Off-Policy, Model-Free RL: DQN, SoftQ, DDPG, SAC

Pieter Abbeel

CS 287 Lecture 19 (Fall 2019)

UC Berkeley EECS

Outline

- Motivation
- Q-learning
- DQN + variants
- Q-learning with continuous action spaces (SoftQ)
- Deep Deterministic Policy Gradient (DDPG)
- Soft Actor Critic (SAC)

Story-line

- TRPO, PPO: Importance sampling surrogate loss allows to do more than a gradient step, but still very local
- Could we re-use samples more? Could we learn more globally / off-policy?
- Yes! By leveraging the dynamic programming structure of the problem, breaking it down into 1-step pieces
 - Q-learning, DQN: 1-step (sampled) off-policy Bellman back-ups → more sample re-use → more dataefficient learning directly about the optimal policy
 - Why not always Q-learning/DQN?
 - Often less stable
 - The data doesn't always support learning about the optimal policy (even if in principle can learn fully off-policy)
 - DDGP, SAC: like Q-learning, but does off-policy learning about the current policy and how to locally improve it (vs. directly learning about the optimal policy)

Outline

- Motivation
- Q-learning
- DQN + variants
- Q-learning with continuous action spaces (SoftQ)
- Deep Deterministic Policy Gradient (DDPG)
- Soft Actor Critic (SAC)

Recap Q-Values

 $Q^*(s, a)$ = expected utility starting in s, taking action a, and (thereafter) acting optimally

Bellman Equation:

$$Q^*(s, a) = \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma \max_{a'} Q^*(s', a'))$$

Q-Value Iteration:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma \max_{a'} Q_k(s',a'))$$

(Tabular) Q-Learning

- Q-value iteration: $Q_{k+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma \max_{a'} Q_k(s',a'))$ Rewrite as expectation: $Q_{k+1} \leftarrow \mathbb{E}_{s' \sim P(s'|s,a)} \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$
- (Tabular) Q-Learning: replace expectation by samples
 - For an state-action pair (s,a), receive: $s' \sim P(s'|s,a)$
 - Consider your old estimate: $Q_k(s,a)$
 - Consider your new sample estimate: $target(s') = R(s, a, s') + \gamma \max_{a'} Q_k(s', a')$
 - Incorporate the new estimate into a running average:

$$Q_{k+1}(s,a) \leftarrow (1-\alpha)Q_k(s,a) + \alpha \left[\operatorname{target}(s') \right]$$

(Tabular) Q-Learning

```
Algorithm:
       Start with Q_0(s,a) for all s, a.
       Get initial state s
       For k = 1, 2, ... till convergence
              Sample action a, get next state s'
              If s' is terminal:
                    target = R(s, a, s')
                    Sample new initial state s'
              else:
             target = R(s, a, s') + \gamma \max_{a'} Q_k(s', a')Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha \text{ [target]}
              s \leftarrow s'
```

How to sample actions?

- Choose random actions?
- Choose action that maximizes $Q_k(s,a)$ (i.e. greedily)?
- ε-Greedy: choose random action with prob. ε, otherwise choose action greedily

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly

Q-Learning Properties

- Technical requirements.
 - All states and actions are visited infinitely often
 - Basically, in the limit, it doesn't matter how you select actions (!)
 - Learning rate schedule such that for all state and action pairs (s,a):

$$\sum_{t=0}^{\infty} \alpha_t(s, a) = \infty \qquad \sum_{t=0}^{\infty} \alpha_t^2(s, a) < \infty$$

For details, see Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative dynamic programming algorithms. Neural Computation, 6(6), November 1994.

Q-Learning Demo: Crawler

- States: discretized value of 2d state: (arm angle, hand angle)
- Actions: Cartesian product of {arm up, arm down} and {hand up, hand down}
- Reward: speed in the forward direction

Video of Demo Crawler Bot

Video of Demo Q-Learning -- Crawler

Outline

- Motivation
- Q-learning
- DQN + variants
- Q-learning with continuous action spaces (SoftQ)
- Deep Deterministic Policy Gradient (DDPG)
- Soft Actor Critic (SAC)

Can tabular methods scale?

Discrete environments

Gridworld 10^1

Tetris 10^60

Atari 10^308 (ram) 10^16992 (pixels)

Can tabular methods scale?

Continuous environments (by crude discretization)

Crawler 10^2

Hopper 10¹0

Humanoid 10^100

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning

Approximate Q-Learning

- ullet Instead of a table, we have a parametrized Q function: $Q_{ heta}(s,a)$
 - Can be a linear function in features:

$$Q_{\theta}(s,a) = \theta_0 f_0(s,a) + \theta_1 f_1(s,a) + \dots + \theta_n f_n(s,a)$$

- Or a neural net, decision tree, etc.
- Learning rule:
 - Remember: $target(s') = R(s, a, s') + \gamma \max_{a'} Q_{\theta_k}(s', a')$
 - Update:

$$\theta_{k+1} \leftarrow \theta_k - \alpha \nabla_{\theta} \left[\frac{1}{2} (Q_{\theta}(s, a) - \text{target}(s'))^2 \right] \Big|_{\theta = \theta_k}$$

Recall Approximate Q-Learning

- Instead of a table, we have a parametrized Q function
 - E.g. a neural net $Q_{\theta}(s,a)$
- Learning rule:
 - Compute target:

$$target(s') = R(s, a, s') + \gamma \max_{a'} Q_{\theta_k}(s', a')$$

Update Q-network:

$$\theta_{k+1} \leftarrow \theta_k - \alpha \nabla_{\theta} \left[\frac{1}{2} (Q_{\theta}(s, a) - \text{target}(s'))^2 \right] \Big|_{\theta = \theta_k}$$

DQN Training Algorithm

Algorithm 1: deep Q-learning with experience replay.

```
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
        With probability \varepsilon select a random action a_t
       otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
        Execute action a_t in emulator and observe reward r_t and image x_{t+1}
       Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
       Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}
       Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
       network parameters \theta
       Every C steps reset Q = Q
   End For
End For
```


DQN Details

Uses Huber loss instead of squared loss on Bellman error:

$$L_\delta(a) = \left\{ egin{array}{ll} rac{1}{2} a^2 & ext{for } |a| \leq \delta, \ \delta(|a| - rac{1}{2}\delta), & ext{otherwise}. \end{array}
ight.$$

- Uses RMSProp instead of vanilla SGD.
 - Optimization in RL really matters.

DQN on ATARI

49 ATARI 2600 games.

- · From pixels to actions.
- The change in score is the reward.
- · Same algorithm.
- Same function approximator, w/ 3M free parameters.
- Same hyperparameters.
- Roughly human-level performance on 29 out of 49 games.

ATARI Network Architecture

- Convolutional neural network architecture:
 - History of frames as input.
 - One output per action expected reward for that action Q(s, a).
 - Final results used a slightly bigger network (3 convolutional + 1 fully-connected hidden layers).

Atari Results

Double DQN

- There is an upward bias in $max_a Q(s, a; \theta)$.
- DQN maintains two sets of weight θ and θ , so reduce bias by using:
 - \circ θ for selecting the best action.
 - \circ θ for evaluating the best action.
- Double DQN loss:

$$L_i(\theta_i) = \mathbb{E}_{s,a,s',r} \ D\left(r + \gamma Q(s', \arg\max_{a'} Q(s', a'; \theta); \theta_i^-) - Q(s, a; \theta_i)\right)^2$$

	no ops		human starts		
	DQN	DDQN	DQN	DDQN	DDQN
					(tuned)
Median	93%	115%	47%	88%	117%
Mean	241%	330%	122%	273%	475%

Prioritized Experience Replay

- Replaying all transitions with equal probability is highly suboptimal.
- Replay transitions in proportion to absolute Bellman error:

$$r + \gamma \max_{a'} Q(s', a'; \theta^-) - Q(s, a; \theta)$$

Leads to much faster learning.

	DQN		Double DQN (tuned)		
	baseline	rank-based	baseline	rank-based	proportional
Median	48%	106%	111%	113%	128%
Mean	122%	355%	418%	454%	551%
> baseline	_	41	-	38	42
> human	15	25	30	33	33
# games	49	49	57	57	57

See also

- "Rainbow: Combining Improvements in Deep Reinforcement Learning," Matteo Hessel et al, 2017
 - Double DQN (DDQN)
 - Prioritized Replay DDQN
 - Dueling DQN
 - Distributional DQN
 - Noisy DQN

Outline

- Motivation
- Q-learning
- DQN + variants
- Q-learning with continuous action spaces (SoftQ)
- Deep Deterministic Policy Gradient (DDPG)
- Soft Actor Critic (SAC)

Soft Q-Learning

$$V_t(\mathbf{s}_t) = \log \int \exp\left(Q_t(\mathbf{s}_t, \mathbf{a}_t)\right) d\mathbf{a}_t$$

→ Use a sample estimate

$$Q_t(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \mathbb{E}_{\mathbf{s}_{t+1}} \left[V_{t+1}(\mathbf{s}_{t+1}) \right]$$

→ Supervised learning

$$\pi_t(\mathbf{a}_t|\mathbf{s}_t) \propto \exp\left(Q_t(\mathbf{s}_t,\mathbf{a}_t)\right)$$

→ Stein variational gradient descent

Stein Variational Gradient Descent: Intuition

D. Wang et al., Learning to draw samples: With application to amortized MLE for generative adversarial learning, 2016.

0 min

12 min

30 min

2 hours

Training time

After 2 hours of training

Outline

- Motivation
- Q-learning
- DQN + variants
- Q-learning with continuous action spaces (SoftQ)
- Deep Deterministic Policy Gradient (DDPG)
- Soft Actor Critic (SAC)

Deep Deterministic Policy Gradient (DDPG): Basic (=SVG(0))

• for iter = 1, 2, ...

Roll-outs:

Execute roll-outs under current policy (+some noise for exploration)

Q function update:

$$g \propto \nabla_{\phi} \sum_{t} (Q_{\phi}(s_t, u_t) - \hat{Q}(s_t, u_t))^2$$
 with $\hat{Q}(s_t, u_t) = r_t + \gamma Q_{\phi}(s_{t+1}, u_{t+1})$

Policy update:

Backprop through Q to compute gradient estimates for all t:

$$g \propto \sum_{t} \nabla_{\theta} Q_{\phi}(s_{t}, \pi_{\theta}(s_{t}, v_{t}))$$

SVG(k)

Applied to 2-D robotics tasks

Different gradient estimators behave similarly

SVG(k)

Deep Deterministic Policy Gradient (DDPG): Complete

- Add noise for exploration
- Incorporate replay buffer for off-policy learning
- For increased stability, use lagged (Polyak-averaging) version of Q_ϕ and π_θ for target values

$$\hat{Q}_t = r_t + \gamma Q_{\phi'}(s_{t+1}, \pi_{\theta'}(s_{t+1}))$$
off-policy!

DDPG

for iteration= $1, 2, \dots$ do

Act for several timesteps, add data to replay buffer Sample minibatch

Update π_{θ} using $g \propto \nabla_{\theta} \sum_{t=1}^{T} Q(s_t, \pi(s_t, z_t; \theta))$

Update Q_ϕ using $g \propto
abla_\phi \sum_{t=1}^{T} (Q_\phi(s_t, a_t) - \hat{Q}_t)^2$,

end for

Applied to 2D and 3D robotics tasks and driving with pixel input

DDPG

DDPG

- + very sample efficient thanks to off-policy updates
- often unstable

→ Soft Actor Critic (SAC), which adds entropy of policy to the objective, ensuring better exploration and less overfitting of the policy to any quirks in the Q-function

Outline

- Motivation
- Q-learning
- DQN + variants
- Q-learning with continuous action spaces (SoftQ)
- Deep Deterministic Policy Gradient (DDPG)
- Soft Actor Critic (SAC)

Soft Policy Iteration

Soft Actor-Critic

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. *Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement*

1. Soft policy evaluation:

Fix policy, apply soft Bellman backup until converges:

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \mathbb{E}_{\mathbf{s}' \sim p_{\mathbf{s}}, \ \mathbf{a}' \sim \pi} \left[Q(\mathbf{s}', \mathbf{a}') - \log \pi(\mathbf{a}' | \mathbf{s}') \right]$$

This converges to Q^{π} .

1. Take one stochastic gradient step to minimize soft Bellman residual

Learning with a Stochastic Actor. ICML, 2018.

2. Soft policy improvement:

Update the policy through information projection:

$$\pi_{ ext{new}} = rg \min_{\pi'} \mathrm{D_{KL}} \left(\pi'(\,\cdot\,|\mathbf{s}) \, \left\| \, rac{1}{Z} \exp Q^{\pi_{ ext{old}}}(\mathbf{s},\,\cdot\,)
ight)$$

For the new policy, we have $Q^{\pi^{\mathrm{new}}} \geq Q^{\pi^{\mathrm{old}}}$.

2. Take one stochastic gradient step to minimize the KL divergence

3. Repeat until convergence

3. Execute one action in the environment and repeat

Soft Actor Critic

• Objective:
$$J(\pi) = \sum_{t=0}^{T} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi(\cdot | \mathbf{s}_t)) \right]$$

- Iterate:
 - Perform roll-out from pi, add data in replay buffer
 - Learn V, Q, pi:

$$J_V(\psi) = \mathbb{E}_{\mathbf{s}_t \sim \mathcal{D}} \left[\frac{1}{2} \left(V_{\psi}(\mathbf{s}_t) - \mathbb{E}_{\mathbf{a}_t \sim \pi_{\phi}} \left[Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - \log \pi_{\phi}(\mathbf{a}_t | \mathbf{s}_t) \right] \right)^2 \right]$$

$$\hat{Q}(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V_{\bar{\psi}}(\mathbf{s}_{t+1}) \right]$$

$$J_{\pi}(\phi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[D_{\mathrm{KL}} \left(\pi_{\phi}(\cdot | \mathbf{s}_{t}) \mid \left| \frac{\exp\left(Q_{\theta}(\mathbf{s}_{t}, \cdot)\right)}{Z_{\theta}(\mathbf{s}_{t})} \right) \right]$$

Deep Deterministic Policy Gradient (DDPG) Proximal Policy Optimization (PPO) Soft Q-Learning (SQL)

sites.google.com/view/soft-actor-critic

Real Robot Results

Real Robot Results

Real Robot Results

