
CS 287 Lecture 19 (Fall 2019)
Off-Policy, Model-Free RL:
DQN, SoftQ , DDPG, SAC

Pieter Abbeel
UC Berkeley EECS

n Motivation
n Q-learning
n DQN + variants
n Q-learning with continuous action spaces (SoftQ)
n Deep Deterministic Policy Gradient (DDPG)
n Soft Actor Critic (SAC)

Outline

n TRPO, PPO: Importance sampling surrogate loss allows to do more than a gradient
step, but still very local

n Could we re-use samples more? Could we learn more globally / off-policy?

n Yes! By leveraging the dynamic programming structure of the problem, breaking it
down into 1-step pieces

n Q-learning, DQN: 1-step (sampled) off-policy Bellman back-ups à more sample re-use à more data-
efficient learning directly about the optimal policy

n Why not always Q-learning/DQN?
n Often less stable
n The data doesn’t always support learning about the optimal policy (even if in principle can learn fully off-policy)

n DDGP, SAC: like Q-learning, but does off-policy learning about the current policy and how to locally
improve it (vs. directly learning about the optimal policy)

Story-line

n Motivation
n Q-learning
n DQN + variants
n Q-learning with continuous action spaces (SoftQ)
n Deep Deterministic Policy Gradient (DDPG)
n Soft Actor Critic (SAC)

Outline

Recap Q-Values
Q*(s, a) = expected utility starting in s, taking action a, and (thereafter)
acting optimally

Bellman Equation:

Q-Value Iteration:

n Q-value iteration:

n Rewrite as expectation:

n (Tabular) Q-Learning: replace expectation by samples

n For an state-action pair (s,a), receive:

n Consider your old estimate:

n Consider your new sample estimate:

n Incorporate the new estimate into a running average:

(Tabular) Q-Learning

Qk+1 Es0⇠P (s0|s,a)

h
R(s, a, s0) + �max

a0
Qk(s

0, a0)
i

s0 ⇠ P (s0|s, a)
Qk(s, a)

Qk+1(s, a) (1� ↵)Qk(s, a) + ↵ [target(s0)]

(Tabular) Q-Learning
Algorithm:

Start with for all s, a.
Get initial state s
For k = 1, 2, … till convergence

Sample action a, get next state s’
If s’ is terminal:

Sample new initial state s’
else:

Q0(s, a)

target = R(s, a, s0) + �max
a0

Qk(s
0, a0)

target = R(s, a, s0)

s s0
Qk+1(s, a) (1� ↵)Qk(s, a) + ↵ [target]

n Choose random actions?

n Choose action that maximizes (i.e. greedily)?

n ɛ-Greedy: choose random action with prob. ɛ, otherwise choose
action greedily

How to sample actions?

Qk(s, a)

n Amazing result: Q-learning converges to optimal policy --
even if you’re acting suboptimally!

n This is called off-policy learning

n Caveats:

n You have to explore enough

n You have to eventually make the learning rate

small enough

n … but not decrease it too quickly

Q-Learning Properties

n Technical requirements.

n All states and actions are visited infinitely often
n Basically, in the limit, it doesn’t matter how you select actions (!)

n Learning rate schedule such that for all state and action
pairs (s,a):

Q-Learning Properties

For details, see Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6(6), November 1994.

1X

t=0

↵t(s, a) = 1
1X

t=0

↵2
t (s, a) < 1

Q-Learning Demo: Crawler

• States: discretized value of 2d state: (arm angle, hand angle)
• Actions: Cartesian product of {arm up, arm down} and {hand up, hand down}
• Reward: speed in the forward direction

Video of Demo Crawler Bot

Video of Demo Q-Learning -- Crawler

n Motivation
n Q-learning
n DQN + variants
n Q-learning with continuous action spaces (SoftQ)
n Deep Deterministic Policy Gradient (DDPG)
n Soft Actor Critic (SAC)

Outline

n Discrete environments

Can tabular methods scale?

Tetris
10^60

Atari
10^308 (ram) 10^16992 (pixels)

Gridworld
10^1

n Continuous environments (by crude discretization)

Crawler
10^2

Hopper
10^10

Humanoid
10^100

Can tabular methods scale?

Generalizing Across States
n Basic Q-Learning keeps a table of all q-values

n In realistic situations, we cannot possibly learn
about every single state!

n Too many states to visit them all in training

n Too many states to hold the q-tables in memory

n Instead, we want to generalize:

n Learn about some small number of training states from
experience

n Generalize that experience to new, similar situations

n This is a fundamental idea in machine learning

n Instead of a table, we have a parametrized Q function:

n Can be a linear function in features:

n Or a neural net, decision tree, etc.

n Learning rule:

n Remember:

n Update:

Approximate Q-Learning
Q✓(s, a)

Q✓(s, a) = ✓0f0(s, a) + ✓1f1(s, a) + · · ·+ ✓nfn(s, a)

target(s0) = R(s, a, s0) + �max
a0

Q✓k(s
0, a0)

✓k+1 ✓k � ↵r✓


1

2
(Q✓(s, a)� target(s0))2

�����
✓=✓k

n Instead of a table, we have a parametrized Q function

n E.g. a neural net

n Learning rule:

n Compute target:

n Update Q-network:

Recall Approximate Q-Learning

Q✓(s, a)

target(s0) = R(s, a, s0) + �max
a0

Q✓k(s
0, a0)

✓k+1 ✓k � ↵r✓


1

2
(Q✓(s, a)� target(s0))2

�����
✓=✓k

n “Rainbow: Combining Improvements in Deep Reinforcement
Learning,” Matteo Hessel et al, 2017

n Double DQN (DDQN)

n Prioritized Replay DDQN

n Dueling DQN

n Distributional DQN

n Noisy DQN

See also

n Motivation
n Q-learning
n DQN + variants
n Q-learning with continuous action spaces (SoftQ)
n Deep Deterministic Policy Gradient (DDPG)
n Soft Actor Critic (SAC)

Outline

Soft Q-Learning

→ Supervised learning

→ Use a sample estimate

→ Stein variational gradient descent

Stein Variational Gradient Descent: Intuition

Implicit density model

D. Wang et al., Learning to draw samples: With application to amortized MLE for generative adversarial learning, 2016.

Q-function

Policy sampling network

0 min 12 min 30 min 2 hours
Training time

sites.google.com/view/composing-real-world-policies/

After 2 hours of training
sites.google.com/view/composing-real-world-policies/

n Motivation
n Q-learning
n DQN + variants
n Q-learning with continuous action spaces (SoftQ)
n Deep Deterministic Policy Gradient (DDPG)
n Soft Actor Critic (SAC)

Outline

Deep Deterministic Policy Gradient (DDPG): Basic (=SVG(0))

• for iter = 1, 2, …

Roll-outs:
Execute roll-outs under current policy (+some noise for exploration)

Q function update:

Policy update:
Backprop through Q to compute gradient estimates for all t:

g /
X

t

r✓Q�(st,⇡✓(st, vt))

g / r�

X

t

(Q�(st, ut)� Q̂(st, ut))
2 with Q̂(st, ut) = rt + �Q�(st+1, ut+1)

n Applied to 2-D robotics tasks

n Different gradient estimators behave similarly

SVG(k)

SVG(k)

n Add noise for exploration

n Incorporate replay buffer for off-policy learning

n For increased stability, use lagged (Polyak-averaging) version
of and for target values

Deep Deterministic Policy Gradient (DDPG): Complete

Q� ⇡✓

Q̂t = rt + �Q�0(st+1,⇡✓0(st+1))

off-policy!

n Applied to 2D and 3D robotics tasks and driving with pixel input

DDPG

DDPG

+ very sample efficient thanks to off-policy updates

- often unstable

à Soft Actor Critic (SAC), which adds entropy of policy to the
objective, ensuring better exploration and less overfitting of the
policy to any quirks in the Q-function

DDPG

n Motivation
n Q-learning
n DQN + variants
n Q-learning with continuous action spaces (SoftQ)
n Deep Deterministic Policy Gradient (DDPG)
n Soft Actor Critic (SAC)

Outline

Soft Policy Iteration

1. Soft policy evaluation:
Fix policy, apply soft Bellman backup until converges:

2. Soft policy improvement:
Update the policy through information projection:

This converges to .

For the new policy, we have .

3. Repeat until convergence

1. Take one stochastic
gradient step to minimize
soft Bellman residual

2. Take one stochastic
gradient step to minimize
the KL divergence

3. Execute one action in the
environment and repeat

Soft Actor-Critic
Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft Actor-
Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor. ICML, 2018.

n Objective:

n Iterate:
n Perform roll-out from pi, add data in replay buffer

n Learn V, Q, pi:

Soft Actor Critic

[see also: https://towardsdatascience.com/soft-actor-critic-demystified-b8427df61665]

https://towardsdatascience.com/soft-actor-critic-demystified-b8427df61665

Algorithms:
Soft Actor-Critic (SAC)
Deep Deterministic Policy Gradient (DDPG)
Proximal Policy Optimization (PPO)
Soft Q-Learning (SQL) sites.google.com/view/soft-actor-critic

sites.google.com/view/soft-actor-critic

Real Robot Results

Real Robot Results

Real Robot Results

