CS 287 Lecture 19 (Fall 2019)
Off-Policy, Model-Free RL:
DQN, SoftQ, DDPG, SAC

Pieter Abbeel
UC Berkeley EECS

Outline

Motivation

Q-learning

DQN + variants

Q-learning with continuous action spaces (SoftQ)
Deep Deterministic Policy Gradient (DDPG)

Soft Actor Critic (SAC)

Story-line

TRPO, PPO: Importance sampling surrogate loss allows to do more than a gradient
step, but still very local

Could we re-use samples more? Could we learn more globally / off-policy?

Yes! By leveraging the dynamic programming structure of the problem, breaking it
down into 1-step pieces

= Q-learning, DQN: 1-step (sampled) off-policy Bellman back-ups > more sample re-use > more data-
efficient learning directly about the optimal policy

= Why not always Q-learning/DQN?
= Often less stable
» The data doesn’t always support learning about the optimal policy (even if in principle can learn fully off-policy)

= DDGP, SAC: like Q-learning, but does off-policy learning about the current policy and how to locally
improve it (vs. directly learning about the optimal policy)

Outline

Motivation

Q-learning

DQN + variants

Q-learning with continuous action spaces (SoftQ)
Deep Deterministic Policy Gradient (DDPG)

Soft Actor Critic (SAC)

Recap Q-Values

Q’(s, a) = expected utility starting in s, taking action a, and (thereafter)
acting optimally

Bellman Equation:
Q*(s,a) = Y P(s'|s,a)(R(s,a,s) + ymax Q*(s',a’))

Q-Value Iteration:

Qr+1(s,a) ¢) P(s']s,a)(R(s,a,5') +ymax Qx(s,a))

(Tabular) Q-Learning

= Q-valueiteration: Qit1(s,a) < > P(s'|s,a)(R(s,a,s) + y max Q(s',a))
= Rewrite as expectation: Q1 < Eywp(s/)s,a) {R(s, a, s') 4+ ymax Qg (s, a’)}

m (Tabular) Q-Learning: replace expectation by samples

= For an state-action pair (s,a), receive: s’ ~ P(s'|s,a)

Consider your old estimate: Q(s, a)

Consider your new sample estimate:
target(s') = R(s, a,s") + ymax Qx(s', a’)

Incorporate the new estimate into a running average:
Qrii(s,a) < (1 — a)Qr(s,a) + a [target(s’)]

(Tabular) Q-Learning

Algorithm:
Start with QQo(s, a) foralls, a.
Get initial state s
For k=1, 2, ... till convergence
Sample action a, get next state s’
If s” is terminal:
target = R(s,a,s’)
Sample new initial state s’
else:

target = R(s,a,s’) +ymax Qx(s’, a’)

a

ka—|—1(87 CL) — (1 o a)ka(Sa CL) +a [target]
s s

How to sample actions?

Choose random actions?
Choose action that maximizes Qk (8, a) (i.e. greedily)?

e-Greedy: choose random action with prob. €, otherwise choose
action greedily

Q-Learning Properties

Amazing result: Q-learning converges to optimal policy --
even if you’re acting suboptimally!

This is called off-policy learning

Caveats:

= You have to explore enough

= You have to eventually make the learning rate

small enough

= ... but not decrease it too quickly

Q-Learning Properties

= Technical requirements.

= All states and actions are visited infinitely often
= Basically, in the limit, it doesn’t matter how you select actions (!)

= Learning rate schedule such that for all state and action
pairs (s,a):

oo o0
Zat(s,a):oo Za%(s,a) < 00
t=0

t=0

For details, see Tommi Jaakkola, Michael |. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6(6), November 1994.

Q-Learning Demo: Crawler

» States: discretized value of 2d state: (arm angle, hand angle)
* Actions: Cartesian product of {arm up, arm down} and {hand up, hand down}
* Reward: speed in the forward direction

Video of Demo Crawler Bot

Video of Demo Q-Learning -- Crawler

Outline

Motivation

Q-learning

DQN + variants

Q-learning with continuous action spaces (SoftQ)
Deep Deterministic Policy Gradient (DDPG)

Soft Actor Critic (SAC)

Can tabular methods scale?

m Discrete environments

II. . i
-10.00(||-10.00(||-10.00(||-10.00(||-10.00

Gridworld
10M

O

]
]
O
O
U
[]

)
]
]
]
a
]

oEaEE®

00O
]
e
(O]][
00w

Tetris Atari
10760 107308 (ram) 10716992 (pixels)

Can tabular methods scale?

= Continuous environments (by crude discretization)

Crawler
1012

Humanoid
10700

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

= Too many states to visit them all in training

= Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience

= Generalize that experience to new, similar situations

= Thisis a fundamental idea in machine learning

Approximate Q-Learning

= Instead of a table, we have a parametrized Q function: Qg(s, a)
= Can be alinear function in features:

QG(Sa CL) — QOfO(Sa CL) + 6)1fl<57 CL) + 0+ enfn(sa CL)

= Or a neural net, decision tree, etc.

m Learning rule:
= Remember: target(s’) = R(s,a,s’) +ymax Qg (s',a’)
a/
= Update:
1

6k+1 < ek — OKVQ 5

(Qo(s,a) — target(s’))2]

0=0y

Recall Approximate Q-Learning

= Instead of a table, we have a parametrized Q function

= E.g.aneuralnet Qp(s,a)

= Learning rule:

= Compute target:

target(s') = R(s,a, ') + v max Q, (s', '

= Update Q-network:
1

ek_|_1 < ek — OAVQ 5

(Qo(s,a) — target(s’))2]

0=0y

DQN Training Algorithm

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N

Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do

Initialize sequence s, = {x; } and preprocessed sequence ¢, =¢@(s,)

For t=1,T do e
With probability ¢ select a random action a, — —
otherwise select a, =argmax, Q(¢(s;),a; 0) h r-_]
Execute action a, in emulator and observe reward r, and image x; ; ,
Set s; 1 =5;,a;,X;+1 and preprocess ¢, , =¢(s;41)

Store transition (¢,,a;,r;,¢,,,) in D w
Sample random minibatch of transitions (¢»,aj,rj,¢j " 1) from D

T if episode terminates at step j+ 1 @
Sety; =

rj+7y maxy Q(¢j+ 143 0_) otherwise

L ey 7

Perform a gradient descent step on (yj - Q(¢j,aj; 0))2 with respect to the
network parameters 0
Every C steps reset Q= Q
End For
End For

'b DeepMind

DQN Details

Uses Huber loss instead of squared loss on Bellman error:

La? for |a| < 6,
Ls(a) = { 2
d(la| — %6), otherwise.

Uses RMSProp instead of vanilla SGD.

o Optimization in RL really matters.
It helps to anneal the exploration rate.

o Starteat1and annealitto 0.1 or 0.05 over the first million frames.

DQN on ATARI

Pong Enduro Beamrider Q*bert

« 49 ATARI 2600 games.
From pixels to actions.
« The change in score is the reward.
Same algorithm.
- Same function approximator, w/ 3M free parameters.
Same hyperparameters.
Roughly human-level performance on 29 out of 49 games.

ATARI Network Architecture

e Convolutional neural network architecture:
History of frames as input.
One output per action - expected reward for that action O¢s, a).
Final results used a slightly bigger network (3 convolutional + 1 fully-connected hidden layers).

32 4x4 filters 256 hidden units Fully-connected linear
output layer

16 8x8 filters
4x84x84 | 1

, Fully-connected layer
Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Stack of 4 previous
frames

Atari Results

%005t %0000 %000 %005 %00y %00E %00 %00F %0
| L)Ll |] | | | J

i %0 [86uanay s ewnzajuopy
| 83 aleng
e |)
%9 [aqisosy
i | sposaisy
werfl| vewoeq sy
s Bupmog
I | ynq anog
sse-ff]| senbesg
~J | emwep
i [Loy
| ooy
I | voxeez
B | pey oy
B | 15i0H yueg
| odwa)
—J | puewwo saddoy)
~—JR | o jo prezy
—JJIR8 | auoz apeg
IoAdfuewny Mo1q Yualsy
940G J0 [9ABFUbwNY Je .n 0YIH
— | 5.0
N | foxoor 0
R | wvoq pue
~ I | /e buysiy
T
e | EE
| fenaaiy

S | oisen n3-uny
— N | weyyoen)
[933
— | soerv| 0ed
T |
.
II puog sawe
2 oy
— 7y
— e
oM sl
— N 5 . 5\
—— A 2450
| 715
—— R 3 | 1 2
. [

— S s [7oy

Jowseo Jeaur 1seg

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

Jauung) Jeig
Jnoyeasg
Buxog
[[Bquid O8PIA

Double DQN

e There is an upward bias in max_ O(s, a; 0).

o 0 for evaluating the best action.
e Double DQN loss:

2
Li(oi) -]Es,a,s',r D (T + 7Q(8,7 arg ma,'x Q(S,, a,; 0)7 01_) - Q(sa as 01))

Wizard of Wor

no ops human starts
DQN DDQN | DQN DDQN DDQN
(tuned)
Median | 93% 115% 47% 88% 117%
Mean 241% 330% 122% 273% 475%
Q DeepMind

Double' DQN

Value estimates
(log scale)

0 50 100 150 200

Wizard of Wor

Double DQN

0 50 100 150 200
Training steps (in millions)

DQN maintains two sets of weight 6 and 0", so reduce bias by using:
o 0 for selecting the best action.

Asterix

Double DQN
0 50 100 150 200

Asterix

6000
Double DQN
1000

2000
DQN

0 50 100 150 200
Training steps (in millions)

“Double Reinforcement Learning with Double Q-Learning”, van Hasselt et al. (2016)

Prioritized Experience Replay
e Replaying all transitions with equal probability is highly suboptimal.

e Replay transitions in proportion to absolute Bellman error:

r+ymax Q(s', '3 07) — Q(s,a;0)

e Leads to much faster learning.

DQN Double DQN (tuned)

baseline rank-based | baseline rank-based proportional
Median 48% 106% | 111% 113% 128%
Mean 122% 355% | 418% 454% 551%
> baseline - 41 - 38 42
> human 15 25 30 33 33
games 49 49 57 37 57

@ DeepMind

normalized max score

§

§ 8

normalized mean score
§ § §

§
§

3
3

o 50 100 150 200 0 50 100 150 200
training step (1e6) training step (1e6)

== uniform - rank-based = proportional -~ uniform DONl

“Prioritized Experience Replay”, Schaul et al. (2016)

See also

“Rainbow: Combining Improvements in Deep Reinforcement
Learning,” Matteo Hessel et al, 2017

= Double DQN (DDQN)

= Prioritized Replay DDQN
= Dueling DQN

= Distributional DQN
Noisy DQN

Outline

Motivation

Q-learning

DQN + variants

Q-learning with continuous action spaces (SoftQ)
Deep Deterministic Policy Gradient (DDPG)

Soft Actor Critic (SAC)

Soft Q-Learning

Vi(st) = log/exp (Qi(se, at)) day — Use a sample estimate

Qt(sta at) = 'l"(St, at) +]Est+1 [V;H-l(st-f-l)] — Supervised learning

Wt(at|St) X €Xp (Qt(sta at))

Stein Variational Gradient Descent: Intuition

exXp (Q(S, ’))

min Dk, exp (Q(ss,)P
o

Implicit density model

NN~
ROBROA

AN

A Y
X4

p(hy) = N'(0, T) Lalina 0 aNC g,
W7\ /78K {.‘L,
NN
w @)

D. Wang et al., Learning to draw samples: With application to amortized MLE for generative adversarial learning, 2016.

12 min

Training time

sites.google.com/view/composing-real-world-policies/

sites.google.com/view/composing-real-world-policies/

Outline

Motivation

Q-learning

DQN + variants

Q-learning with continuous action spaces (SoftQ)
Deep Deterministic Policy Gradient (DDPG)

Soft Actor Critic (SAC)

Deep Deterministic Policy Gradient (DDPG): Basic (=SVG(0))

o foriter=1,2, ..

Roll-outs:
Execute roll-outs under current policy (+some noise for exploration)

Q function update:

g x Vg Z(Qd)(stvut) - Q(St, ut))2 with Q(staut) =1t + Qg (St+1, Ut +1)
t

Policy update:
Backprop through Q to compute gradient estimates for all t:

g Y VeQu(se, mo(se,v))
t

SVG(k)

= Applied to 2-D robotics tasks

pppppppp

Swimmer-7 4-Target Reacher

AN

Avg. reward (arbitrary units)

—— SVG(1) —— SVG(inf)
SVG(1)-ER SVG(1)
SVG(0) SVG(1)-ER
—— DPG SVG(0)
AC — DPG
0 3000 6000 0 2000 4000 6000 8000 10000

Episodes Episodes

SVG(k)

Deep Deterministic Policy Gradient (DDPG): Complete

= Add noise for exploration
= Incorporate replay buffer for off-policy learning

= Forincreased stability, use lagged (Polyak-averaging) version
of)y and Ty for target values

Qt =T+ ’Yqu’(StJrl, 7T0’(8t+1))

off-policy!

DDPG

for iteration=1,2,... do
Act for several timesteps, add data to replay buffer
Sample minibatch

Update g using g o< Vo 3., Q(st, 7(st, z¢; 0))

Update Q, using g < V4 ZZ-ZI(Q¢(St, ar) — @t)2,
end for

= Applied to 2D and 3D robotics tasks and driving with pixel input

DDPG

DDPG

+ very sample efficient thanks to off-policy updates

- often unstable

— Soft Actor Critic (SAC), which adds entropy of policy to the

objective, ensuring better exploration and less overfitting of the
policy to any quirks in the Q-function

Outline

Motivation

Q-learning

DQN + variants

Q-learning with continuous action spaces (SoftQ)
Deep Deterministic Policy Gradient (DDPG)

Soft Actor Critic (SAC)

Soft Policy Iteration Soft Actor-Critic

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft Actor-
Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor. ICML, 2018.

1. Soft policy evaluation:

Fix policy, apply soft Bellman backup until converges: 1 Take one stochastic

s E - ' a\—] ! gradient step to minimize
Q(s;a) r(s,a) + Es Pe, &7 @', ')~ log m(a'ls')] soft Bellman residual

This converges to Q7.T

2. Soft policy improvement:

Update the policy through information projection: .
| 2. Take one stochastic

— exp Q™ (s, .)) gradient step to minimize
Z the KL divergence

Tnew = arg mi,n Dxk1, (71',() IS)
v

For the new policy, we have Q™ > QTOM

3. Execute one action in the

3. Repeat until convergence environment and repeat

Soft Actor Critic

T
= Objective: J(7) =) " Es,a)~ps [F(St,a0) + aH((- [s))]

t=0

= lterate:
= Perform roll-out from pi, add data in replay buffer
= LearnV, Q, pi:

Jv () = Ea,p |3 (Vis(5t) = Bayr, [Qo(st,a0) — log ms(aefsi)])]

Q(st,ar) = r(se, ar) + Y Espyymp [Vip(S041))]

Jr(¢) = Eg,~np |:DKL <7T¢(Ist)

[see also: https://towardsdatascience.com/soft-actor-critic-demystified-b8427df61665]

https://towardsdatascience.com/soft-actor-critic-demystified-b8427df61665

Humanoid (rllab)

) SAC
6000 DDPG alud "
o A
s i el
- W
@ 4000 Al
o £
4 £
&
& 2

n
/4 '
00D ,W
/ AR

0 ~

0 - 6 8 10
Algorithms: million steps
Soft Actor-Critic (SAC)
Deep Deterministic Policy Gradient (DDPG)
Proximal Policy Optimization (PPO)
Soft Q-Learning (SQL)

[S

sites.google.com/view/soft-actor-critic

Hopper-vl Walker2d-vl HalfCheetah-v1

g
g

e M = 15000
3000
£ £
- 210000
o 2000 P
% %
2 1000 2 5000
0 o 0
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.5 1o L5 2.0 2.5 3.0
million steps million steps million steps
Ant-vl Humanoid-v1 Humanoid (rllab)
—— SAC
6000 6000 ___ pppg
£ £ £ :;f
= s =
g o g g 4000
@ @ @
g 2000 g g
H 2 2 2000
0
0.0 0.5 1.0 15 2.0 2.5 3.0 0 2 4 G 8 10 0 2 4 6 8 10
million steps million steps million steps

sites.google.com/view/soft-actor-critic

Real Robot Results

Real Robot Results

Real Robot Results

