R^{k}$, standard multilayer feedforward networks can approximate any continuous function on X arbitrarily well with respect to uniform distance, provided that sufficiently many hidden units are available.

- In words: Given any continuous function $f(x)$, if a 2-layer neural network has enough hidden units, then there is a choice of weights that allow it to closely approximate $f(x)$.

Universal Function Approximation Theorem

Mathematics of Control Signals, and Systems O 1 1888 Spingen-Veratag New Yookinc.

original contribution
 ppproximate any continuous function of n real varibiles with supporin in he uni

 nly single internal hidden layer and any continuous sigmoidal nonlinearity. The
that might te e inplementect by aytificiail neural networks.
Key words. Neural networks. Approximation, Completeness.
. Introductior

A number of diverse application areas are concerned with the representation of gencral functions
tions of the form

$$
\begin{equation*}
\sum_{j=1}^{N} x_{j} \sigma\left(y y_{j}^{\top} x+\theta_{j}\right), \tag{1}
\end{equation*}
$$

where y, R^{n} and $x_{y}, \theta \in \mathrm{R}$ are fixed. ($\left(y^{\mathrm{T}}\right.$ is the transpose of y so that $y^{\mathrm{T}} x$ is the inner product of y and x.) Here the univarate function σ depens heavily on the context

$$
\sigma(t) \rightarrow\left\{\begin{array}{lll}
1 & \text { as } & t \rightarrow+\infty, \\
0 & \text { as } & t \rightarrow-\infty .
\end{array}\right.
$$

Such functions arise naturally in neural network theory as the activation function Of neural node (or unit as is becoming the preferred term) [LI], [RHM]. The main
result of this paper is a demonstration of the fact that sums of the form (1) are dense in the space of continuous functions on the unit cube if σ is any continuous sigmoidal

in par th
8SER2501.
NS

${ }_{30}$

MULTILAYER FEEDFORWARD NETWORKS WITH NON-POLYNOMIAL ACTIVATION FUNCTIONS CAN APPROXIMATE ANY FUNCTION

> Moshe Leshno Faculty of Management Tel Aviv University Tel Aviv, Israel 69978

and

Shimon Schocken
New York University
New York, NY 10003
September 1991

Center for Research on Information Systems Information Systems Department Information Systems Department New York University

Working Paper Series STERN IS-91-26

Cybenko (1989) "Approximations by superpositions of sigmoidal functions" Hornik (1991) "Approximation Capabilities of Multilayer Feedforward Networks" Leshno and Schocken (1991) "Multilayer Feedforward Networks with Non-Polynomial Activation Functions Can Approximate Any Function"

Overfitting

Avoiding Overfitting

- Reduce number of features or size of the network
- Regularize θ
- Early stopping: stop training updates once loss increases on hold-out data

Status

- Function approximation through supervised learning

BUT: where do the supervised examples come from?

Value Iteration with Function Approximation

- Initialize by choosing some setting for $\theta^{(0)}$
- Iterate for $\mathrm{i}=0,1,2, \ldots, \mathrm{H}$:
- Step 0: Pick some $S^{\prime} \subseteq S \quad$ (typically $\left|S^{\prime}\right| \ll|S|$)
- Step 1: Bellman back-ups

$$
\forall s \in S^{\prime}: \quad \bar{V}_{i+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \hat{V}_{\theta^{(i)}}\left(s^{\prime}\right)\right]
$$

- Step 2: Supervised learning

$$
\text { find } \theta^{(i+1)} \text { as the solution of: } \min _{\theta} \sum_{s \in S^{\prime}}\left(\hat{V}_{\theta^{(i+1)}}(s)-\bar{V}_{i+1}(s)\right)^{2}
$$

Value Iteration w/Function Approximation --- Example

- Mini-tetris: two types of blocks, can only choose translation (not rotation)
- Example state:

- Reward = 1 for placing a block
- Sink state / Game over is reached when block is placed such that part of it extends above the red rectangle
- If you have a complete row, it gets cleared

Value Iteration w/Function Approximation --- Example

Value Iteration w/Function Approximation --- Example

- 10 features (also called basis functions) φ_{i}
- Four basis functions, $0, \ldots, 3$, mapping the state to the height $h[k]$ of each of the four columns.
- Three basis functions, $4, \ldots, 6$, each mapping the state to the absolute difference between heights of successive columns: $|h[k+1]-h[k]|, k=1, \ldots, 3$.
- One basis function, 7, that maps state to the maximum column height: $\max _{k} h[k]$
- One basis function, 8, that maps state to the number of 'holes' in the board.
- One basis function, 9, that is equal to 1 in every state.
- Init with $\vartheta^{(0)}=(-1,-1,-1,-1,-2,-2,-2,-3,-2,10)$

Value Iteration w／Function Approximation－－－Example
－Bellman back－ups for the states in S^{\prime} ：

$$
\begin{aligned}
& V\left(\#^{\|}\right)=\max \left\{0.5^{*}\left(1+\gamma \vee\left(\#^{-}\right)\right)+0.5^{*}\left(1+\gamma \vee\left(\#^{\#}\right)\right)\right. \text {, } \\
& 0.5^{*}(1+\gamma \vee(\text { 貄 }))+0.5^{*}\left(1+\gamma \vee\left(\text { 聿 }^{*}\right)\right) \text {, } \\
& 0.5^{*}(1+\gamma \vee(\#))+0.5^{*}\left(1+\gamma v\left(\text { \#\# }^{\#}\right)\right) \text {, }
\end{aligned}
$$

Value Iteration w/Function Approximation --- Example

- Bellman back-ups for the states in S^{\prime} :

$$
\begin{aligned}
& V\left(\#^{-1}\right)=\max \left\{0.5^{*}\left(1+\gamma V\left(\#^{-1}\right)\right)+0.5^{*}\left(1+\gamma V\left(\#^{\#}\right)\right)\right. \text {, } \\
& 0.5^{*}(1+\gamma \vee(\text { \#\# }))+0.5^{*}\left(1+\gamma \vee\left(母^{\#}\right)\right) \text {, } \\
& 0.5^{*}\left(1+\gamma \vee\left(\#^{\#}\right)\right)+0.5^{*}\left(1+\gamma \vee\left(\#^{\#}\right)\right) \text {, } \\
& \left.0.5^{*}(1+\nu \mathrm{V}(\#))+0 . \text { \# }^{*}\left(1+\nu \mathrm{V}\left(\text { \# }^{\#}\right)\right)\right\}
\end{aligned}
$$

Value Iteration w/Function Approximation --- Example

- 10 features aka basis functions φ_{i}
- Four basis functions, $0, \ldots, 3$, mapping the state to the height $h[k]$ of each of the four columns.
- Three basis functions, $4, \ldots, 6$, each mapping the state to the absolute difference between heights of successive columns: $|h[k+1]-h[k]|, k=1, \ldots, 3$.
- One basis function, 7, that maps state to the maximum column height: $\max _{k} h[k]$
- One basis function, 8, that maps state to the number of 'holes' in the board.
- One basis function, 9, that is equal to 1 in every state.
- Init with $\vartheta^{(0)}=(-1,-1,-1,-1,-2,-2,-2,-3,-2,10)$

Value Iteration w/Function Approximation --- Example

- Bellman back-ups for the states in S':
$\mathrm{V}(\#)=\max \left\{0.5^{*}\left(1+\gamma \theta^{\top} \underset{(6,2,4,0,4,2,4,6,0,1)}{\phi\left(\#_{\#}\right)}\right)+0.5^{*}\left(1+\nu \theta^{\top} \underset{(6,2,4,0,4,2,4,6,0,1)}{\boldsymbol{\#}}\right)\right)$,

$$
\left.\left.0.5^{*}\left(1+\gamma \theta^{\top} \underset{(2,6,4,0,4,2,4,6,0,1)}{\phi}\right)\right)+0.5^{*}\left(1+\gamma \theta^{\top} \underset{(2,6,4,0,4,2,4,6,0,1)}{\phi}\right)\right)
$$

$$
\left.\left.\left.0.5^{*}\left(1+\gamma \theta^{\top} \underset{(0,0,2,2,0,2,0,2,0,1)}{\phi(\#}\right)\right)+0.5^{*}\left(1+\gamma \quad \theta^{\top} \underset{(0,0,2,2,0,2,0,2,0,1)}{\phi}\right)\right)\right\}
$$

Value Iteration w/Function Approximation --- Example

- Bellman back-ups for the states in S':

V(曲

$$
)=\max \left\{0 . 5 ^ { * } \left(1+\gamma\left(\begin{array}{llll}
-30 &)
\end{array}\right)+0.5 *\left(1+\gamma\left(\begin{array}{cc}
-30
\end{array}\right)\right),\right.\right.
$$

$$
0.5 *(1+\gamma(\quad-30 \quad))+0.5 *(1+\gamma(\quad-30 \quad)),
$$

$$
0.5^{*}(1+\gamma(0 \quad))+0.5^{*}(1+\gamma \quad(\quad 0 \quad)),
$$

$$
\left.0.5^{*}(1+\gamma(\quad 6 \quad))+0.5^{*}(1+\gamma \quad(\quad 6 \quad))\right\}
$$

$$
=6.4 \quad \text { (for } \gamma=0.9)
$$

Value Iteration w/Function Approximation --- Example

$$
\theta^{(0)}=(-1,-1,-1,-1,-2,-2,-2,-3,-2,20)
$$

- Bellman back-ups for the second state in S^{\prime} :

Value Iteration w/Function Approximation --- Example

$$
\theta^{(0)}=(-1,-1,-1,-1,-2,-2,-2,-3,-2,20)
$$

- Bellman back-ups for the third state in S':

Value Iteration w/Function Approximation --- Example

$$
\theta^{(0)}=(-1,-1,-1,-1,-2,-2,-2,-3,-2,20)
$$

- Bellman back-ups for the fourth state in S^{\prime} :

Value Iteration w／Function Approximation－－－Example

－After running the Bellman back－ ups for all 4 states in S^{\prime} we have：

－We now run supervised learning on these 4 examples to find a new θ ：

$$
\begin{aligned}
& \min _{\theta}\left(6.4-\theta^{\top} \phi(\text { 曲 })\right)^{2} \\
& \quad+\left(19-\theta^{\top} \phi(\text { 固 })\right)^{2} \\
& \quad+\left(19-\theta^{\top} \phi(\text { 曲 })\right)^{2} \\
& \quad+\left((-29.6)-\theta^{\top} \phi(\text { 戊 })\right)^{2}
\end{aligned}
$$

Running least squares gives：

$$
\theta^{(1)}=(0.195,6.24,-2.11,0,-6.05,0.13,-2.11,2.13,0,1.59)
$$

Value Iteration with Neural Net Function Approximation

- Initialize by choosing some setting for $\theta^{(0)}$
- Iterate for $\mathrm{i}=0,1,2, \ldots, \mathrm{H}$:
- Step 0: Pick some $\quad S^{\prime} \subseteq S \quad$ (typically $\left|S^{\prime}\right| \ll|S|$)
- Step 1: Bellman back-ups

$$
\forall s \in S^{\prime}: \quad \bar{V}_{i+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \hat{V}_{\theta^{(i)}}\left(s^{\prime}\right)\right]
$$

- Step 2: Supervised learning
find $\theta^{(i+1)}$ as the solution of: $\min _{\theta} \sum_{s \in S^{\prime}}\left(\hat{V}_{\theta^{(i+1)}}(s)-\bar{V}_{i+1}(s)\right)^{2}$
To avoid overfitting: only small number of gradient updates on objective or early stopping based on hold-out set

Potential Guarantees?

Theoretical Analysis of Value Iteration + Function Approximation

- We'll consider the following varation on the algorithm:
- Assume we iterate over:
- VI back-up for ALL states
- Function approximation

Note: For ALL states is not practical (that's why we do function approximation). But (i) it's helpful to theoretically think through things; (ii) if we have a negative result, it's an even stronger negative result

Simple Example

θ
2θ

Function approximator: [1 2] * θ

Simple Example

$$
\begin{gathered}
\bar{J}_{\theta}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \theta \\
\bar{J}^{(1)}\left(x_{1}\right)=0+\gamma \hat{J}_{\theta^{(0)}}\left(x_{2}\right)=2 \gamma \theta^{(0)} \\
\bar{J}^{(1)}\left(x_{2}\right)=0+\gamma \bar{J}_{\theta^{(0)}}\left(x_{2}\right)=2 \gamma \theta^{(0)}
\end{gathered}
$$

Function approximation with least squares fit:

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right] \theta^{(1)} \approx\left[\begin{array}{l}
2 \gamma \theta^{(0)} \\
2 \gamma \theta^{(0)}
\end{array}\right]
$$

Least squares fit results in:

$$
\theta^{(1)}=\frac{6}{5} \gamma \theta^{(0)}
$$

Repeated back-ups and function approximations result in:

$$
\theta^{(i)}=\left(\frac{6}{5} \gamma\right)^{i} \theta^{(0)}
$$

which diverges if $\gamma>\frac{5}{6}$ even though the function approximation class can represent the true value function.]

Composing Operators

- Definition. An operator G is a non-expansion with respect to a norm ||. \| if $\left\|G J_{1}-G J_{2}\right\| \leq\left\|J_{1}-J_{2}\right\|$
- Fact. If the operator F is a γ-contraction with respect to a norm || . || and the operator G is a non-expansion with respect to the same norm, then the sequential application of the operators G and F is a γ-contraction, i.e., $\left\|G F J_{1}-G F J_{2}\right\| \leq \gamma\left\|J_{1}-J_{2}\right\|$
- Corollary. If the supervised learning step is a non-expansion, then value iteration with function approximation is a γ contraction, and in this case we have a convergence guarantee.

Averager Function Approximators Are Non-Expansions

Definition: A real-valued function approximation scheme is an averager if every fitted value is the weighted average of zero or more target values and possibly some predetermined constants. The weights involved in calculating the fitted value Y_{i} may depend on the sample vector X_{0}, but may not depend on the target values Y. More precisely, for a fixed X_{0}, if Y has n elements, there must exist n real numbers k_{i}, n^{2} nonnegative real numbers $\beta_{i j}$, and n nonnegative real numbers β_{i}, so that for each i we have $\beta_{i}+\sum_{j} \beta_{i j}=1$ and $\hat{Y}_{i}=\beta_{i} k_{i}+\sum_{j} \beta_{i j} Y_{j}$.

- Examples:

- nearest neighbor (aka state aggregation)
- linear interpolation over triangles (tetrahedrons, ...)

Averager Function Approximators Are Non-Expansions

Proof: Let J_{1} and J_{2} be two vectors in \Re^{n}. Consider a particular entry s of ΠJ_{1} and ΠJ_{2} :

$$
\begin{aligned}
\left|\left(\Pi J_{1}\right)(s)-\left(\Pi J_{2}\right)(s)\right| & =\left|\beta_{s 0}+\sum_{s^{\prime}} \beta_{s s^{\prime}} J_{1}\left(s^{\prime}\right)-\beta_{s 0}+\sum_{s^{\prime}} \beta_{s s^{\prime}} J_{2}\left(s^{\prime}\right)\right| \\
& =\left|\sum_{s^{\prime}} \beta_{s s^{\prime}}\left(J_{1}\left(s^{\prime}\right)-J_{2}\left(s^{\prime}\right)\right)\right| \\
& \leq \max _{s^{\prime}}\left|J_{1}\left(s^{\prime}\right)-J_{2}\left(s^{\prime}\right)\right| \\
& =\left\|J_{1}-J_{2}\right\|_{\infty}
\end{aligned}
$$

This holds true for all s, hence we have

$$
\left\|\Pi J_{1}-\Pi J_{2}\right\|_{\infty} \leq\left\|J_{1}-J_{2}\right\|_{\infty}
$$

Guarantees for Fixed Point

Theorem. Let J^{*} be the optimal value function for a finite MDP with discount factor γ. Let the projection operator Π be a non-expansion w.r.t. the infinity norm and let \tilde{J} be any fixed point of Π. Suppose $\left\|\tilde{J}-J^{*}\right\|_{\infty} \leq \epsilon$. Then ΠT converges to a value function \bar{J} such that:

$$
\left\|\bar{J}-J^{*}\right\| \leq 2 \epsilon+\frac{2 \gamma \epsilon}{1-\gamma}
$$

- I.e., if we pick a non-expansion function approximator which can approximate $J *$ well, then we obtain a good value function estimate.
- To apply to discretization: use continuity assumptions to show that J* can be approximated well by chosen discretization scheme

Linear Regression $)^{\circ}$

(a)

(b)

Figure 2: The mapping associated with linear regression when samples are taken at the points $x=0,1,2$. In (a) we see a target value function (solid line) and its corresponding fitted value function (dotted line). In (b) we see another target function and another fitted function. The first target function has values $y=0,0,0$ at the sample points; the second has values $y=0,1,1$. Regression exaggerates the difference between the two functions: the largest difference between the two target functions at a sample point is 1 (at $x=1$ and $x=2$), but the largest difference between the two fitted functions at a sample point is $\frac{7}{6}($ at $x=2)$.

Outline

Function approximation
Value iteration with function approximation

- Policy iteration with function approximation
- Linear programming with function approximation

Policy Iteration

One iteration of policy iteration:

- Policy evaluation: with fixed current policy π, find values with simplified Bellman updates:
- Iterate until values converge

Insert Function
Approximation Here

$$
V_{i+1}^{\pi_{k}}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi_{k}(s), s^{\prime}\right)\left[R\left(s, \pi_{k}(s), s^{\prime}\right)+\gamma V_{i}^{\pi_{k}}\left(s^{\prime}\right)\right]
$$

- Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$
\pi_{k+1}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{k}}\left(s^{\prime}\right)\right]
$$

- Repeat until policy converges
- At convergence: optimal policy; and converges faster under some conditions

Approximate Policy Evaluation is a Contraction!

- IF we do weighted linear regression, weighted by the state visitation frequencies under the current policy
- THEN the resulting projection is a contraction w.r.t. the weighted 2-norm
- Policy Evaluation Bellman update is a contraction w.r.t. the same norm
\rightarrow Guaranteed convergence $;$; ; ;
- Want to see the math:
https://inst.eecs.berkeley.edu/~cs294-40/fa08/scribes/lecture5.pdf

Extra Intermezzo on Incompatible Norms

Recent Related Paper**

- Towards Characterizing Divergence in Deep Q-Learning, Joshua Achiam, Ethan Knight, Pieter Abbeel. arXiv 1903.08894

Outline

Function approximation
Value iteration with function approximation
Policy iteration with function approximation

- Linear programming with function approximation

Infinite Horizon Linear Program**

$$
\min _{V} \sum_{s \in S} \mu_{0}(s) V(s)
$$

s.t. $V(s) \geq \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right], \quad \forall s \in S, a \in A$

Theorem. V^{*} is the solution to the above LP.
μ_{0} is a probability distribution over S, with $\mu_{0}(s)>0$ for all s in S.

Infinite Horizon Linear Program**

$$
\min _{V} \sum_{s \in S} \mu_{0}(s) V(s)
$$

s.t. $V(s) \geq \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right], \quad \forall s \in S, a \in A$

Let $V(s)=\theta^{\top} \phi(s)$, and consider S^{\prime} rather than S :

$$
\begin{aligned}
\min _{\theta} & \sum_{s \in S^{\prime}} \mu_{0}(s) \theta^{\top} \phi(s) \\
\text { s.t. } & \theta^{\top} \phi(s) \geq \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \theta^{\top} \phi\left(s^{\prime}\right)\right], \quad \forall s \in S^{\prime}, a \in A
\end{aligned}
$$

We find approximate value function $\hat{V}_{\theta}(s)=\theta^{\top} \phi(s)$

Approximate Linear Program - Guarantees**

$$
\begin{array}{ll}
\min _{\theta} & \sum_{s \in S^{\prime}} \mu_{0}(s) \theta^{\top} \phi(s) \\
\text { s.t. } & \theta^{\top} \phi(s) \geq \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \theta^{\top} \phi\left(s^{\prime}\right)\right], \quad \forall s \in S^{\prime}, a \in A
\end{array}
$$

- LP solver will converge
- Solution quality: [de Farias and Van Roy, 2002]

Assuming one of the features is the feature that is equal to one for all states, and assuming $S^{\prime}=S$ we have that:

$$
\left\|V^{*}-\Phi \theta\right\|_{1, \mu_{0}} \leq \frac{2}{1-\gamma} \min _{\theta}\left\|V^{*}-\Phi \theta\right\|_{\infty}
$$

(slightly weaker, probabilistic guarantees hold for S^{\prime} not equal to S, these guarantees require size of S^{\prime} to grow as the number of features grows)

