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Markov Decision Process

action

state
; a,

Environment

Assumption: agent gets to observe the state

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]



Markov Decision Process (S, A, T, R, y, H)

',l Agent l

4 r.-

S: set of states

A: set of actions '

“5.. | Environment ]<—

= T:SxAxSx{0,1,..H} =2 [0,1] Ti(s,a,8’) =P(ss1 =5 | s¢ =5, a; =a)

= R:SxAxSx{0,1,.,H>R Ri(s,a,s’) = reward for (s,,; =s’, sy =5, a, =a)
= yin(0,1]: discount factor H: horizon over which the agent will act
Goal:

= Find T*:Sx{0, 1, ..., H} = A that maximizes expected sum of rewards, i.e.,

H
" = arg max E[Z Y Ry (St, Ay, Spy1)|m]

t=0

action
a,



Value lteration

Algorithm:

Start with VO*(S) = (0 foralls.
Fori=1,..,H

For all statessin S:

h1(s) mC?XZT(s,a,S’) [R(s,a,s/) + 'yVi*(s/)}
mia(s) - argmax 3T (s 0,5 R(s,a,) + 7V ()]

This is called a value update or Bellman update/back-up

Vi* (S) = expected sum of rewards accumulated starting from state s, acting optimally for i steps
sk
Uy

(S) = optimal action when in state s and getting to act for i steps



Continuous State Spaces

m S =continuous set

= Value iteration becomes impractical as it
requires to compute, for all statessin S:

V;H(S) s mc?xZT(s,a, s {R(s,a, s') + VZ*(S/)}

S



Markov chain approximation to continuous state space dynamics model
(“discretization”)

= Original MDP = Discretized MDP

(S A T R v H) (S7A7T7R777H)

= Grid the state-space: the vertices are the discrete states.

= Reduce the action space to a finite set.
= Sometimes not needed:

When Bellman back-up can be computed
exactly over the continuous action space

When we know only certain controls are part
of the optimal policy (e.g., when we know the
problem has a “bang-bang” optimal solution)

m Transition function: see next few slides.
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Discretization Approach 1: Snap onto nearest vertex
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Discrete states: { &, ..., & }
P(&lé1,a) = 0.1+0.3=0.4;
P(&lé1,a) = 04+02=0.6

Similarly define transition
probabilities for all §;

m  Discrete MDP just over the states {§, ...,&¢}, which we can solve with value iteration

m If a (state, action) pair can results in infinitely many (or very many) different next states:

sample the next states from the next-state distribution



Discretization Approach 2: Stochastic Transition onto Neighboring Vertices

&1 &2 &3 Sa
.a\ T Discrete states: {&;, ..., €15 }

P(&2 | &1,a) = pa
s [ %6 Oﬁg P(& | &1,a) =pB
P(€6 | 6170’) = PcC

P(§7 | 51,0,) = PD
s.t. 8" =paka + pB&s + pcés + P&y

69 &10 Ell £12

s If stochastic dynamics: Repeat procedure to account for all possible transitions and weight accordingly

= Many choices for p,, ps, Pc, Pp



Discretization Approach 2: Stochastic Transition onto Neighboring Vertices

= One scheme to compute the weights: put in normalized coordinate system [0,1]x[0,1].

s'=(1—-z)(1~-vy) §(0,0)
€0 ) +z(1—y) &o,1)
s’= (X,y) +(1 —x)y §(1,0)
+xy 1)

€(1,0)




Kuhn Triangulation™*
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Discrete states: {&;, ..., €15 }

P(&2/61,a) = pa;
P(&3)61,a) = pB;
P(&6|&1,a) = pc;
s.t. s =pako +pBés + pcés



Kuhn Triangulation™*

= Allows efficient computation of the vertices participating in a point’s
barycentric coordinate system and of the convex interpolation weights (aka its

barycentric coordinates)

—7
ST s
| 1+ / / Figure 2. 'The Kuhn
/ triangulation of a (3d)
| S rectangle. The point x
‘ 4 78 satisfying 1 > x2 >
|/ / - el xo > xp > 0 is in the
&ol 1) simplex (&o,&4,&5,&7).

m See Munos and Moore, 2001 for further details.



Kuhn triangulation (from Munos and Moore)**

3.1.  Computational issues
Although the number of simplexes inside a rectangle is factorial with the dimension
d. the computation time for interpolating the value at any point inside a rectangle

is only of order (dInd), which corresponds to a sorting of the d relative coordinates

(zg.....xq 1) of the point inside the rectangle.

Assume we want to compute the indexes i.....i5 of the (d + 1) vertices of the
simplex containing a point defined by its relative coordinates (xy.,....2x4 ;) with
respect to the rectangle in which it belongs to. Let {&. ....&a} be the corners of

this d-rectangle. The indexes of the corners use the binary decomposition in dimen
sion d. as illustrated in Figure 2. Computing these indexes is achieved by sorting
the coordinates from the highest to the smallest: there exist indices jo.....jq 1.
permutation of {0....d — 1}, such that 1 > 2, > 2;, > .. > 2;, , > 0. Then
the indices iy. ... 14 of the (d + 1) vertices of the simplex containing the point are:
ip=0,d; =dg+ 290, . ip =dp  +21, L ig=ig4 14+ 221 =29 1 For
example, if the coordinates satisty: 1 > ay > 2y > 2y > 0 (illustrated by the point
2 in Figure 2) then the vertices are: &, (every simplex contains this vertex, as well
as Eya 1 = &7). & (we added 22). & (we added 2%) and & (we added 21).

Let us define the barycentric coordinates Ay. ... Ay of the point 2 inside the sim
plex &, . .... &, as the positive coefficients (uniquely) defined by: Z;’ o Ak = 1 and

;I o A&, = x. Usually, these barveentric coordinates are expensive to com
pute; however, in the case of Kuhn triangulation these coefficients are simply:
Ao=1—x;. A\ =ux ,—U0=uwa;, . In
the previous example. the barveentric coordinates are: Ay = 1 — 20, A} = 19 — 2.
/\‘_1 = Iy — I. /\;; =I.

S e AR T Xy T e A = X,



Discretization: Our Status

Have seen two ways to turn a continuous state-space MDP
into a discrete state-space MDP
When we solve the discrete state-space MDP, we find:

= Policy and value function for the discrete states

= They are optimal for the discrete MDP, but typically not for the
original MDP

Remaining questions:
= How to act when in a state that is not in the discrete states set?

= How close to optimal are the obtained policy and value function?






How to Act (i): No Lookahead

= For state s not in discretization set choose action based on policy in nearby states

= Nearest Neighbor = Stochastic Interpolation:

N
w(s) =mn(&) for & =arg  min 5 — Find pq,..., s.t. s= &
(s) = (&) §=arg  m s — &l Pis-- DN ;pé

Choose 7(&;) with probability p;

N
For continuous actions, can also interpolate: Z pim(&;)
i=1

3 : 3
RO R - B . E.g., for s = p2&§2 + p3&3 + pee,
: - 8., m(s) = m(§2) ‘. S & . choose m(&), m(€3), (&) with
- 5 . respective probabilities po, p3, ps
5 &




How to Act (ii): 1-step Lookahead

m  Forward simulate for 1 step, calculate reward + value function at next state from discrete MDP

at

Nearest Neighbor

- |

1 if § = argmingege, |

0 otherwise

.....

s/t

max F | R(s¢, a) + Zp(fz'; st+1)V (&)

ey lls =€l

= Stochastic Interpolation

- if dynamics deterministic no expectation needed
- If dynamics stochastic, can approximate with samples

N
P(&;;8") such that s’ Z (& s’

3

&

&s



How to Act (iii): n-step Lookahead

max E

R(st,ar) + R(St+1, a141) + -+« + R(St4k-1, @t 4x—-1) + Z P(&i; se4x)V (&)

= What action space to maximize over, and how?

= Option 1: Enumerate sequences of discrete actions we ran value iteration
with

= Option 2: Randomly sampled action sequences (“random shooting”)

= Option 3: Run optimization over the actions

= Local gradient descent [see later lectures]
= Cross-entropy method






Intermezzo: Cross-Entropy Method (CEM)

s CEM = black-box method for (approximately) solving:
max f(x)
x

with o ¢ R" and f:R" — R

Note: f need not be differentiable



Intermezzo: Cross-Entropy Method (CEM)

max f(x)

CEM:
sample p° NN(O o?)
foriteri=1, 2, .
fore=1, 2..
sample !9 ~ N (¥, 0?)
compute f(z(?)
endfor
ptY = mean{z'® : f(z'®)) in top 10%}




Intermezzo: Cross-Entropy Method (CEM)

CEM: = sigma and 10% are hyperparameters
sample 1'% ~ N(0,0?)
foriteri=1,2, .. m canin principle also fit sigma to top 10%
fore=1, 2. ...

o (or full covariance matrix if low-D)
sample z'® ~ N (¥, 0?)

compute f(z(®)
endfor
ptY = mean{z(®) : f(z(®) in top 10%} = Within top 10%, look at frequency of each
discrete action in each time step, and use
that as probability

= How about discrete action spaces?

= Then sample from this distribution

Note: there are many variations, including a max-ent variation, which does a
weighted mean based on exp(f(x))
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Mountain Car

nearest neighbor
#discrete values per state dimension: 20
#discrete actions: 2 (as in original env)

Iteration 0




Mountain Car

nearest neighbor
#discrete values per state dimension: 150
#discrete actions: 2 (as in original env)

Iteration 0
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Mountain Car

linear
#discrete values per state dimension: 20
#discrete actions: 2 (as in original env)

Iteration 0
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Discretization Quality Guarantees

Typical guarantees:

= Assume: smoothness of cost function, transition model

= For h = 0, the discretized value function will approach the
true value function

To obtain guarantee about resulting policy, combine
above with a general result about MDP’s:

= One-step lookahead policy based on value function V which is
close to V* is a policy that attains value close to V*



Quality of Value Function Obtained from Discrete MDP:
Proof Techniques

Chow and Tsitsiklis, 1991:

= Show that one discretized back-up is close to one “complete” back-up + then show sequence
of back-ups is also close

Kushner and Dupuis, 2001

= Show that sample paths in discrete stochastic MDP approach sample paths in continuous
(deterministic) MDP [also proofs for stochastic continuous, bit more complex]

Function approximation based proof (see later slides for what
is meant with “function approximation”)

= Great descriptions: Gordon, 1995; Tsitsiklis and Van Roy, 1996



Example result (Chow and Tsitsiklis,1991)**

Al | g(x, u) - g(x', u)| = K|[[(x, u) = (x', )] >
forall x, x'eS and u, u' €C,

A2: |P(y|x, w)y — P(y'|x, u)| =K|(y, x, u) -
(¥, x', u)|,, forall x, x’. y, yeSand u, u' eC;

A.3: forany x, x" €8 and any u' € U(x’). there exists
some u € U(x) such that |u — '||, = K| x — x'|| .;

A4: 0= P(ylx, wy=K and [ P(y|x, u) dy =1,
for all x, yveS and weC.

Theorem 3.1: There exist constants K, and K, (depend-
ing only on the constant K of assumptions A.1-A.4) such
that for all he (0, 1/2K] and all Je #(S)

177 = Tl = (K, + aK, | J]5)h. (3.6)

Furthermore,

- 1
| J* - T lle = ! (K, + aK,|[J*]s)h. (3.7)
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Value Iteration with Function Approximation

Alternative interpretation of the
discretization methods:

Start with V"(s) = 0 for alls.
Fori=0,1,..,H-1

for all statess € S,
(S is the discrete state set)

Vi 1(s) mC?XZT(S,a, ) [R(s,a, s') + \A/Z*(s/)}

S

with:
Vi(s') =Y P& )V (&)

0’th Order Function Approximation

P& ) = 1 if & =argmingee, . eny 15 =&l
v 0 otherwise

fl. -s\;/g 5,(.

° °
& & 19

15t Order Function Approximation

N
P(&;;8") such that s’ = ZP(&’GS,)&‘
i=1

& N &

“Z &
& &

& [ & 3%



Discretization as Function Approximation

= Nearest neighbor discretization:

builds piecewise constant approximation of value function

m Stochastic transition onto nearest neighbors:
n-linear function approximation

Kuhn: piecewise (over “triangles”) linear approximation of value function



Continuous time**

= One might want to discretize time in a variable way such that one discrete time transition roughly
corresponds to a transition into neighboring grid points/regions

= Discounting: exp(—p3dt)

6t depends on the state and action

See, e.g., Munos and Moore, 2001 for details.

Note: Numerical methods research refers to this connection between time and space as the CFL (Courant
Friedrichs Levy) condition. Googling for this term will give you more background info.

I1'1 nearest neighbor tends to be especially sensitive to having the correct match [Indeed, with a
mismatch between time and space 1 nearest neighbor might end up mapping many states to only
transition to themselves no matter which action is taken.]



