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n Model-based RL

n Ensemble Methods
n Model-Ensemble Trust Region Policy Optimization

n Model-based RL via Meta Policy Optimization

n Asynchronous Model-based RL

n Vision-based Model-based RL
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Reinforcement Learning

[Figure source: Sutton & Barto, 1998] John Schulman & Pieter Abbeel – OpenAI + UC Berkeley
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n For iter = 1, 2, …

n Collect data under current policy

n Learn dynamics model from past data

n Improve policy by using dynamics model
n e.g SVG(k) requires dynamics model, but can also run TRPO/A3C in 

simulator

“Algorithm”: Model-Based RL



n Anticipate data-efficiency

n Get model out of data, which might allow for more significant policy 
updates than just a policy gradient

n Learning a model
n Re-usable for other tasks  [assuming general enough]

Why Model-Based RL?
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n Collect data under current policy

n Learn dynamics model from past data

n Improve policy by using dynamics model

“Algorithm”: Model-Based RL

Anticipated benefit? 
– much better sample efficiency

So why not used all the time?
-- training instability
-- not achieving same asymptotic performance as model-free methods

à ME-TRPO
à MB-MPO



n Standard overfitting (in supervised learning)

n Neural network performs well on training data, but poorly on test data
n E.g. on prediction of s_next from (s, a)

n New overfitting challenge in Model-based RL
n policy optimization tends to exploit regions where insufficient data is 

available to train the model, leading to catastrophic failures

n = “model-bias” (Deisenroth & Rasmussen, 2011; Schneider, 1997; Atkeson & Santamaria, 1997)

n Proposed fix: Model-Ensemble Trust Region Policy Optimization (ME-TRPO)

Overfitting in Model-based RL



Model-Ensemble Trust-Region Policy Optimization

[Kurutach, Clavera, Duan, Tamar, Abbeel, ICLR 2018]



n Environments:

ME-TRPO Evaluation

[Kurutach, Clavera, Duan, Tamar, Abbeel, ICLR 2018]



n Comparison with state of the art

ME-TRPO Evaluation

[Kurutach, Clavera, Duan, Tamar, Abbeel, ICLR 2018]



ME-TRPO -- Ablation
TRPO vs. BPTT in standard model-based RL

[Kurutach, Clavera, Duan, Tamar, Abbeel, ICLR 2018]



ME-TRPO -- Ablation
Number of learned dynamics models in the ensemble

[Kurutach, Clavera, Duan, Tamar, Abbeel, ICLR 2018]
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n Because learned (ensemble of) model imperfect

n Resulting policy good in simulation(s), but not optimal in real world

n Attempted Fix 1: learn better dynamics model

n Such efforts have so far proven insufficient

n Attempted Fix 2: model-based RL via meta-policy optimization (MB-MPO)

n Key idea: 
n Learn ensemble of models representative of generally how the real world works
n Learn an ***adaptive policy*** that can quickly adapt to any of the learned models
n Such adaptive policy can quickly adapt to how the real world works

Model-based RL Asymptotic Performance



Model-Based RL via Meta Policy Optimization (MB-MPO)

for iter = 1, 2, …

n collect data under current adaptive policies

n learn ENSEMBLE of K simulators from all past data

n meta-policy optimization over ENSEMBLE
n à new meta-policy
n à new adaptive policies

⇡✓

[Clavera*, Rothfuss*, Schulman, Fujita, Asfour, Abbeel, CoRL 2018] Pieter Abbeel -- UC Berkeley | Covariant.AI | BerkeleyOpenArms.org



Model-based via Meta-Policy Optimization MB-MPO

[Clavera*, Rothfuss*, Schulman, Fujita, Asfour, Abbeel, CoRL 2018]



MB-MPO Evaluation

[Clavera*, Rothfuss*, Schulman, Fujita, Asfour, Abbeel, CoRL 2018] Pieter Abbeel -- UC Berkeley | Covariant.AI | BerkeleyOpenArms.org
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MB-MPO Evaluation

[Clavera*, Rothfuss*, Schulman, Fujita, Asfour, Abbeel, CoRL 2018] Pieter Abbeel -- UC Berkeley | Covariant.AI | BerkeleyOpenArms.org



n Comparison with state of the art model-free

MB-MPO Evaluation

[Clavera*, Rothfuss*, Schulman, Fujita, Asfour, Abbeel, CoRL 2018] Pieter Abbeel -- UC Berkeley | Covariant.AI | BerkeleyOpenArms.org



n Comparison with state of the art model-based

MB-MPO Evaluation

[Clavera*, Rothfuss*, Schulman, Fujita, Asfour, Abbeel, CoRL 2018] Pieter Abbeel -- UC Berkeley | Covariant.AI | BerkeleyOpenArms.org



Pieter Abbeel -- embody.ai / UC Berkeley / Gradescope



n No…

n Not real-time --- exacerbated by need for extensive hyperparameter tuning

n Limited to short horizon

n From state (though some results have started to happen from images)

So are we done?
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Questions to be answered
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1. Performance?

2. Effect on policy regularization?

3. Effect on data exploration?

4. Robustness to hyperparameters?

5. Robustness to data collection frequency?

Questions to be answered



Experiments

1. How does the asynch-framework perform?

Asynch: ME-TRPO, ME-PPO, MB-MPO

Baselines: ME-TRPO, ME-PPO, MB-MPO; TRPO, PPO

a. Average Return vs. Time

b. Average Return vs. Sample complexity (Timesteps)



Performance Comparison: Wall-Clock Time



Performance Comparison: Sample Complexity



Experiments

1. Performance comparison

2. Are there benefits of being asynchronous other than speed?
a. Policy learning regularization

b. Exploration in data collection



Policy Learning Regularization
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Policy Learning Regularization



Improved Exploration for Data Collection
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Improved Exploration for Data Collection



Experiments

1. Performance comparison

2. Asynchronous effects

3. Is the asynch-framework robust to data collection frequency?



Ablations: Sampling Speed



Experiments

1. Performance comparison

2. Asynchronous effects

3. Ablations

4. Does the aynch-framework work in real robotics tasks?

a. Reaching a position

b. Inserting a unique shape into its matching hole in a box

c. Stacking a modular block onto a fixed base



Real Robot Tasks: Reaching Position





Real Robot Tasks: Matching Shape





Real Robot Tasks: Stacking Lego





Summary of Asynchronous Model-based RL

● Problem 
○ Need fast and data efficient methods for robotic tasks

● Contributions
○ General asynchronous model-based framework

○ Wall-clock time speed-up

○ Sample efficiency

○ Effect on policy regularization & data exploration

○ Effective on real robots



n Model-based RL

n Ensemble Methods
n Model-Ensemble Trust Region Policy Optimization

n Model-based RL via Meta Policy Optimization

n Asynchronous Model-based RL

n Vision-based Model-based RL
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World Models
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World Models
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World Models
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Embed to Control
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Embed to Control
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SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning

Marvin Zhang*, Sharad Vikram*, Laura Smith, Pieter Abbeel, Matthew Johnson, 
Sergey Levine

learn representation 
and latent dynamics

infer latent dynamics 
given observed data

update policy given 
latent dynamics

collect N initial 
random rollouts

collect new data 
from updated policy

(optionally) fine-tune 
representation

https://goo.gl/AJKocL
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Deep Spatial Autoencoders
■ Deep Spatial Autoencoders for Visuomotor Learning, Finn, Tan, Duan, Darrell, Levine, Abbeel, 2016 

(https://arxiv.org/abs/1509.06113)
■ Train deep spatial autoencoder
■ Model-based RL through iLQR in the latent space
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https://arxiv.org/abs/1509.06113


Robotic Priors / PVEs
■ PVEs: Position-Velocity Encoders for Unsupervised Learning of Structured State Representations

Rico Jonschkowski, Roland Hafner, Jonathan Scholz, and Martin Riedmiller (https://arxiv.org/pdf/1705.09805.pdf)
■ Learn an embedding without reconstruction

10
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https://arxiv.org/pdf/1705.09805.pdf


Disentangled Representation Learning Agent (Darla)
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning

Irina Higgins, Arka Pal, Andrei A. Rusu, Loic Matthey, Christopher P Burgess, Alexander Pritzel, Matthew 
Botvinick, Charles Blundell, Alexander Lerchner (https://arxiv.org/abs/1707.08475)
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https://arxiv.org/abs/1707.08475


DeepMind Lab Transfer
DARLA vs DQN baseline

DQN

DARLA

Train Transfer



Causal InfoGAN
Learning Plannable Representations with Causal InfoGAN

Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart Russell, Pieter Abbeel (https://arxiv.org/pdf/1807.09341.pdf)
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https://arxiv.org/pdf/1807.09341.pdf


PlaNet
Learning latent dynamics for planning from pixels
Danijar Hafner, T. Lillicrap, I Fischer, R Villegas, D Ha, H Lee, J Davidson (https://arxiv.org/pdf/1811.04551.pdf)

■ Learn latent space dynamics model
■ Multi-step prediction
■ Planning in latent space

10
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Visual Foresight
Deep Visual Foresight for Planning Robot Motion, Finn and Levine, ICRA 2017 http://arxiv.org/abs/1610.00696
Visual Foresight: Model-Based Deep Reinforcement Learning for Vision-Based Robotic Control, Frederik Ebert, Chelsea Finn, 
Sudeep Dasari, Annie Xie, Alex Lee, Sergey Levine, https://arxiv.org/abs/1812.00568, 
https://bair.berkeley.edu/blog/2018/11/30/visual-rl/

● Video prediction + Cross Entropy Maximization for MPC

10
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http://arxiv.org/abs/1610.00696
https://arxiv.org/abs/1812.00568
https://bair.berkeley.edu/blog/2018/11/30/visual-rl/


Forward + Inverse Dynamics Models
Learning to Poke by Poking: Experiential Learning of Intuitive Physics, Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, 
Sergey Levine, https://arxiv.org/abs/1606.07419

■ Learning a forward model in latent space
■ BUT: couldn’t the latent features always be zero?
■ SOLUTION: require the features from t and t+1 to be sufficient to predict a_t

10
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Predictron
The Predictron: End-To-End Learning and Planning

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-Arnold, David Reichert, Neil 
Rabinowitz, Andre Barreto, Thomas Degris (https://arxiv.org/pdf/1612.08810.pdf)
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https://arxiv.org/pdf/1612.08810.pdf


Successor Features
Successor Features for Transfer in Reinforcement Learning

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, David Silver (https://arxiv.org/abs/1606.05312)
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Kahn et al.
Composable Action-Conditioned Predictors: Flexible Off-Policy Learning for Robot Navigation 

Gregory Kahn*, Adam Villaflor*, Pieter Abbeel, Sergey Levine, CoRL 2018 (https://arxiv.org/pdf/1810.07167.pdf)

Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation 

Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, Sergey Levine, ICRA 2018 (https://arxiv.org/pdf/1709.10489.pdf)
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Some Theory References on State Representations
■ From skills to symbols: Learning symbolic representations for abstract high-level planning: 

https://jair.org/index.php/jair/article/view/11175
■ Homomorphism: https://www.cse.iitm.ac.in/~ravi/papers/KBCS04.pdf
■ Towards a unified theory of state abstraction for mdps: 

https://pdfs.semanticscholar.org/ca9a/2d326b9de48c095a6cb5912e1990d2c5ab46.pdf
■ Model reduction techniques for computing approximately optimal solutions for markov decision 

processes.https://arxiv.org/abs/1302.1533
■ Adaptive aggregation methods for infinite horizon dynamic programming
■ Transfer via soft homomorphisms. http://www.ifaamas.org/Proceedings/aamas09/pdf/01_Full%20Papers/12_67_FP_0798.pdf
■ Near optimal behavior via approximate state abstraction https://arxiv.org/abs/1701.04113
■ Using PCA to Efficiently Represent State Spaces: http://irll.eecs.wsu.edu/wp-content/papercite-data/pdf/2015icml-curran.pdf
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A Separation Principle for Control in the Age of Deep Learning

A Separation Principle for Control in the Age of Deep Learning

Alessandro Achille, Stefano Soatto (https://arxiv.org/abs/1711.03321)

We review the problem of defining and inferring a “state” for a control system based on complex, high-dimensional, highly 
uncertain measurement streams such as videos. Such a state, or representation, should contain all and only the information 
needed for control, and discount nuisance variability in the data.
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